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Introduction

» Many real phenomena can be described as developing with a
tree-like structure, for example

Growth of cells.

Spread of viruses or other pathogens in a population.

Nuclear chain reactions.

Spread of funny cat videos on the internet.

Spread of a surname over generations.
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» The process with which one node gives rise to “children” can be
described as random: We will assume the probabilistic properties of
this process is the same for all nodes.

» We will assume all nodes are organized into generations.
> We are only concerned with the size of each generation.

» How large are the generations? How much does the size vary? Will
the process become extinct?
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Branching processes

A branching process is discrete Markov chain 2y, Z1,...,Z,,... where

>

|
>
>

the state space is the non-negative integers
Zy=1
0 is an absorbing state

Z, is the sum X + Xo +--- + Xz, _,, where the X; are independent
random non-negative integers all with the same offspring
distribution. In other words

Zy_1
Z,=> X
i=1

Connecting each of the Z, individuals in generation n with their
offspring in generation n+ 1 we get a tree illustrating the branching
process.

The offspring distribution is described by the probability vector
a=(aop,ai,...,) where a; = Pr(X; = ).
To focus on the interesting cases we assume ag > 0 and ag + a; < 1.
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Expected generation size

» Note that the state 0 is absorbing: This absorbtion is called
extinction.
» We can show that all nonzero states are transient.
. o .
> Define = E(X;) = >_ 2 Jjaj.
» Then one can show that

> We get directly that
E(Z,) =p"E(Z) =p"

» We subdivide Branching processes into three types:
> Subcritical if 4 < 1. Then limy—o E(Z,) = 0.
» Critical if 4w = 1. Then lim,—oc E(Z,) = 1.
> Supercritical if ;> 1. Then limy— o0 E(Z,) = 00.
» We can prove that if lim,_, . E(Z,) = 0 then the probability of

extinction is 1.
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Variance of the generation size

» To compute the variance, we may use the law of total variance:
Var(Z,) = Var(E(Z, | Z,-1)) + E(Var (Z, | Z,-1))
» Using the notation p = E(X;) and 02 = Var (X;), we get

Var(Z,) = Var(E(Z,|Z,-1))+E(Var(Z,| Z,-1))
= Var (/,LZn 1) +E (O'QZ,, 1)
p?Var(Z,_1) + o?u"?

» From this we prove by induction

B . B ifpu=1
Var(Z,) = o*p 12# {02M" Yumr—1)/(u—1) ifu#1
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Probability generating functions

» For any discrete random variable X taking values in {0,1,2,...,}
define the probability generating function G(s), or Gx(s), as

G(s) =E(s¥) = iskpr(X = k).
k=0

> The series converges absolutely for |s| < 1.

» We get a 1-1 correspondence between probability vectors on
{0,1,2,...,} and functions represented by a series in this way.

> If Gx(s) = Gy(s) for all s for random variables X and Y then X
and Y have the same distribution.

» The correspondence of X with Gx(s) provides an important and
surprisingly useful computational tool.
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What does Gx(s) look like?

> Gx(1) =1 and Gx(0) = Pr(X =0).

> We get
G'(s) = i ks* TPr(X = k) =E (xsX*I)
k=1
G"(s) = i k(k —1)s*2Pr(X = k) = E (X(X - 1)5’(*2)
G"(s) = i k(k —1)(k —2)s**Pr(X = k) = E (X(X —1)(X — 2)5X—3)

x
I
w

» As a consequence, G'(s) and G”(s) are positive s € (0,1).
» Example below: Gx(s) when X ~ Binomial(10,0.2). (The diagonal
is added to the plot).

00 02 04 06 08 10
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properties of probability generating functions

v

To go from X to Gx(s): Compute the infinite sum.

» To go from Gx(s) to X: Use that we have
GYW (0
pix =)= &0

v

If X and Y are independent,

Gx1v(s) =E(s*Y) =E(s%s7) =E(s¥)E(s") = Gx(s)Gy(s)

v

E(X)=¢G'(1)
E(X(X—1))=G"(1).
As a consequence, Var (X) = G”(1) + G'(1) — G’(1)%.

v

v
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Probability generating functions for Branching processes

Assume we have a Branching process Zy, Z1, ..., with random variables
Xy counting the offspring at each node.

> Write G,(s) = Gz,(s) = E(s%) and G(s) = Gx,(s) = E (s*).

> We get
Gu(s) = E (525111&) —E (E (52fljlxk | Zn71>)
Zy1
= E|E[J]s®|2Z-1] | =E(G()"*) = Go1(G(5)).
k=1

> As Go(s) = E(s%) =s, it follows that
Gn(s) = G(G(G(...G(s)...))), with n iterations of the G function.

» This result can be applied numerically to compute G,(s), but it is
even more important theoretically.
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Extinction probability theorem

THEOREM

» Let G be the probability generating function for the offspring
distribution for a branching process. The probability of eventual
extinction is the smallest positive root of the equation s = G(s).

» In the (subcritical and) critical cases, the extinction probability is 1.

> Proof: Let e, be the probability that the process is extinct in
generation n. Then

en = Pr(Z, =0) = G,(0) = G(G,-1(0)) = G(Pr(Z,-1 =0)) = G(en—1)
We get for the probability of extinction

e= lim e, = lim G(e,—1) = G( lim e,_1) = G(e)

n— oo n— o0 n— o0

so e is a root of G. Starting with any root 0 < x and applying the
increasing function G repeatedly on both sides yields e < x.
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