
MVE550 2020 Lecture 9.1
Dobrow Section 6.1, 6.2, 6.3

Poisson Processes

Petter Mostad

Chalmers University

November 25, 2020

1 / 9



Where are we?

I In the beginning of the course, we defined a stochastic process as a
collection {Xt , t ∈ I} of random variables with a common state
space S .

I So far, the set I has been the non-negative integers. We now move
on to processes where I is a non-countable set, for example all
positive real numbers, or all subsets of R2.

I Chapters 6 and 7 of Dobrow concern such stochastic processes
where the state space S is discrete.

I In Chapter 8 of Dobrow we look at the situation when the random
variables Xt are continuous variables.
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Poisson distributions and Poisson processes

I A random variable with values 0, 1, 2, . . . with a Poisson distribution
can be used to model the count of events happening independently,
within some time interval.

I A Poisson process models not only the count for a specific time
interval, but also the exact time of every event.
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Counting processes

I A counting process {Nt , t ∈ I} is a stochastic process where
I = R+

0 , where the state space is the non-negative integers, and
where 0 ≤ s ≤ t implies Ns ≤ Nt .

I Informally, when s < t, Nt − Ns counts the number of “events” in
(s, t].

I Nt is a function of t that is a right-continuous step function.
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Poisson process: Definiton 1

I A Poisson process {Nt}t≥0 with parameter λ > 0 is a counting
process fulfilling

I N0 = 0.
I Nt ∼ Poisson(λt) for all t > 0.
I Stationary increments: Nt+s − Ns has the same distribution as Nt .
I Independent increments: Nt − Ns and Nr − Nq are independent,

when 0 ≤ q < r ≤ s < t.

I Note: Not obvious that such a process exists.

I Note: E(Nt) = λt. Thus what one is counting occurs with a rate of
λ items per time unit.
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Memorylessness of the exponential distribution

I A random variable X is called memoryless if

P(X > s + t | X > s) = P(X > t)

for all s > 0, t > 0.

I The exponential distribution is memoryless, and is the only
memoryless continuous random variable.

I Consider the consequences of this when using the exponential as a
model!
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Poisson process: Definition 2

I Definition 2: Let X1,X2, . . . , be a sequence of iid exponential
random variables with parmeter λ. Define N0 = 0 and, for t > 0,

Nt = max{n : X1 + · · ·+ Xn ≤ t}.

Then {Nt}t≥0 is a Poisson process with parameter λ.

I We have seen: If we start with a Poisson process (def. 1) and let
X1,X2, . . . be inter-arrival times, then they are independent
exponentially distributed and Nt is given as above.

I Conversely, if we construct Nt as above, all properties of definition 1
are easily proved except that Nt ∼ Poisson(λt): We discuss this
below.

I We call Sn = X1 + · · ·+ Xn the arrival times of the process.

I The definition provides an easy way to simulate a Poisson process.

7 / 9



Minimum and sum of independent exponentially
distributed variables

I Define M = min(X1, . . . ,Xn) where, independently for each i ,
Xi ∼ Exponential(λi ). Then:

I M ∼ Exponential(λ1 + · · ·+ λn).
I P(M = Xk) =

λk
λ1+···+λn

.

I Let Sn = X1 + · · ·+ Xn where, independently for each i ,
Xi ∼ Exponential(λ). Then Sn ∼ Gamma(n, λ).

I Using the distribution of Sn, we can prove that a process defined
with “Definition 2” is a Poisson process:

Pr (Nt = k) = Pr (Sk ≤ t,Sk + Xk+1 > t) = · · · =
e−λt(λt)k

k!
.
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Poisson process: Definition 3
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I Plot shows, for each t, the probabilities of observing 0, 1 . . . events:
Derivatives of all curves at 0 are 0 except for the first curve.

I Third definition: A Poisson process {Nt}t≥0 with parameter λ is a
couting process fulfilling

I N0 = 0.
I The process has stationary and independent increments.
I We have

P(Nh = 0) = 1− λh + o(h)

P(Nh = 1) = λh + o(h)

P(Nh > 1) = o(h)

I All the three definitions of a Poission process are equivalent.
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Example

At a hospital, births occur at a rate λ. For each birth there is a
probability p = 0.52 that the child is a boy. The situation can be
modelled in two ways:

I The counts c1 of boys and c2 of girls are modelled with two

independent Poisson processes,
(
N

(1)
t

)
t≥0

and
(
N

(2)
t

)
t≥0

, with

parameters λp and λ(1− p), respectively.

I The total number of births N is modelled with one Poisson process
(Nt)t≥0 and counts are then Binomially distributed given N:

c1 ∼ Binomial(N; p)

I Luckily, we can prove that these ways of modelling are equivalent.
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Superposition and thinning

I LEMMA1: Let
(
N

(1)
t

)
t≥0

, . . . ,
(
N

(n)
t

)
t≥0

be independent Poisson

processes with parameters λp1, . . . , λpn, respectively, where
p = (p1, . . . , pn) is a probability vector. If c = (c1, . . . , cn) are the

counts after time t (so that ci = N
(i)
t ), an equivalent model is

c ∼ Multinomial(N, p)

where (Nt)t≥0 is a Poisson process with parameter λ.

I Proof on next page.

I Starting with one Poisson process and creating another by
independently selecting arrivals with probability p and considering
only those is called thinning.

I Starting with several independent Poisson processes and considering
their joint counts is called superposition.

1A somewhat different treatment compared to Dobrow
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Proof

I Using the first model, the probability of observing the count vector c
after time t is (writing N = c1 + · · ·+ cn)

n∏
i=1

Poisson(ci ;λpi t) =
n∏

i=1

e−λpi t
(λpi t)ci

ci !

= e−λt(λt)N
n∏

i=1

pcii
ci !

= e−λt (λt)N

N!
· N!

c1! · · · cn!
pc1

1 · · · p
cn
n

= Poisson(N;λt) ·Multinomial (c ;N, p)

I Using independence of increments, it follows that the two processes
are the same.
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Uniformly distributed arrivals

I LEMMA2: Let (Nt)t≥0 be a Poisson process with parameter λ. If we
fix that Nt = k and we select uniformly randomly one of these k
arrivals, then its arrival time is uniformly distributed on the interval
[0, t].

I Proof on next page.

I Consequence: When Nt = k is fixed, we can simulate the k arrival
times as independently uniformly distributed on the interval [0, t].

I Consequence: When Nt = k is fixed, the n’th arrival time has the
same distribution as the n’th value among k independent uniformly
distributed variables on [0, t].

2A somewhat different treatment compared to Dobrow
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Proof

Pr (Sk ≥ s | k uniformly random in {1, . . . , n},Nt = n)

=
1

n

n∑
k=1

Pr (Sk ≥ s | Nt = n) =
1

n

n∑
k=1

k−1∑
j=0

Pr (Ns = j | Nt = n)

=
1

n

n∑
k=1

k−1∑
j=0

Pr (Ns = j) Pr (Nt−s = n − j)

Pr (Nt = n)

=
1

n

n−1∑
j=0

n∑
k=j+1

e−λs(λs)j/j! · e−λ(t−s)(λ(t − s))n−j/(n − j)!

e−λt(λt)n/n!

=
1

n

n−1∑
j=0

(n − j)
n!

j!(n − j)!

( s
t

)j (
1− s

t

)n−j

=

n−1∑
j=0

(n − 1)!

j!(n − j − 1)!

( s
t

)j (
1− s

t

)n−j−1

(1− s

t

)
= 1− s
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Spatial Poisson processes

I A collection of random variables {NA}A⊆Rd is a spatial Poisson
process with parameter λ if

I For each bounded set A ⊆ Rd , NA has a Poisson distribution with
parameter λ|A|.

I Whenever A ⊆ B, NA ≤ NB .
I Whenever A and B are disjoint sets, NA and NB are independent.

I Simulate by first simulating the total (Poisson distributed) and then
place points independently uniformly within the area.

I One may use simulations to estimate properties such as the average
distance to the nearest neighbour (or the third nearest neighbour or
whatever).

I Quite useful model in practice.
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Non-homogeneous Poisson processes

I A counting process {Nt}t≥0 is a non-homogeneous Poisson process
with intensity function λ(t) if

I N0 = 0.
I For t > 0,

Nt ∼ Poisson

(∫ t

0

λ(x) dx

)
I It has independent increments.

I Again a very flexible and useful model in practice.

I One may have non-homogeneous spatial Poisson processes.
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