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Introduction

I Many real phenomena can be described as developing with a
tree-like structure, for example

I Growth of cells.
I Spread of viruses or other pathogens in a population.
I Nuclear chain reactions.
I Spread of funny cat videos on the internet.
I Spread of a surname over generations.

I The process with which one node gives rise to “children” can be
described as random: We will assume the probabilistic properties of
this process is the same for all nodes.

I We will assume all nodes are organized into generations.

I We are only concerned with the size of each generation.

I How large are the generations? How much does the size vary? Will
the process become extinct?

2 / 5



Branching processes

A branching process is discrete Markov chain Z0,Z1, . . . ,Zn, . . . where

I the state space is the non-negative integers

I Z0 = 1

I 0 is an absorbing state

I Zn is the sum X1 + X2 + · · ·+ XZn−1 , where the Xj are independent
random non-negative integers all with the same offspring
distribution. In other words

Zn =

Zn−1∑
i=1

Xi .

I Connecting each of the Zn individuals in generation n with their
offspring in generation n + 1 we get a tree illustrating the branching
process.

I The offspring distribution is described by the probability vector
a = (a0, a1, . . . , ) where aj = Pr (Xi = j).

I To focus on the interesting cases we assume a0 > 0 and a0 + a1 < 1.
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Expected generation size

I Note that the state 0 is absorbing: This absorbtion is called
extinction.

I We can show that all nonzero states are transient.
I Define µ = E (Xi ) =

∑∞
j=0 jaj .

I Then one can show that

E (Zn) = E

Zn−1∑
i=1

Xi

 = E (Zn−1) E (Xi ) = E (Zn−1)µ.

I We get directly that

E (Zn) = µn E (Z1) = µn

I We subdivide Branching processes into three types:
I Subcritical if µ < 1. Then limn→∞ E (Zn) = 0.
I Critical if µ = 1. Then limn→∞ E (Zn) = 1.
I Supercritical if µ > 1. Then limn→∞ E (Zn) = ∞.

I We can prove that if limn→∞ E (Zn) = 0 then the probability of
extinction is 1.
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Variance of the generation size

I To compute the variance, we may use the law of total variance:

Var (Zn) = Var (E (Zn | Zn−1)) + E (Var (Zn | Zn−1))

I Using the notation µ = E (Xi ) and σ2 = Var (Xi ), we get

Var (Zn) = Var (E (Zn | Zn−1)) + E (Var (Zn | Zn−1))

= Var (µZn−1) + E
(
σ2Zn−1

)
= µ2 Var (Zn−1) + σ2µn−1

I From this we prove by induction

Var (Zn) = σ2µn−1
n−1∑
k=0

µk =

{
nσ2 if µ = 1
σ2µn−1(µn − 1)/(µ− 1) if µ 6= 1
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Probability generating functions

I For any discrete random variable X taking values in {0, 1, 2, . . . , }
define the probability generating function G (s), or GX (s), as

G (s) = E
(
sX
)

=
∞∑
k=0

sk Pr (X = k) .

I The series converges absolutely for |s| ≤ 1.

I We get a 1-1 correspondence between probability vectors on
{0, 1, 2, . . . , } and functions represented by a series in this way.

I If GX (s) = GY (s) for all s for random variables X and Y then X
and Y have the same distribution.

I The correspondence of X with GX (s) provides an important and
surprisingly useful computational tool.
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What does GX (s) look like?

I GX (1) = 1 and GX (0) = Pr (X = 0).
I We get

G ′(s) =
∞∑
k=1

ksk−1 Pr (X = k) = E
(
XsX−1

)
G ′′(s) =

∞∑
k=2

k(k − 1)sk−2 Pr (X = k) = E
(
X (X − 1)sX−2

)
G ′′′(s) =

∞∑
k=3

k(k − 1)(k − 2)sk−3 Pr (X = k) = E
(
X (X − 1)(X − 2)sX−3

)
I As a consequence, G ′(s) and G ′′(s) are positive s ∈ (0, 1).
I Example below: GX (s) when X ∼ Binomial(10, 0.2). (The diagonal

is added to the plot).
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Some properties of probability generating functions

I To go from X to GX (s): Compute the infinite sum.

I To go from GX (s) to X : Use that we have

P(X = j) =
G (j)(0)

j!
.

I If X and Y are independent,

GX+Y (s) = E
(
sX+Y

)
= E

(
sX sY

)
= E

(
sX
)

E
(
sY
)

= GX (s)GY (s)

I E (X ) = G ′(1)

I E (X (X − 1)) = G ′′(1).

I As a consequence, Var (X ) = G ′′(1) + G ′(1)− G ′(1)2.
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Probability generating functions for Branching processes

Assume we have a Branching process Z0,Z1, . . . , with random variables
Xk counting the offspring at each node.

I Write Gn(s) = GZn(s) = E
(
sZn
)

and G (s) = GXk
(s) = E

(
sXk
)
.

I We get

Gn(s) = E
(
s
∑Zn−1

k=1 Xk

)
= E

(
E
(
s
∑Zn−1

k=1 Xk | Zn−1

))
= E

E

Zn−1∏
k=1

sXk | Zn−1

 = E
(
G (s)Zn−1

)
= Gn−1(G (s)).

I As G0(s) = E
(
sZ0
)

= s, it follows that
Gn(s) = G (G (G (. . .G (s) . . . ))), with n iterations of the G function.

I This result can be applied numerically to compute Gn(s), but it is
even more important theoretically.
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Extinction probability theorem

THEOREM

I Let G be the probability generating function for the offspring
distribution for a branching process. The probability of eventual
extinction is the smallest positive root of the equation s = G (s).

I In the (subcritical and) critical cases, the extinction probability is 1.

I Proof: Let en be the probability that the process is extinct in
generation n. Then

en = Pr (Zn = 0) = Gn(0) = G (Gn−1(0)) = G (Pr (Zn−1 = 0)) = G (en−1)

We get for the probability of extinction

e = lim
n→∞

en = lim
n→∞

G (en−1) = G ( lim
n→∞

en−1) = G (e)

so e is a root of G . Starting with any root 0 < x and applying the
increasing function G repeatedly on both sides yields e ≤ x .

6 / 6


	Lecture6.1
	Lecture6.2

