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Review / motivation

I We are studying the properties of continuous time Markov chains
with discrete state spaces.

I For an irreducible chain with finite state space there is a unique
stationary distribution v which is also the limiting distribution,
satisfying vQ = 0, where Q is the generator matrix of the process.

I We now turn to questions such as: What is the expected time until
we get to some state? This can be answered by making the state
into an absorbing state and computing the expected time to
absorbtion.

I We also look at global balance, local balance, and time reversibility.
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Absorbing states

I Assume {Xt}t≥0 is a continuous-time Markov chain with k states.
Assume the last state is absorbing and the rest are not. (They are
then transient).

I We have that qk = 0 and the entire last row must consist of zeros.
We get

Q =

[
V ∗
0 0

]
.

I Let F be the (k − 1)× (k − 1) matrix so that Fij is the expected
time spent in state j when the chain starts in i . We can shown that
F = −V−1 (see next page).

I Note that, if the chain starts in state i , the expected time until
absorbtion is the sum of the i ’th row of F . Thus the expected times
until absorbtion are given by the matrix product F1 of F with a
column of 1’s.
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Outline of proof (different from Dobrow’s)

I Generally, define D as the matrix with (1/q1, . . . , 1/qk) along its
diagonal, with all other entries zero. If there are no absorbing states

P̃ = DQ + I

I Write A− for a square matrix without its last row and column.

I If the last state is absorbing, so that qk = 0, we get

P̃− = D−Q− + I

I Let F ′ be the matrix where F ′ij is the expected number of stays in
state j before absorbtion when starting in state i . As the lengths of
stays and changes in states are independent, we get F = F ′D−.

I From the theory of Chapter 3, we have that F ′ = (I − P̃−)−1.

I We get

F = F ′D− = (I − P̃−)−1D− = (−D−Q−)−1D− = (−Q−)−1.
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Global Balance

I If v = (v1, v2, v3) the stationary distribution of chain below, the flow into

a state must be equal to the flow out of that state.

4

32

1 2

3

I We get equations 4v1 = 2v3, 3v2 = 4v1, and 2v3 = 3v2.

I Note that these are exactly the equations we get from vQ = 0:

(v1, v2, v3)

−4 4 0
0 −3 3
2 0 −2

 = 0

I This happens because vQ = 0 gives for each state j∑
i 6=j

viqij = vjqj

I These are called the global balance equations.

I Generalization: If A is a set of states, then the long term rates of
movement into and out of A are the same:∑

i∈A

∑
j /∈A

viqij =
∑
i∈A

∑
j /∈A

vjqji
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Local balance and time reversibility

I A stronger condition: The flow between every pair of states is
balanced. This is not true for all models!

I From the model below we now get the equations
2

1 2

3

1

4
11

2

1v1 = 2v2, 1v2 = 2v3, and 4v3 = 1v1.
I A continuous-time Markov chain with unique stationary distribution

v is said to be time reversible if for all i , j ,

viqij = vjqji

I This is called the local balance condition.
I Note: The rate of observed changes from i to j is the same as the

rate of observed changes from j to i . Thus this is also called time
reversibility.

I Note that (similar to discrete chains): If a probability vector v
satisfies local balance condition, then v is the unique stationary
distribution. (Easy to show).
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Markov processes with transition graphs that are trees

I A tree is a graph that does not contain cycles.

I Assume the transition graph of an irreducible continuous-time
Markov chain is a tree.

I In a tree, any edge between two states divides all states into two
groups (one on each side of the edge). Thus, the flow must be
balanced across each edge.

I It follows that the Markov chain must satisfy the local balance
condition, i.e., be time reversible, i.e., viqij = vjqji for all i and j .

I More formally, this can be proved using the generalized global
balance property.

I Note that the process can be time reversible even if the transition
graph is not a tree.
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Example

I Consider the continuous-time Markov chain with transition graph
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I As the transition graph is a tree, the chain is necessarily time
reversible. We can find the stationary distribution by considering the
local balance equations:

4v1 = 1v2, 1.5v2 = 0.5v3, 2v2 = 1v4

I Together with the equation v1 + v2 + v3 + v4 = 1 we easily get the
limiting distribution

v =

(
4

25
,

1

25
,

12

25
,

8

25

)
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Birth-and-death processes

I A birth-and-death process is a continuous-time Markov chain where
the state space is the set of nonnegative integers and transitions
only occur to neighbouring integers.

I The process is necessarily time-reversible, as the transition graph is a
tree (in fact, a line).

I We denote the rate of births from i to i + 1 with λi , and the rate of
deaths from i to i − 1 with µi .

I The generator matrix is

Q =


−λ0 λ0 0 0 . . .
µ1 −(µ1 + λ1) λ1 0 . . .
0 µ2 −(µ2 + λ2) λ2 . . .
0 0 µ3 −(µ3 + λ3) . . .
...

...
...

...
. . .


I Provided

∑∞
k=0

∏∞
k=1

λi−1

µi
≤ ∞, the unique stationary distribution is

given by

vk = v0

k∏
i=1

λi−1
µi

for k = 1, 2, . . . , v0 =

( ∞∑
k=0

k∏
i=1

λi−1
µi

)−1
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Review / overview

I We are still working with continuous time discrete state space
Markov chains.

I We discussed a limiting theorem, and that Markov chains where the
transition graph is a tree are time reversible: One can then find the
limiting distribution by solving the local balance equations.

I We review the definition of birth-and-death processes and look at an
example.

I We look at some queueing theory.

I We discuss Poisson subordination.
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Birth-and-death processes

I A birth-and-death process is a continuous-time Markov chain where
the state space is the set of nonnegative integers and transitions
only occur to neighbouring integers.

I The process is necessarily time-reversible, as the transition graph is a
tree (in fact, a line).

I We denote the rate of births from i to i + 1 with λi , and the rate of
deaths from i to i − 1 with µi .

I The generator matrix is

Q =


−λ0 λ0 0 0 . . .
µ1 −(µ1 + λ1) λ1 0 . . .
0 µ2 −(µ2 + λ2) λ2 . . .
0 0 µ3 −(µ3 + λ3) . . .
...

...
...

...
. . .


I Provided

∑∞
k=0

∏∞
k=1

λi−1

µi
≤ ∞, the unique stationary distribution is

given by

vk = v0

k∏
i=1

λi−1
µi

for k = 1, 2, . . . , v0 =

( ∞∑
k=0

k∏
i=1

λi−1
µi

)−1
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Example

I The simplest example of a birth-and-death process is one where all
birth rates λi and all death rates µi are the same values λ and µ,
respectively.

I We get that

vk = v0

k∏
i=1

λ

µ
= v0

(
λ

µ

)k

v0 =

( ∞∑
k=0

(
λ

µ

)k
)−1

=
1

1 + λ
µ + (λµ )2 + . . .

=
1

1/(1− λ
µ )

= 1− λ

µ

I We see that the limiting distribution is Geometric
(

1− λ
µ

)
.

I For example, the long-term average value of Xt will be

λ/µ

1− λ/µ
=

λ

µ− λ
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Queueing theory

I Birth-and-death processes are special cases of queues.

I In the more general theory of queues:
I The arrival process (“births”) need not be a Poisson process, with

exponentially distributed inter-arrival times.
I The service times in the system need not be exponentially

distributed.
I There can be many other generalizations, such as how many servers

there are, how the servers work, how the line works, etc.

I One can use notation A/B/n where A denotes arrival process, B
denotes service time distribution, and n the number of servers.

I With this notation, our birth-and-death model above with constant
birth and death rates is denoted M/M/1. (M is Markov).

I Our formulas above also give the limiting distribution for an M/M/c
queue, where there are c different servers.
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Little’s formula
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The boxes represent customers arriving at a rate λ and staying for an average
time W . The left line represents the average arrival times of customers: It has
slope λ. The right line represents the average departure time of customers.
The horizontal distance between the lines is W . The vertical distance between
the lines will be L, the average number of customers in the system. Thus

λ =
L
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Poisson subordination

I Instead of simulating from a continuous time finite state Markov
chain by drawing the holding time from Exponential(qi ), where qi
depends on the state i , simulate a holding time from Exponential(λ)
where λ is large, and allow movement back to the same state.

I Matematical formulation: Given generator matrix Q. If
λ ≥ max(q, . . . , qk) then

I R = 1
λ
Q + I is a stochastic matrix.

I We can write

P(t) = etQ = e−tλI etλR = e−tλ
∞∑
k=0

(tλR)k

k!
=
∞∑
k=0

Rk e
−λt(λt)k

k!
.

I Thus: To find the probability of going from i to j during time t:
1. Simulate the number of changes occurring k ∼ Poisson(λt).
2. Move the discrete chain with transition matrix R k steps.

I This provides a good way to compute etQ : Throw away terms where
k is over some limit. Better accuracy that using definition of
exponential matrix!

I Discrete and continuous chain have same stationary distributions!
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