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Bayesian inference for Branching processes

I Say you have observed some data, and you want to find a branching
process (of the type discussed in Dobrow) that appropriately models
the data, to then make predictions. How?

I A branching process is characterized by the probability vector
a = (a0, a1, a2, . . . , ) where ai is the probabilty for i offspring in the
offspring process.

I Let y1, y2, . . . , yn be the counts of offspring in n observations of the
offspring process. If a is given we have the likelihood

π(y1, . . . , yn | a) =
n∏

i=1

ayi

I To complete the model, we need a prior on a. However, it is tricky
to define a prior on the infinite-dimensional set of possible vectors a.

I So, instead we will consider two situations where we make additional
assumptions on the offspring process.
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Using a Binomial likelihood

I Assume the offspring process is Binomial(N, p) for some parameter
p and a fixed known N. We get the likelihood

π(y1, . . . , yn | p) =
n∏

i=1

Binomial(yi ;N, p).

I A possibility is to use a prior p ∼ Beta(α, β). Writing S =
∑n

i=1 yi
we get the posterior

p | data ∼ Beta(α + S , β + nN − S).

I More generally, if π(p) = f (p) for any positive function integrating
to 1 on [0, 1], we get

π(p | data) ∝p Beta(p; 1 + S , 1 + nN − S)f (p)

I We can then for example compute numerically the posterior
probability that the branching process is supercritical, i.e., that
Pr (p > 1/N | data), with (see R computations)∫ 1

1/N

π(p | data) dp =

∫ 1

1/N
Beta(1 + S , 1 + nN − S)f (p) dp∫ 1

0
Beta(1 + S , 1 + nN − S)f (p) dp
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Using a Multinomial likelihood

I Assume there is a maximum of N offspring and that
p = (p0, p1, . . . , pN) is an unknown probability vector so that pi is
the probability of i offspring. We get the likelihood

π(y1, . . . , yn | p) = Multinomial(c ; p)

where c = (c0, . . . , cN) is the vector of counts in the data of cases
with 0, . . . ,N offspring, respectively.

I If we use the prior p ∼ Dirichlet(α) where α = (α0, . . . , αN) is a
vector of pseudocounts, we get

p | data ∼ Dirichlet(α + c).

I Note that Dirichlet(1, . . . , 1) corresponds to the uniform
distribution. Using this prior, we get the posterior expectation for p

E (p | data) =
c + (1, 1, . . . , 1)

n + N + 1
.

I We can simulate from the posterior to investigate for example the
probability of being supercritical.
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Continuous variable Markov chains

I A discrete time continuous state space Markov chain is a sequence

X0,X1, . . .

of continuous random variables with the property that, for all n > 0,

π(Xn+1 | X0,X1, . . . ,Xn) = π(Xn+1 | Xn)

I We work with time-homogeneous Markov chains, so that the density
π(Xn+1 | Xn) is the same for all n.

I Ergodicity is defined in a similar way as for discrete state space
chains: The chain needs to be irreducible, aperiodic, and positive
recurrent.

I The fundamental limit theorem for ergodic Markov chains holds: In
the limit as n→∞, the chain approaches a unique positive
stationary distribution.
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Markov chain Monte Carlo (MCMC)

I The Metropolis Hastings algorithm is defined as before, except that
the proposal distribution q(θnew | θ) is now a probability density, not
a probability mass function.

I Exactly as before, the limiting distribution of the Metropolis
Hastings Markov chain is the target distribution, as long as the
Markov chain is ergodic.

I The strong law of large numbers also holds in this situation, as
previously noted.

I Markov chain Monte Carlo (MCMC) is making the approximation

Eπ (r(θ)) ≈ 1

N

N∑
i=1

r(θi )

where θ1, . . . , θN is a realization of steps from the Metropolis
Hastings Markov chain with the distribution π as its target.
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Bayesian inference with MCMC

I We have some data y1, . . . , yn and we want to make a probability
prediction for ynew .

I We define (in this course) a parameter θ, and a probabilistic model
so that

π(y1, . . . , yn, ynew , θ) =

[
n∏

i=1

π(yi | θ)

]
π(ynew | θ)π(θ)

I Thus π(ynew | y1, . . . , yn) =
∫
θ
π(ynew | θ)π(θ | y1, . . . , yn) dθ.

I Often when the dimension of θ is reasonably high: We use
Metropolis Hastings to generate a sample θ1, . . . , θN from
π(θ | y1, . . . , yn) and approximate

π(ynew | y1, . . . , yn) ≈ 1

N

N∑
i=1

π(ynew | θi )

I The acceptance probabiliby in MH may in case above be written

a = min

(
1,
π(y1, . . . , yn | θ∗)π(θ∗)q(θ | θ∗)

π(y1, . . . , yn | θ)π(θ)q(θ∗ | θ)

)
.
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Example

I Old example from Chapter 1:

y | p ∼ Binomial(17, p)

p ∼ Beta(2.3, 4.1)

ynew | p ∼ Binomial(3, p)

I We would like to compute Pr (ynew = 1 | y = 4).

I In this toy example we can do so
I directly, using conjugacy
I using discretization
I using numerical integration

I As an illustration see R for use of Metropolis Hastings with
I a random walk proposal
I an independent proposal
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The Normal Normal conjugacy

I Assume y ∼ Normal
(
θ, 1

τy

)
where θ is unknown and the precision

τy is known and fixed. Then the normal family is a conjugate family
for θ.

I In fact, if θ ∼ Normal
(
µ, 1

τµ

)
then

θ | y ∼ Normal

(
τyy + τµµ

τy + τµ
,

1

τy + τµ

)
.

I The predictive distribution is also normal. In fact,

y ∼ Normal

(
µ,

1

τy
+

1

τµ

)
.

I More conjugacies in Compendium appendix, and on Wikipedia. . .
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Example using Gibbs sampling

I Consider the model with data y1, . . . , yn and parameter θ = (µ, τ):

y1, y2, . . . , yn | µ, τ ∼ Normal(µ, τ−1)

µ ∼ Normal(µ0, τ
−1
0 )

τ ∼ Gamma(α, β)

µ0, τ0, α, β are fixed known numbers.
I Recall: Gibbs sampling uses proposals where, for each component of
θ: fix all other components and simulate from the conditional
distribution.

I In our case we may compute

µ | y1, . . . , yn, τ ∼ Normal

(
τ0µ0 + τ

∑n
i=1 yi

τ0 + nτ
,

1

τ0 + nτ

)
and

τ | y1, . . . , yn, µ ∼ Gamma

(
α +

n

2
, β +

1

2

n∑
i=1

(yi − µ)2

)
.

I See R code for an implementation, computing the probability that a
new y is less than y1.
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MCMC for Bayesian inference

I Works for almost all models (when the dimension of θ is less than a
few thousand).

I Easy to program.

I Difficult to find proposal functions that give an acceptable rate of
convergence!

I Difficult to assess the convergence in a particular case: How
accurate are your results?
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