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Example: Not quite a Markov chain

Exercise 2.20 from Dobrow:

> Let Xy, Xi,... be a Markov chain with transition matrix
0 1 0
P=10 0 1
p 1—-p O

for some 0 < p < 1. Let g be the function defined by

(x) = 0, ifx=1
EVI97N1, ifx=23
If we let Y, = g(X,) for n > 0is Yp, Y1,... a Markov chain?

» Common phenomenon: The underlying process may reasonably be a
Markov chain, but what we observe is not!
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Hidden Markov Models

» A Hidden Markov Model (HMM) consists of
> a Markov chain Xo,...,X,,...,, and
> another sequence Yo,..., Yn,..., so that

Pr(Yk | Yo,...,Yk_1,Xo,...,Xk) = PI’(Yk ‘ Xk)

Figure: A hidden Markov model.

» |n some models we instead have
Pr(Yk | Y(), ey Yk—hXOa . ,Xk) = Pr(Yk | Yk—l,Xk)- There are
then extra arrows from yx_1 to yx in the figure above.

> Generally, Yp,..., Yk..., are observed, while Xp, ..., Xk ..., are
hidden.

> In our applications, the Xj have a finite state space and the Y} are

discrete.
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Example 1: Cough medicine

» Each day / a pharmacy sells Y; bottles of cough medicine. We
assume Y; ~ Poisson(X;) where X; is the “underlying demand”, X;
has possible values 10 and 30, and is modelled by a Markov chain

0.95 0.05

0.2 0.8 ]

» A simulation from the flu model. The full line represents the
underlying expected demand for cough-medicine, based on whether
there is a flu-infection in the area or not. The dots represent the
observed actual sales of the medicine.

with transition matrix P = [

0

20 4«
L1

0 10 20 30 40 50 60

» Can we learn about the presence of flu-infection from sales of
cough-medicine?
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Example 2: CpG islands

» DNA sequences may be modelled as Markov chains, with possible
values A, C, G, T and the positions along the sequence as the steps
in the chain.

» So-called “CpG islands” are sequences where the transition matrix
(P5) appears to be slightly different from the transition matrix (P_)
of of non-CpG islands:

0.180 0.274 0.426 0.120 0.300 0.205 0.285 0.210
0.171 0.368 0.274 0.188 p — 0.322 0.298 0.078 0.302
0.161 0.339 0.375 0.125|° "~ 0.248 0.246 0.298 0.208
0.079 0.355 0.384 0.182 0.177 0.239 0.292 0.292

P+:

» To detect CpG islands in a new DNA string, we set up a HMM
where the underlying variable X; has the two states: “CpG island”
and “non-CpG island”.
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What questions do we want to ask?

» When the parameters of the HMM are known, we want to know
about the values of the hidden variables X;. For example:
» What is the most likely sequence Xo, ..., X, given the data?
> What is the probability distribution for a single X; given the data?
» When the parameters of the HMM are not known, we need to infer
these from some data.
» |f data with all X; and Y; known is available, inference for
parameters is based on counts of transitions.
> One may also make inference from data where more things are
unknown.
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» The Multinomial Dirichlet conjugacy.
» Inference for finte state space Markov chains.
> (Some) inference for HMMs.
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The Multinomial Dirchlet conjugacy

» A vector x = (x1,...,xx) of non-negative integers has a Multinomial
distribution with parameters n and p, where n > 0 is an integer and
p is a probability vector of length k, if 5 | x; = n and the
probability mass function is given by

— n! X1 X2 Xk
m(x | n,p)= mpl Py Py
> A vector § = (01, ...,0k) of non-negative real numbers satisfying
Zf;l #; = 1 has a Dirichlet distribution with parameter vector
a = (ai,...,ax), if it has probability density function
r
(0] o) = (1 fap+---+ O‘k)efl—legz—l Y

M(a)l(az) - T(ew)
» We have conjugacy in this case: 8 | x ~ Dirichlet(c + x).
» The predictive distribution is given by

n! Mlar+x)  Tlow+x) I_(Zf;l a;i)
xp!o X! F(al) F(ak) F(Zle o + Xi).

m(x) =
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Inference for finite state space Markov chains

Example: You have observed 0, 1,1, 0,0, 0,1, 0,0, 1, 0 from a
Markov chain with possible values 0 and 1. What is the transition
matrix?

0|1
First, make table with counts of transitions: 0 | 3 | 3 |
1131
A reasonable guess for a transition matrix is then
p_ 3/6 3/6
T |3/4 1/4|°

What should happen if we have never observed a transition i — j for
two states / and 7

What should happen if we have never observed any transition from a
state 7
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One solution: pseudo-counts

>

Idea: If the count is zero, add some small positive number, a
pseudo-count, so that the frequency becomes non-zero.

The pseudo-count does not need to be an integer.

To be “fair”, we may add the same pseudo-count to all counts. We
often use pseudo-counts equal to 1.

In the example above, with pseudo-counts 1, the count table
0|1
becomes 0 | 4 | 4 |and the transition matrix becomes
11412
p_ 4/8 4/8
T 14/6 2/6|°

Note how the influence of pseudo-counts approaches zero when the
actual counts increase.

What should happen if the state space is infinite?
Generally, is there a theoretic framework to put this into?
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Bayesian inference for Markov chains

» Write P, ..., Px for the k rows of P, and view each P; as an
independent random variable.

» Note that observed data (counts of transitions from each state i) is
Multinomially distributed given P;.

> If we assume P; ~ Dirichlet(a) for some vector «; = (a1, - - ., @ik),
and the counts for transitions out of i are given in the vector
¢i = (¢, - - -, Cik), then the posterior for P; becomes
Dirichlet(a; + ¢).

» Note that the expectected posterior becomes the vector

Qi + G
ajr + -+ atk 4+ ¢+ 4 cix

E(P; | data) =

So the ajj correspond exactly to pseudo-counts!

» The prior Dirichlet(1,1,...,1), with all pseudo-counts equal to 1
corresponds to a uniform distribution on the set of all probability
vectors P; that sum to 1.
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More conclusions from the Bayesian framework

» We can show that, if the sequence Xy, X1,..., X, is observed as
data, then the posterior probabilities for X1 are E(Py,).

» We can extend this to compute the probability of any sequence
Xna1, - -+, Xnrr given data Xo, ..., X,.

» If we know a priori that certain transitions are impossible, we can
incorporate this into the prior: For example, using the prior
P; ~ Dirichlet(1,1,0) ,means that transitions from state i to state 3
have probability zero.

» |t is also possible to construct priors for the transition matrix P that
represent other types of prior information, for example that the
Markov chain must be time reversible.
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Inference for the parameters of HMMs

Assume an HMM model where X; € {0,1}, Y; € {1, 2,3}, and we have

observed both states in some stretch of data:
Xjo(ojojof1y1|1j1f1]o0

Y|1|2|1|1]2|3]|2|3|3]|1

0|1 1123
» Counting transitions, weget 0 |3 |1 |and 0|4 | 1|0 |
1(1/4 110123

» |In practice, we can use pseudocounts just as in the Markov chain
case. In the example above, using all pseudocounts equal to 1, we

get
p_ 4/6 2/6 Q- 5/8 2/8 1/8
- |2/7 5/7|°F |1/8 3/8 4/8
where P is the transition matrix of the Markov chain, and @ is the

stochastic matrix of transition probabilities from X; to Y;.

> As for Markov chains, these results can be obtained by using priors
for P and @ that are product of Dirichlet distributions.
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More on inference of parameters for HMMs

» The Bayesian paradigm may be used to make predictions for later
observations: In the example above, with Xp, ... Xo, Yo,... Yo
observed, the probability vector with the three possible values of Yig
can be computed with the matrix product E (Py,) E (Q).

» The priors can be adapted to incorporate actual prior information.

» For example, prior knowledge about the transitions from states of X;
to states of Y; might lead you to model Y; ~ Poisson(Ax;), so for
each value of X; the Y; are Poisson distributed with parameter \x.
Fixing a prior also on the Ax, parameters, we may then find the
posteriors for these in similar ways as we have done before.
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More inference questions for HMMs

» We focused above on the case where (some) parameters of the
HMM are not fully known.

> If the HMM parameters are given and the Y; are observed, the goal
may instead be to learn about the values of the X; (these methods
are not part of the course):

> Find the sequence Xo, ..., Xk with the maximum probability given
the observed Y, ..., Yk and the given model: The Viterbi algorithm.
> Find the marginal distribution for each X; given the observed
Yo, ..., Yk and the model: The Forward-Backward algorithm.
> Find the joint distribution of Xy, ..., Xk given the observed
Yo, ..., Y« and the model. In practice: Find a sequence Xo, ..., Xk

that is a sample from this joint distribution. This may also be done
with a Forward-Backward algorithm.
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