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The limiting distribution as target distribution

I So far: Start with a Markov chain, learn what happens when the
number of steps approaches ∞.

I We now turn this on its head: Start with defining a limiting
distribution, call it the “target distribution”, then derive a Markov
chain with this limiting distribution.

I Purpose: If we sample the Markov chain for sufficiently many steps,
we know that we have an approximate sample from our target
distribution.

I This is useful in situations where we need a sample, but sampling
directly is difficult.
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Is an approximate sample good enough?

I Strong law of large numbers for samples: If Y1,Y2, . . . ,Ym and Y
are i.i.d. random variables from a distribution with finite mean, and
if r is a bounded function, then, with probability 1,

lim
m→∞

r(Y1) + r(Y2) + · · ·+ r(Ym)

m
= E[r(Y )]

I Strong law of large numbers for Markov chains: If X0,X1, . . . , is an
ergodic Markov chain with stationary distribution π, and if r is a
bounded function, then, with probability 1,

lim
m→∞

r(X1) + r(X2) + · · ·+ r(Xm)

m
= E[r(X )]

where X has the stationary distribution π.
I Note that this holds not only for Markov chains with discrete state

spaces, but also for Markov chains of continuous random variables
(which we will look at later).

I NOTE: When using this theorem in practice, one might improve
accuracy by throwing away the first sequence X1, . . . ,Xs for s < m
before computing the average. This first sequence is called the
burn-in.
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Toy example

I Consider the Markov chain X0,X1, . . . with states {0, 1, 2} and with

P =

0.99 0.01 0
0 0.9 0.1

0.2 0 0.8

 .

Using theory from Chapter 3 we get that the limiting distribution is
v = (20/23, 2/23, 1/23).

I Consider the function r(x) = x5. If X is a random variable with the
limiting distribution,

E (r(X )) = 05 · 20

23
+ 15 · 2

23
+ 25 · 1

23
=

33

23
= 1.4348

I If Y1, . . . ,Yn are all i.i.d. variables with the limiting distribution, we
can check numerically (see R code) that

lim
n→∞

r(Y1) + · · ·+ r(Yn)

n
= 1.4348

I We also get (see R code), for X0,X1, . . . , that

lim
n→∞

r(X1) + · · ·+ r(Xn)

n
= 1.4348

but in this case the limit is approached more slowly.
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Less toy-ish example: “Good” sequences

Consider sequences of length m consisting of 0’s and 1’s.

I A sequence is called “good” if if contains no consecutive 1’s.

I What is the average number of 1’s in good sequences of length m?

I Direct computation is possible, but not obvious how to do.

I Efficient direct simulation of a sample of good seqences is not
obvious how to do, when m is, say, above 100.

I We construct a random walk on a weighted graph with nodes
consisting of all good sequences (fixed m).

I The limiting distribution is the uniform distribution.
I Thus we can estimate the solution by counting 1’s in sequences

generated by the Markov chain, and then take the average.
I This is both easy to program and gives efficient and accurate results.

I Construct the graph as follows:
I Two good sequences are neighbours when the differ at exactly one

position. The weight of edge connecting them is 1.
I Each good sequence has an edge connecting it to itself, with weight

so that the total weights of edges going out from the sequence is m.
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The Metropolis Hastings algorithm

If we start with a particular distribution, can we construct a Markov
chain with that as the limiting distribution?

I Let θ be a discrete random variable with probability mass function
π(θ).

I We also assume given a proposal distribution q(θnew | θ), which, for
every given θ, provides a probability mass function for a new θnew .

I Finally, define, for θ and θnew , the acceptance probability

a = min

(
1,
π(θnew )q(θ | θnew )

π(θ)q(θnew | θ)

)
I The Metropolis Hastings algorithm is: Starting with some initial

value θ0, generate θ1, θ2, . . . by, at each step, proposing a new θ
based on the old using the proposal function and accepting it with
probability a. If it is not accepted, the old value is used again.

I If this defines an ergodic Markov chain, its unique stationary
distribution is π(θ) (Proof below).
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The Metropolis Hastings algorithm, continued

NOTES:

I The computations for good sequences is an example of this, with
π(θ) uniform and q the random walk.

I The density π(θ) only needs to be known up to a constant.

I If the proposal function is symmetric, i.e., q(θ | θnew ) = q(θnew | θ)
for all θ and θnew , then q disappears in the formula for the
acceptance probaility a.

I Unless the distribution π(θ) is positive, remark 4 in Dobrow page
188 does NOT hold. If π(θ) is not positive, ergodicity of the
Metropolis Hastings Markov chain needs to be checked separately,
even if the proposal Markov chain is ergodic.
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Proof that MH algorithm works

I In fact, we will show that the Metropolis Hastings chain fulfills the
detailed balance condition relative to π(θ). Thus it is time reversible
and if it is ergodic it will have π(θ) as its limiting distribution.

I Let T (θi+1 | θi ) be the transition function for the MH Markov chain.
Assume θi+1 6= θi , and

π(θi+1)q(θi | θi+1)

π(θi )q(θi+1 | θi )
≤ 1

Then

π(θi )T (θi+1 | θi ) = π(θi )q(θi+1 | θi )
π(θi+1)q(θi | θi+1)

π(θi )q(θi+1 | θi )
= π(θi+1)q(θi | θi+1) = π(θi+1)T (θi | θi+1),

the last step because, with assumption above, π(θi )q(θi+1|θi )
π(θi+1)q(θi |θi+1)

≥ 1

I We get a similar computation when the opposite inequality holds.
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Example 1: Cryptography (from Dobrow)

I A simple way to encrypt a text is to apply to each character a fixed
permutation f of the set of the 26 English characters plus space.
The text can be decrypted by applying the reverse permutation, if it
is known. If T is a text we write f (T ) for T encrypted with f .

I Given a short encrypted text f (T ), can we find the permutation f ?

I Using a text database we first fit a Markov model for text by
counting transitions between consecutive characters.

I For any text T ′, we can then compute the probability S(T ′) for T ′

being observed as a sequence in this Markov model.

I We get a probability distribution on the set of all the permutations
above by defining, for any f ,

π(f ) ∝f S(f (T ))

I We use Metropolis Hastings with a proposal function that picks two
characters at random and adds to f a switch of these.

I The density π(f ) is on a very large set, with very few of the f having
significant probability. Yet M.H. manages to find these (or this) f .
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Example 2: Darwin’s finches (from Dobrow)

I A co-occurrence matrix M has different species as rows and different
locations as columns. If a species occurs at a location, the matrix
contains 1, otherwise 0.

I A checkerboard is a submatrix

(
0 1
1 0

)
or

(
1 0
0 1

)
. Let C (M) count

the number of checkerboards in M .

I Darwin made a co-occurrence matrix for finches on the Galapagos
islands. Compared to the set Ω of possible co-occurrence matrices
with the same marginal sums, did it contain an unusually large
number of checkerboards?

I Use Metropolis Hastings to simulate from the uniform distribution
on Ω. Use a proposal function that uniformly randomly locates one
of the checkerboards and switches it to the opposite form.

I The acceptance probability becomes min(1,C (M)/C (M∗)) where
M∗ is proposed from M (error in Dobrow!)

I Simulation results show that the number of checkerboards observed
by Darwin (333) is indeed unexpectedly large, proving competition
between the finches.
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The Ising model

I Uses a grid of vertices; we will assume an n× n grid. Two vertices v
and w are neighbours, denoted v ∼ w , if they are next to each other
in the grid.

I Each vertex v can have value +1 or −1 (called its “spin”); we
denote this by σv = 1 or σv = −1.

I A configuration σ consists of a choice of +1 or -1 for each vertex:
Thus the set Ω of possible configurations has 2(n2) elements.

I We define the energy of a configuration as E (σ) = −
∑

v∼w σvσw .

I The Gibbs distribution is the probability density on Ω defined by

π(σ) ∝σ exp (−βE (σ))

where β is a parameter of the model; 1/β is called the temperature.

I It turns out that when the temperature is high, samples from the
model will show a chaotic pattern of spins, but when the
temperature sinks below the phase transition value, in our case
1/β = 2/ log(1 +

√
2), samples will show chunks of neighbouring

vertices with the same spin; the system will be “magnetized”.
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Simulating from the Ising model using Metropolis Hastings

I For a vertex configuration σ and a vertex v let σ−v denote the part
of σ that does not involve v .

I Propose a new configuration σ∗ given an old configuration σ by first
choosing a vertex v , then, let σ∗ be identical to σ except possibly at
v : Decide the spin at v using the conditional distribution given σ−v :

π(σv = 1 | σ−v ) =
π(σv = 1, σ−v )

π(σ−v )
=

π(σv = 1, σ−v )

π(σv = 1, σ−v ) + π(σv = −1, σ−v )

=
1

1 +
π(σv=−1,σ−v )

π(σv=1,σ−v )

=
1

1 + exp (−βE(σv = −1, σ−v ) + βE(σv = 1, σ−v ))

=
1

1 + exp
(
β
∑

v∼w σvσw |σv=−1 −β
∑

v∼w σvσw |σv=1

)
=

1

1 + exp
(
−2β

∑
v∼w σw

) .
I As σ−v = σ∗−v we get π(σ∗)q(σ|σ∗)

π(σ)q(σ∗|σ) =
π(σ∗

v |σ
∗
−v )π(σ

∗
−v )π(σv |σ∗

−v )

π(σv |σ−v )π(σ−v )π(σ∗
v |σ−v )

= 1 so

the acceptance probability is always 1!
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Gibbs sampling

I In the Ising model, the states can be written as a vector
σ = (σ1, . . . , σn2) of components or coordinates. We used a proposal
function which changed only one coordinate and simulated its new
value using the conditional distribution given the remaining
coordinates.

I For any probability model over a vector θ = (θ1, θ2, . . . , θk) we can
do the same: The proposal function changes only one coordinate,
and the distribution of this coordinate is given as the conditional
distribution given the remaining coordinates. The proof that the
acceptance probability is 1 is unchanged!

I This is called Gibbs sampling.

I Note that we may choose the coordinate to change in various ways,
as long as the resulting Markov chain becomes ergodic.

I In the Ising model, the conditional distributions π(θk | θ−k) are easy
to derive and simulate from, and this may often be the case. In such
cases, Gibbs sampling is an easy-to-use version of Metropolis
Hastings.
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Knowing convergence has been reached: Perfect sampling

Given ergodic Markov chain with finite sample space of size k and
limiting distribution π.

I Idea: Given n, prove that Xn actually has reached the limit
distribution.

I Method: Prove that the distribution at Xn is independent of the
starting value at X0.

I How: Construct k Markov chains that are dependent (“coupled”)
but which are marginally Markov chains as above. If they start at the
k possible values at X0 but have identical values at Xn, we are done.

I Note: n cannot be determined as the first value where the k chains
meet; it must be determined beforehand!

I Thus usually one wants to generate chains X−n,X−n+1, . . . ,X0

where X0 has the limiting distribution, and we stepwise increase n to
make all chains coalesce to one chain.
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Using same source of randomness for all k chains

Consider the chains X
(j)
−n, . . . ,X

(j)
0 for j = 1, . . . , k .

I Instead of simulating X
(j)
i+1 based on X

(j)
i independently for each j ,

we define a function g so that X
(j)
i+1 = g(X

(j)
i ,Ui ) for all j , where

Ui ∼ Uniform(0, 1).

I Thus if two chains have identical values in Xi , they will also be
identical at Xi+1.

I See Figure 5.10 in Dobrow.

I If, for a particular n, all chains have not converged at X0, we
simulate k chains from X−2n to X−n: They might only hit a subset
of the k states at X−n and thus might coalesce to one state at X0,
using the old simulations. If not, double n again.
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Monotonicity

I Do we need to keep track of all k chains?

I We define a partial ordering on a set as a relation x ≤ y between
some pairs x and y in the set, such that:

I If x ≤ y and y ≤ x then x = y .
I If x ≤ y and y ≤ z then x ≤ z (in fact we don’t need this).

I We will need that our partial ordering has a minimal element (an m
such that m ≤ x for all x) and a maximal element (an M such that
x ≤ M for all x).

I If we have a partial ordering on the state space of the Markov chain,
and if x ≤ y implies g(x ,U) ≤ g(y ,U), then g is monotone.

I We can then prove that we only need to keep track of the chain
starting at m and the chain starting at M!
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Example: Perfect simulation from the Ising model

I Given an Ising model with β > 0.
I Define partial ordering on Ω (the set of all configurations) as follows

σ ≤ τ if σv ≤ τv for all vertices v

I We have a minimal and a maximal configuration (all -1’s and +1’s,
respectively).

I We can arrange for g , the updating of chains, to be monotone:
Assuming σ ≤ τ ,

Pr (σv = 1 | σ−v ) =
1

1 + exp(−2β
∑

v∼w σw )
≤

1

1 + exp(−2β
∑

v∼w τw )
= Pr (τv = 1 | τ−v ) .

I So perfect simulation from the Ising model proceeds as follows:
Start one chain m at all -1’s and one chain M at all +1’s. Cycle
through the vertices and compute the conditional probabilities pm
and pM of +1 at that vertex. We know that pm ≤ pM . Simulate
U ∼ Uniform(0, 1). If U < pm set σv = −1 for both chains, and if
U > pM set σv = +1 for both chains. Otherwise set σv = +1 for
the M chain and σv = −1 for the m chain. Determine coalescence
as above.
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