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> In the beginning of the course, we defined a stochastic process as a
collection {X;,t € I} of random variables with a common state
space S.

» So far, the set | has been the non-negative integers. We now move
on to processes where | is a non-countable set, for example all
positive real numbers, or all subsets of R2.

» Chapters 6 and 7 of Dobrow concern such stochastic processes
where the state space S is discrete.

» In Chapter 8 of Dobrow we look at the situation when the random
variables X; are continuous variables.
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Poisson distributions and Poisson processes

» A random variable with values 0,1,2, ... with a Poisson distribution
can be used to model the count of events happening independently,
within some time interval.

» A Poisson process models not only the count for a specific time
interval, but also the exact time of every event.
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Counting processes

» A counting process { N, t € I} is a stochastic process where
| = Ra“, where the state space is the non-negative integers, and
where 0 < s < t implies Ny < N;.

» Informally, when s < t, Ny — N counts the number of “events” in
(s, t].

» N, is a function of t that is a right-continuous step function.
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Poisson process: Definiton 1

» A Poisson process {N;};>o with parameter A > 0 is a counting
process fulfilling
> No =0.
N; ~ Poisson(At) for all t > 0.
Stationary increments: N¢ys — Ns has the same distribution as N;.
Independent increments: Ny — Ns and N, — N are independent,
when0<g<r<s<t.

vYyy

» Note: Not obvious that such a process exists.

» Note: E(N;) = At. Thus what one is counting occurs with a rate of
A\ items per time unit.
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Memorylessness of the exponential distribution

» A random variable X is called memoryless if
PX>s+t]|X>s)=P(X>t)

foralls >0, t>0.

» The exponential distribution is memoryless, and is the only
memoryless continuous random variable.

» Consider the consequences of this when using the exponential as a
model!
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Poisson process: Definition 2

Definition 2: Let X1, X5, ..., be a sequence of iid exponential
random variables with parmeter A. Define Ny = 0 and, for t > 0,

v

Ny =max{n: Xy +---+ X, < t}.

Then {N;}>0 is a Poisson process with parameter A.

» We have seen: If we start with a Poisson process (def. 1) and let
X1, Xo, ... be inter-arrival times, then they are independent
exponentially distributed and N, is given as above.

» Conversely, if we construct N; as above, all properties of definition 1
are easily proved except that N, ~ Poisson(At): We discuss this
below.

» We call 5, = X1 + -+ + X, the arrival times of the process.

» The definition provides an easy way to simulate a Poisson process.
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Minimum and sum of independent exponentially

distributed variables

» Define M = min(Xy, ..., X,) where, independently for each i,
X; ~ Exponential();). Then:
» M ~ Exponential(A1 + -+ - + \n).
> P(M = X) = 524
> Let S, = Xy + --- + X, where, independently for each i,
X; ~ Exponential()). Then S, ~ Gamma(n, \).
» Using the distribution of S,, we can prove that a process defined
with “Definition 2" is a Poisson process:

—At k
Pr(Nt:k):Pr(SkSt,5k+Xk+1>t):...:#_
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Poisson process: Definition 3

00 02 04 06 08 1.0

» Plot shows, for each t, the probabilities of observing 0, 1 ...events:
Derivatives of all curves at 0 are 0 except for the first curve.

> Third definition: A Poisson process {/N;}:>¢ with parameter X is a
couting process fulfilling

> N() =0.

> The process has stationary and independent increments.

> We have
P(Ny=0) = 1-—Xh+o(h)
P(Ny=1) = MXh+o(h)
P(Ny,>1) = o(h)

> All the three definitions of a Poission process are equivalent. 00
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At a hospital, births occur at a rate A. For each birth there is a
probability p = 0.52 that the child is a boy. The situation can be
modelled in two ways:

» The counts ¢; of boys and ¢, of girls are modelled with two
independent Poisson processes, <Nt(1)) and (Nt(2)) , with
>0 >0
parameters Ap and A(1 — p), respectively.

» The total number of births N is modelled with one Poisson process
(Nt);>o and counts are then Binomially distributed given N:

¢ ~ Binomial(N; p)

> Luckily, we can prove that these ways of modelling are equivalent.

2/8



Superposition and thinning

» LEMMA!: Let (Ngl)) s (Nf")) be independent Poisson
>0 £>0
processes with parameters Apy, ..., Ap,, respectively, where
p=(p1,-.-,Pn) is a probability vector. If ¢ = (cy,...,c,) are the
counts after time t (so that ¢; = Nt(')), an equivalent model is

¢ ~ Multinomial(N, p)

where (N;),~, is a Poisson process with parameter \.
» Proof on next page.

» Starting with one Poisson process and creating another by
independently selecting arrivals with probability p and considering
only those is called thinning.

» Starting with several independent Poisson processes and considering
their joint counts is called superposition.

LA somewhat different treatment compared to Dobrow
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> Using the first model, the probability of observing the count vector ¢
after time t is (writing N =c; + -+ - + ¢,)

n n
H (p;t)c
H Poisson(c;; Apit) = H e—)\p,t%
i=1 paley ¢!
NT &q — ef)\t()‘t)N . N! Do p
el N gl it n

= Poisson(N; At) - Multinomial (¢; N, p)

= e M(\t)

» Using independence of increments, it follows that the two processes
are the same.
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Uniformly distributed arrivals

» LEMMA?Z: Let (N;):>o0 be a Poisson process with parameter A. If we
fix that N; = k and we select uniformly randomly one of these k
arrivals, then its arrival time is uniformly distributed on the interval
[0, t].

» Proof on next page.

» Consequence: When N; = k is fixed, we can simulate the k arrival
times as independently uniformly distributed on the interval [0, t].

» Consequence: When N; = k is fixed, the n'th arrival time has the
same distribution as the n’th value among k independent uniformly
distributed variables on [0, t].

2A somewhat different treatment compared to Dobrow
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Pr(Sk > s | k uniformly random in {1,...,n}, Ny = n)
n k—1

= fZPr (Sk >s|N;=n)= ZZPr Ns=j| Ny =n)
= g
n k-1
_ 7ZZPr(N =j)Pr(Ni—s =n—))
Pr(N; = n)
liO

_ e M (\sy/j!- e MDAt — )" /(n — )
= *Z Z e~ M(At)"/n!

J=0 k=j+1
n—1 . .
1 n! s\J s\ n—J
= - — ) (- 1-— *)
n < (n J)j!(n—_j)! <t> ( t
n—1 . .
- X2 (- )
B i'(n—j —
= 0_] n—j 1 t t t
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Spatial Poisson processes

A collection of random variables {Na}acge is a spatial Poisson
process with parameter A if -
» For each bounded set A C R?, N, has a Poisson distribution with
parameter A|A|.
» Whenever A C B, Ny < Np.
> Whenever A and B are disjoint sets, N4 and Np are independent.

v

v

Simulate by first simulating the total (Poisson distributed) and then
place points independently uniformly within the area.

v

One may use simulations to estimate properties such as the average
distance to the nearest neighbour (or the third nearest neighbour or
whatever).

v

Quite useful model in practice.
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Non-homogeneous Poisson processes

» A counting process {N;}+>o is a non-homogeneous Poisson process
with intensity function A(t) if

> N() =0.
» Fort >0,
t
N; ~ Poisson (/ A(x) dx)
0
> It has independent increments.
» Again a very flexible and useful model in practice.

» One may have non-homogeneous spatial Poisson processes.
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