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Example: Not quite a Markov chain

Exercise 2.20 from Dobrow:

I Let X0,X1, . . . be a Markov chain with transition matrix

P =

0 1 0
0 0 1
p 1− p 0


for some 0 < p < 1. Let g be the function defined by

g(x) =

{
0, if x = 1
1, if x = 2, 3

If we let Yn = g(Xn) for n ≥ 0 is Y0,Y1, . . . a Markov chain?

I Common phenomenon: The underlying process may reasonably be a
Markov chain, but what we observe is not!
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Hidden Markov Models

I A Hidden Markov Model (HMM) consists of
I a Markov chain X0, . . . ,Xn, . . . ,, and
I another sequence Y0, . . . ,Yn, . . . , so that

Pr (Yk | Y0, . . . ,Yk−1,X0, . . . ,Xk) = Pr (Yk | Xk)

Figure: A hidden Markov model.

I In some models we instead have
Pr (Yk | Y0, . . . ,Yk−1,X0, . . . ,Xk) = Pr (Yk | Yk−1,Xk). There are
then extra arrows from yk−1 to yk in the figure above.

I Generally, Y0, . . . ,Yk . . . , are observed, while X0, . . . ,Xk . . . , are
hidden.

I In our applications, the Xk have a finite state space and the Yk are
discrete.
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Example 1: Cough medicine

I Each day i a pharmacy sells Yi bottles of cough medicine. We
assume Yi ∼ Poisson(Xi ) where Xi is the “underlying demand”, Xi

has possible values 10 and 30, and is modelled by a Markov chain

with transition matrix P =

[
0.95 0.05
0.2 0.8

]
.

I A simulation from the flu model. The full line represents the
underlying expected demand for cough-medicine, based on whether
there is a flu-infection in the area or not. The dots represent the
observed actual sales of the medicine.
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I Can we learn about the presence of flu-infection from sales of
cough-medicine?
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Example 2: CpG islands

I DNA sequences may be modelled as Markov chains, with possible
values A, C, G, T and the positions along the sequence as the steps
in the chain.

I So-called “CpG islands” are sequences where the transition matrix
(P+) appears to be slightly different from the transition matrix (P−)
of of non-CpG islands:

P+ =


0.180 0.274 0.426 0.120
0.171 0.368 0.274 0.188
0.161 0.339 0.375 0.125
0.079 0.355 0.384 0.182

 , P− =


0.300 0.205 0.285 0.210
0.322 0.298 0.078 0.302
0.248 0.246 0.298 0.208
0.177 0.239 0.292 0.292

 .

I To detect CpG islands in a new DNA string, we set up a HMM
where the underlying variable Xi has the two states: “CpG island”
and “non-CpG island”.
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What questions do we want to ask?

I When the parameters of the HMM are known, we want to know
about the values of the hidden variables Xi . For example:

I What is the most likely sequence X0, . . . ,Xn given the data?
I What is the probability distribution for a single Xi given the data?

I When the parameters of the HMM are not known, we need to infer
these from some data.

I If data with all Xi and Yi known is available, inference for
parameters is based on counts of transitions.

I One may also make inference from data where more things are
unknown.
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Overview

I The Multinomial Dirichlet conjugacy.

I Inference for finte state space Markov chains.

I (Some) inference for HMMs.
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The Multinomial Dirchlet conjugacy

I A vector x = (x1, . . . , xk) of non-negative integers has a Multinomial
distribution with parameters n and p, where n > 0 is an integer and
p is a probability vector of length k , if

∑k
i=1 xi = n and the

probability mass function is given by

π(x | n, p) =
n!

x1!x2! . . . xk !
px11 px22 . . . pxkk .

I A vector θ = (θ1, . . . , θk) of non-negative real numbers satisfying∑k
i=1 θi = 1 has a Dirichlet distribution with parameter vector

α = (α1, . . . , αk), if it has probability density function

π(θ | α) =
Γ(α1 + α2 + · · ·+ αk)

Γ(α1)Γ(α2) · Γ(αk)
θα1−1
1 θα2−1

2 · · · θαk−1
k .

I We have conjugacy in this case: θ | x ∼ Dirichlet(α + x).
I The predictive distribution is given by

π(x) =
n!

x1! . . . xk !
· Γ(α1 + x1)

Γ(α1)
· · · Γ(αk + xk)

Γ(αk)
·

Γ(
∑k

i=1 αi )

Γ(
∑k

i=1 αi + xi )
.
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Inference for finite state space Markov chains

I Example: You have observed 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0 from a
Markov chain with possible values 0 and 1. What is the transition
matrix?

I First, make table with counts of transitions:

0 1
0 3 3
1 3 1

.

I A reasonable guess for a transition matrix is then

P =

[
3/6 3/6
3/4 1/4

]
.

I What should happen if we have never observed a transition i → j for
two states i and j?

I What should happen if we have never observed any transition from a
state i?
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One solution: pseudo-counts

I Idea: If the count is zero, add some small positive number, a
pseudo-count, so that the frequency becomes non-zero.

I The pseudo-count does not need to be an integer.

I To be “fair”, we may add the same pseudo-count to all counts. We
often use pseudo-counts equal to 1.

I In the example above, with pseudo-counts 1, the count table

becomes

0 1
0 4 4
1 4 2

and the transition matrix becomes

P =

[
4/8 4/8
4/6 2/6

]
.

I Note how the influence of pseudo-counts approaches zero when the
actual counts increase.

I What should happen if the state space is infinite?

I Generally, is there a theoretic framework to put this into?
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Bayesian inference for Markov chains

I Write P1, . . . ,Pk for the k rows of P, and view each Pi as an
independent random variable.

I Note that observed data (counts of transitions from each state i) is
Multinomially distributed given Pi .

I If we assume Pi ∼ Dirichlet(α) for some vector αi = (αi1, . . . , αik),
and the counts for transitions out of i are given in the vector
ci = (ci1, . . . , cik), then the posterior for Pi becomes
Dirichlet(αi + ci ).

I Note that the expectected posterior becomes the vector

E (Pi | data) =
αi + ci

αi1 + · · ·+ αik + ci1 + · · ·+ cik

So the αij correspond exactly to pseudo-counts!

I The prior Dirichlet(1, 1, . . . , 1), with all pseudo-counts equal to 1
corresponds to a uniform distribution on the set of all probability
vectors Pi that sum to 1.
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More conclusions from the Bayesian framework

I We can show that, if the sequence X0,X1, . . . ,Xn is observed as
data, then the posterior probabilities for Xn+1 are E (Pxn).

I We can extend this to compute the probability of any sequence
Xn+1, . . . ,Xn+r given data X0, . . . ,Xn.

I If we know a priori that certain transitions are impossible, we can
incorporate this into the prior: For example, using the prior
Pi ∼ Dirichlet(1, 1, 0) ,means that transitions from state i to state 3
have probability zero.

I It is also possible to construct priors for the transition matrix P that
represent other types of prior information, for example that the
Markov chain must be time reversible.
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Inference for the parameters of HMMs

Assume an HMM model where Xi ∈ {0, 1}, Yi ∈ {1, 2, 3}, and we have
observed both states in some stretch of data:

X 0 0 0 0 1 1 1 1 1 0
Y 1 2 1 1 2 3 2 3 3 1

I Counting transitions, we get

0 1
0 3 1
1 1 4

and

1 2 3
0 4 1 0
1 0 2 3

.

I In practice, we can use pseudocounts just as in the Markov chain
case. In the example above, using all pseudocounts equal to 1, we
get

P =

[
4/6 2/6
2/7 5/7

]
,Q =

[
5/8 2/8 1/8
1/8 3/8 4/8

]
where P is the transition matrix of the Markov chain, and Q is the
stochastic matrix of transition probabilities from Xi to Yi .

I As for Markov chains, these results can be obtained by using priors
for P and Q that are product of Dirichlet distributions.
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More on inference of parameters for HMMs

I The Bayesian paradigm may be used to make predictions for later
observations: In the example above, with X0, . . .X9,Y0, . . .Y9

observed, the probability vector with the three possible values of Y10

can be computed with the matrix product E (Px9) E (Q).

I The priors can be adapted to incorporate actual prior information.

I For example, prior knowledge about the transitions from states of Xi

to states of Yi might lead you to model Yi ∼ Poisson(λXi ), so for
each value of Xi the Yi are Poisson distributed with parameter λXi .
Fixing a prior also on the λXi parameters, we may then find the
posteriors for these in similar ways as we have done before.
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More inference questions for HMMs

I We focused above on the case where (some) parameters of the
HMM are not fully known.

I If the HMM parameters are given and the Yi are observed, the goal
may instead be to learn about the values of the Xi (these methods
are not part of the course):

I Find the sequence X0, . . . ,Xk with the maximum probability given
the observed Y0, . . . ,Yk and the given model: The Viterbi algorithm.

I Find the marginal distribution for each Xi given the observed
Y0, . . . ,Yk and the model: The Forward-Backward algorithm.

I Find the joint distribution of X0, . . . ,Xk given the observed
Y0, . . . ,Yk and the model. In practice: Find a sequence X0, . . . ,Xk

that is a sample from this joint distribution. This may also be done
with a Forward-Backward algorithm.
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