Lecture 3

den 3 december 2020 07:48

@ Lecture_3

Third Lecture Page 1



hics

}3»«»6?

y €2

Basic Stochastic Processes:
Financial applications

Lecture 3 (3 December 2020)

Probability theory on uncountable sample spaces

In this lecture we assume that Q is uncountable (e.g., Q@ = R).
P

In this case there is no general procedure to construct a probability space,
but only an abstract definition.

In particular a probability measure P on events A C Q is defined only ax-
iomatically by requiring that 0 < P(A) < 1, P(Q) = 1 and that, for any

sequence of disjoint events Ay, Ao, ..., it should hold _
ahk = ?
Ay 04,

Lt )

= —

Moreover we do not assume that [P is defined for all events A C €2,

c
Denote b}‘@the set of events (i.e., subsets of €2) which have a well defined /A o A - %
probability satisfying the properties above. c
¥ (A7) =4 - e

st St e
L AEY = ATE Y
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The minimial conditions required or@is that

__= (i) F should contain € {the “something happens event”),

(ii) the complement of each element A, i.e., A € F = A° € F (the “A does
not happen event”)

et

7 (iii) F must be closed with respect to cpountable union (so that the equation
(*) above makes sense)

A collections of 0\'0111;;'>cu:isfyi11g the properties (i), (ii), (iii) is called a o-
algebra (or o-field).

Example. o z Iﬁ":\j7 \1% ""2 - % I ME /ue[}(

Let 2 = R. We say that A C R is a Borel set if it can be written as the L » hec

/ union (or intersection) of countably many open (or closed) intervals. UroTE LVACS
Rga .

7 Let F be the collection of all Borel sets. Let p : R — I§ be a continnous VN &\'C

non-negative function such that
=S ED Goj
( (5= Lo
RV (RN g

/];p(w)dw =1.

Then P : F — [0, 1] given by

—_ o QL' gg’(
P(A) = /Ap(w) dw A/ - Sl

Ky2
defines a probability. If X : R — R is a random variables, the expectation
of X in this probability measure is given by

E[X] zﬁX(w)p(w)d;r.

eotd  ouTL 9,032 AM
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For most applications (and in particular for those in financial mathematics)
the knowledge of the full probability space is not necessary.

More precisely, we are only interested in assigning a probability to events of
the form {X € I}, where X is a random variable on the (abstract) probability
space and I C R, that is to say, events which can be resolved by one (or more)
random variables.

The probability P(X € I') can be computed explicitly when X has a density.
Definition 0.3

Let fx : R — [0,00) be a(_continuous function (except possibly on finitely
many points)l A continuum random variable X : @ — R is said to have
probability density fy if —
C\NLTC

— B(XeA) = [ i@,
R N

for all Borel sets A C R. l&
- (SINNGEYS

Note that the density fy satisfies [Vféz/( ACT o )3-\ 0N ><

[fx(;r:}d;r:=l
Jr

and the cumulative distribution Fy(z) = P(X < ) satisfies
—_———

dFx

Fx(z) = / fx(y)dy, forallz € R, hence fy = e
. 2

-
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Example.

A random variable X : 2 — [® is said to be a normal random variable with
mean m € R and variance ¢2 > 0 if it admits the density

fx(@) = — o mity &
fx(x) = s exp 357 .
We denote A'(m, a?) the set of all such random variables. . lz X 7

A variable X € N(0,1) is called a standard normal random variable. (f [V_\ -
/—/\_'_/\—/-

The cumulative distribution of standard normal random variables is denoted
by ®(x) and is called the standard normal distribution, i.e.,

O(z) = L e dy. = g AE (‘Qﬂ 3 9\

Theorem 0.8

The following holds for all sufficiently regular functions g : R — R:

(i) Let X : @ — R be a random variable with density fy. Then for all
Borel sets A C R, -

Pu(x) € ) = | R L&/ =% (X 7
PR | ’\{ NS

X = weaAsuR (X%LE'>

(ii) Let X : 2 — R be a random variable with density fy. Then

H‘o(x\x: > ‘i\fﬂ*;((ﬂ éﬁ Elg(X)] = f 9(v)fx(y) dy.
xS (X )

C'NACE Moreover the properties 1,2,3 in Theorem 0.1 still hold on uncountable prob-
ability spaces. —
CXSE L\E At Y _
L= - ~
4
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By (ii) in Theorem 0.8, the expectation and the variance of a continuum
random variable X with density fy are given by

E[X] = ] tfx(x)dv, VarX] = / 2 fy(w)do — ( / 2fx () f)

In particular normal variables we obtain

X € N(m,0*) = E[X]=m, Var[X]=o"
L o

« [
Joint probability density

Definition 0.4

Two continnum random variables X, Y : 2 — R are said to have the joint
probability density fyy : R? — [0, ), if —
_———\_\/

P(X € AY € B) = / Fxyv(x, y) dedy,

JaJp
for all Borel sets A, B C R.
— Se————

Note that if fyy is a joint probability density, then

_/R/1f.\:!y(\t.',_:t}}ff\r:d.y: 1L q=% W &X ?’\R\ \( e(\zw _

o
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Moreover if we define the joint cumulative distribution as M y) = A
P(X < a,Y <vy) then X
FK o e\ = J”\‘“ %1 (A‘Q
l f x Al

N — ————

fxy(z,y) = 3.0, Fx y (x,y).
R

- o
When XY have the joint density fxy(z,y), the random variables X,V
admit the densities
fx(ﬁ?)Z/fo,Y(fﬂ-ﬁy)dy-. fY(y):LfX,Y{xey)dx-

Example: Jointly normally distributed random variables.
Let m € R? and C = (Cij)ij=12 be a symmetric, positive definite 2x2
matrix. Two random variables X, X5 : O — R are said to be jointly normally
distributed with mean m and covariance matrix C if they admit the joint
density
oo @) 1 (~3le-me i -m)), foralls = (1,m) € B

(1) = ——=exp | —=(x —m)C (x—m) |, forall x=(x,z .

o Jerrdeto P\ 2 1 T2

WELL AS DVME TR AX Stolk PRALES AV

DoustLY ND YMALLY DTt ED)
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The following theorem generalizes Theorem 0.8 in the presence of two vari-
ables.

Theorem 0.9

Let X, Y : Q — R be random variables with joint density fy and g : R? — R.

(i) For all Borel sets A C R there holds E _ >< \>
€= (<X

P(g(X,Y) € A) = f fxy(z,y)ddy.
t— (zy)glxy)eA

(ii) There holds

Bl V)] = [ e s (@) dody.

/

By (ii) of Theorem 0.9, if X;, X, have the joint density fy, x,, then the
covariance of Xy, X5 can be computed as

Cov(Xy, Xy) = E[X1 Xy — E[X,|E[X,]
= / w122 fx, xa (21, w2) day diy
JR2

—/z o1 fx, v (21, 12) dy dag /2 Tafx, x, (21, 2) dry das.
B %

In particular, if X, X are jointly normal distributed with mean m € R? and

covariance matrix C' = (Cj;); j=1,2. we find
C, =\ ’X

Co” e CKL/&

m = (my.ms), Ci; = Cov(Xi, X;).

. ~ ~

Wy = &U}X | ~ EEX;:&
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The following result on the linear combination of independent normal random
variables will play an important role for the project in multi-asset options.

o Teemon] iy e A s, e8) = K(Rge AT (e ®)

Let X, Xy € N(0,1) be independent and &c,\d/ € R. Then M’g €
N(0,a* + b?). Moreover if
| S

Yi =aX, +bX,, Yo =X +dXs,
o - o

a b
A —
)_ (c d)
is _‘wr/tible, then Y, Y5 are jointly normally distributed with zero mean and
covariant matrix C' = AAT,

and if the matrix

X (& )

Stochastic processes. Martingales

X &
Let @ be an uncountable sample space.

A stochastic process is a one parameter family {X () },~o of random variables
X(t): Q=R

We denote X (t,w) = %y(w)

The parameter t is referred to as the time variable, since this is what it
represents in the applications that we have in mind.

For each w € § fized, the function t — X(f,w) is called a path of the
stochastic process.

If the paths are all the same for all w € €, then we say that X(¢) is a
deterministic function of time. -
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! RokEL
Martmgalca

Martingale stochastic processes play a fundamental role in options pricing
theory.

k!
To define martingales on uncountable sample spaces, let Fx(t) denote the X riol'( 3
information accumulated by “looking” at the stochastic process up to time

t, i.e.. the collection of events resolved by X(s) for 0 < s <.
e y () i :}C

Intuitively, the stochastic process { X (f)}i=0 is a martingale if, based on the o

information contained in , our “best estimate” on X(t) for t > s is w * (ﬂ
X(s), i.e., we are not able to estimate whether the process will raise or fall 6%_> —
in the interval [s, ¢] with the information available at time s.

- Q
This intuitive definition is encoded in the formula gx ( %\/ N xLs)
dele

NN
TR \fiﬂ K, ;&9}/9 ELX(O1Fx(s)] = X(s), 0<s<t,
- ?< ($7 which generalizes the definition of martingales in finite probability theory.

™S (C . " . .
Foll 4 S C¥ETe The left hand side is the conditional expectation of X () with respect to the
SlescuaaTle Rag(zye  information F v (s), whose precise definition is not needed here.

It can be shown that martingales have constant expectation:

e Ak@it@to,@ s A pIeTUNehLE

Wer  gIN) = #¥Ix®) N te (1)

eCery ©EeeTISS o
wETNS GG K=
e A WARTINGAME ' Kk TesB

5
Bz kg oy leehzeecws \ (P, 7 PoFs peen ToRE n WsTUER
?W,%A??k%Tj ﬁ
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Brownian motion

Next we recall the definition of the most important of all stochastic processes.
Definition 0.5

A Brownian motion, or Wiener process, is a stochastic process { W (t) }1=0
with the following properties:

1. For all! w € (, the paths are continuous (i.e., t — W(t,w) is a contin-
uous function) and W(0,w) = 0;

2. Forall 0 =ty <t <ty < ..., the increments S
Wit) = Wi(ty) — W(ty), Wi(ts) — W(t;) &-‘:D 4 5 J(‘l/ &"7
LR =Wit:1 = W o)y Wity) = W(H), ...,
— Y Ty Y Wei=e WEy) Wi -
are independent random variables;

—

3. The increments are normally distributed, that is to say, for all 0 < s <
t'.
PW(t)—W(s)e A) =

\f27r(1t—s)/x.e_ﬁi%dy! ej
WID- W) € K (=) t->)

Important remark: ( iN AT cuLag N G‘,j e N (ol %\j

Since the definition of Brownian motion depends on the probability measure
P, then a stochastic process {W(t)};>o which is a Brownian motion in the
probability measure P will in general not be a Brownian motion in another
probability measure P. When we want to emphasize that {W ()} is a
Brownian motion in the probability measure P, we shall say that {W(t)}i=0

for all Borel sets A C R.

"More precisely, for all w € € up to a set of zero probability.

10
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Remark

Letting s = 0 in property 3 in the definition we obtain that W (t) € N(0,t),
for all t > 0. In particular, W(t) has zero expectation for all times. It can
also be shown that Brownian motions are martingales.

The following result is used a few times in some projects.

_y Theorem 0.11

Let g: (0,00) — R be a differentiable function and let

s X0 =gW(r) - /ﬂ tg/’(s)l-{-’(;} ds. R ANt VAN LC

Then .
X() eNO.AM), A0 = [ gls)as

Remark

By ll‘»lllg the formal identity d(g(t)W(t)) = ¢'(t)W (t)dt + g(t)dW (1), as well
as |, "d(g(s)W(s)) = g(t)W(t), we can write the definition of X(¢) in the
previous theorem as

< t

S (oW <[ dar-)) Wi » JE) dWB) )

0] 0 ’1’
,\'

W o) = ( NS v WG
M %O)&Y{\ %Q\N\ ; Xo‘% )

\ /11//
A%Ls\ = % 19)ds

eeeflC  WNTWL AotD5
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Equivalent probability measures. Girsanov theorem

treoB AR LLIT \/
One further technical complication arising for unco.nntable sample spaces is

the existence of non-trivial events with zero me , e.g., the event {W(t) =
0} that the Brownian motion W (#) takes value zero when ¢ > (0. D

We shall need to consider the concept of equivalent probability measures:

Definition 0.6 Two probabilit}:wmcasur@ P on the events A € F are said
/ to be equivalent if P(A) = 0 < P(A) = 0. %E
A

Hence equivalent probability measures agree on which events are impossible.

Note that in a finite probability space all probability measures are equivalent, /
as in the finite case the empty set is the only event with zero probability.

The following important theorem characterizes the relation between equiva-
lent probability measures on uncountable sample spaces and is known as the N T
Radon-Nikodym theorem.

We denote [4 the characteristic function of the set A € F, i.e., the random
variable taking value I4(w) = 1 if w € A and zero otherwise.

1 wek

g T (w) =
Radon-Nikodym theorem A

Let P : F — [0.1] be a probability measure. Then P: F = [0,1] is a
probability measure equivalent to P if and only if there exists a random
variable Z : 2 — R such that -

~ \Z{) E[Z] =1 and ]f”(A) = E[Z14] $ S ExPE(TATON
;FN él? ;(\65 Moreover if P and P are equivalent then \/; R-Zsf\'(i \CTED \N TWE G\NVENS
we%® Q\_/ ]"E“’X] —E[ZX] To A Yo A'?’LL‘T7 \,-(7
for all random variables X : O — R. ~
- € 2 ExvrectImione i
THE NEW RRIBASB (LT \ ?
12
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Example

Assume Q = R and that P and P are defined as in the example on page,

namely
v

]P’(A):.[rg(w)dwf ﬁ(A):L@dw,

where A is a Borel set and p, p are two continuous non-negative functions
-
such that

[ o= [ erae=1. P (M= 12T\
Fo e Somrl

Then, according to the Radon-Nikodym Theorem, P and P are equivalent if >0 ST
and only if there exists a function Z : R — R such that Z = 0, and E[ ,&

P(A) @ [ Z(ud)]ll(u;)&/)dw—ud\dd

As the equality [, p(w)dw = [, Z(w)p(w) dw has to be satisfied for all Borel % ‘Z'((Dw 3 (‘”-\ \
sets A C R, then p(w) = Z(w)p(w) must hold for allw e R . ®

Theorem 0.13 and Definition ( SL \ ; ( /lID /(\
/ Lot {W(#)}1=0 )be a P-Brownian motion. Given # € R and T = 0 define
= r

T eminner T T /&i%i:

. - 5]
Aﬁ ® L5 AooNe Th(@z E[Zp14]. for all Borel sets A C R, defines a plObF.l.l‘Jlllf\ measure ~—
€ Mg Pl EvEL equivalent to P, which is called wljsy with parameter
EAMILY oF 0eR.
o AsiL it
_ VAN Proof. The proof follows immediately from the Radon-Nikod¥m Theorem,
SV since the random variable Z; satisfies 73 > (0 and & ((7
~ 7. T\ 2le(m)

1 g 1 53 (S

MORZWE T E(Zo) = Ele S azT] - Ei"‘T—efi:r =

¥

N
Y= W RN Tob= BlL, ) = f(ﬁ Lﬁ W(T) e N (o 1Y

S AT QRS -17)2 Ly
tle 3 = Fls(wen) L §E0 = L

=0 (2% \= ka %t watﬂbﬂo\% Jr\:\»cﬂ it \r‘“
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where we used the density of the normal random variable W(T) € N(0,T)
to compute the expectation of Zy in the probability measure [P . O

Note that the Girsanov probability measure [Py depend also on T, but this is
not reflected in our notation.

Lln the following we denote by Eq[-] the expectation computed in the proba-
—

bility measure Py for 0 # 0. t - é (é'x Pec TAT LN
o =
When ¢ = 0 then Py = P, in which case the expectation is denoted as usual N {? )
by E[].
\/

By Radon-Nikodym Theorem we have Eq[X| = E[Z,X], for all random vari-
ables X : Q = R. b——

Moreover we now show that Eg[W (#)] = —6¢. In fact by the Radon-Nikodym
theorem we have —
Z

=4
—

Eo[W (t)] = E[ZW (1)] = E[e™™" =Ty (1)].
— »T aon seereres W (£)

Adding and subtracting W (t) in the exponent of the exponential function we

have
Bl ELY])

=E[e ﬂ(w(:}) %r;"—’T]E[e ”wm‘i-‘l-’(t)]f
0

A \/

B (T)-W (1))~ 162,
AR

Eo[W(t)] = Efe

where in the last step we used that the random variables X = ¢~ ¢(W(T)-W()-36°T
and Y = ¢ W (t) are independent (being functions of the independent
random variables W(T') — W(t) and W (t)). \(‘: % (\)0 M

Using W(T) — W (t) € N(0, w and W(t) € (O,t), we can compute the
expectations of X and Y as

QTI'(T - f) ®

14

K= W -wi) | g0 -

6@(% = L e A
x N dx = ¥
&“2 o) %wwf; X&BM Ty
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w&{th@ -éo = /9]:

¢ WYTN CB':é O [?[\}] — \/%/Re_h_é:ydw :@ H \}‘) (%2

4
o
Zt

nty ¥ 7

: < A

T Y@ng Hence Ey[W (t)] = E[X]|E[Y] = —#t, as claimed. 'S OA wn sers
W ) W

% ! [ It follows that {W(t)}i=o is not a Pg-Brownian motion, since Brownian mo- e

M s A —Y tions, by definition, have zero expectation at any time. o, W

oeveney VO A N . (o, in TAM
e i Now we can state a fundamental theorem in probability theory with deep > ) WM ¥ H{‘
NNT Y \\F 040) applications in financial mathematics, namely Girsanov’s theorem. (Actu- CULAR . T
ally we consider only a special case of this theorem, which suffices for our / )

“\7-/90“’“" (e ") purposes) Po wRitq ‘\
€. | W (1)
WAS & ot

Girsanov theorem

_ Let {W(#)}1=0 be a P-Brownian motion. Given# € R and 7" > 0, let Py\be the
-9 t \M WB Girsanov probability measure with parameter @ introduced in Theorem 2.1 (P
Define the stochastic process {W " (t)},~ by

WO () = W(t)+6t. WE) - ®X\§1 o VO &+

Then {W@(t)},~ is a Pp-Brownian motion. 2 ?O'

—_—

Note carefully that {IW@(t)},~ is not a P-Brownian motion, as it follows by

the fact that ]E[I"Vw)(t)] = ft. %T/ \X)Js[‘i(j/& - Q' {m +O J( - ® «t

In particular, according to the probability measure [P, the stochastic process
{W®(t)}50 has a drift, i.e., a tendency to move up (if & > 0) or down (if
# < 0). However in the Girsanov probability this drift is removed, because,
as shown before, Eq[W ) (1)] = Eg[W (t)] + 6t = 0.

QoML THS 15 ovey A QERY SREOWNL

(ke SMPlest ) CkSE o F
CARSANON'S THED @M

15
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Multi-dimensional Girsanov theorem

We conclude with a generalization of Girsanov’s theorem in the presence of
two independent Brownian motions. This generalization is important for the 3

project on multi-asset options [_ ﬂ ,\?
VT

Theorem 0.15 and Definition Let {W;(t) }i50, {Wa(t) }is0 b@n@ggﬂcl@t
Brownian motions. Given f = (#;,6,) € R? and T > 0 define
T Aaa—

~\ - X "': <
Ty 7 ° ,E‘[%ﬂl Z 7, = WD) Wa(T)-JOHT ( 2= e pWIY) 7,01 '

7 —
Then\Py(A) = E[Zyl4) defines a probability measure equivalent to P, which He2L 3
is called Girsanov's probability with parameters 6,6, € R.
2-dimensional Girsanov’s theorem \TQ

—
Let {Wi(t)}iz0. {Walt)}iz0 be P-independent Brownian motions. Given
0 = (6,,) € R* and T > 0, let Py be the Girsanov probability with pa-
rameters 6y, fy introduced in Theorem 2%. Define the stochastic processes

(W () hiso. {W3" () }ezo by LNILS

WP (t) = Wi(t) + 6ut, WO (t) = Walt) + Oat

o

Then {W”(t)}1=0, {W(t)}1=0 are Pg-independent Brownian motions.

16

Third Lecture Page 17



720 WAL pRPEL S[i () 5@,/4’;’;;—?—4% ()
) Pl - ‘ _
Lo fy +y o T4 1=t

THCYH  ofF S(’h\) CAN ALy < Kweg A FuoTE NOMSET O ¢ VACLYES

e
t ftolﬂ
Im S@Z [°|/)°)

S1=5,

V3 ~um

WA - WD NG L)

(st = | SO - €75 Se

1S @,

o™

(wamreLy S WAJ

Black-Scholes options pricing theory {4 o3BT 5
RY. A ?

In the binomial model the stock price at time ¢ is a finite random variable
S(t). In the Black-Scholes model the stock price is a continmum random
rariable with image Im(S(¢)) = (0, oc), namely the geometric Brownian

motion ————

e ERRNT
S(t) = Spe® WO (GBM t
= ' \ &U/): %D Cn

The probability P with respect to which {W(t)};>q is Brownian motion is
the physical (or real-world) probability of the Black-Scholes market.

.

Moreovor@ is the instantaneous mean of log-return, o is the instanta-
- - W\' .
neous volatility and o?isthe instantaneous variance of the geometric
—_—

Brownian motion
1z 2
. . . . . = > [&%S (F4w)
The geometric Brownian motion admits the density 7 S

_ W
\D Doy 5 () {5 NoCWAL] PISTUSUTE ) MFLE - M%stk\—k

L@@ 1 (oga—logS(0) —at)*\ ¥
v \f—"{t’)(i) - orolta EXP( 207t )(A &"Olﬂ = 3\..3630

where H(z) is the Heaviside function. It can be shown that the binomial

stock price converges in distribution to the geometric Brownian motion in
the time-continuum limit. " _ 5 x 2o
)=
1 x >o
The risk-neutral pricing formula in Black-Scholes mar-

kets %ﬂéﬁ’V‘

. o . ‘ Uns\L
I'he purpose of this section is to introduce the definition of Black-Scholes
price of European derivatives from a probability theory point of view. &' d l ‘o

Y 46 W (x)
M

Recall that the probabilistic formulation of the binomial options pricing
model is encoded in the risk-neutral pricing formula.

7 G-t + ¢ W &)

DS CooFe™> Stoce 1o RBUCESLNES

> ke A RowmARTINGACE e =Ry
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Our goal is to derive a similar risk-neutral pricing formula (at time t = 0)
for the time-continuum Black-Scholes model.

Motivated by the approach for the binomial model. we first look for a prob-
ability measure in which the the discounted stock price in Black-Scholes
markets is a martingale (martingale probability measure).

It is natural to seek such martingale probability within the class of Girsanov
/V probabilities [Py equivalent to the physical probability P.
[ e

To this purpose we shall need the form of the density function of the geometric
Brownian motion in the probability measure Py.

Th 0.17 SEE
7 corem G, 7 Te&orcn o .,\3

Let 8 € R, T" = 0 and Py be the Girsanov probability measure equivalent to
the physical probability P. The geometric Brownian motion has the following
density in the probability measure Py:

H(z) 1 exp (_ (logx —log So — (o — 90‘)12)2) & A > Ji?_(
207t '
N

Proof. Since + o6t v THT ErRIRTHT Conmucrx (F)

SH/\ 1S /

S(t) _ Sﬂect£+o'1-t:[t) L Snetct—ﬁ‘a)t+al-i'(8](g], H'(H](t) — H’v(t) + 0t
STl A CBY . T

i (@) = =~
Arait {30 Tue

and since {W)(#)},-¢ is a Brownian motion in the probability measure P,

R\ ?@ B (see Girsanov’s Theorem y ), then the density flf,,ﬂ) is the same as fg) with
a replaced by a — flo. O
Now w1 —
MEK F Let Eg[-] denote the expectation in the probability Pg. i/
~ -
L& RztuRN

Recall that martingales have constant expectation. Hence in the martingale
o 0¢ (or risk-neutral) probability measure the expectation of the discounted value

of the stock must be constant, i.e., Eg[S(t)] = Spe™. This condition alone
‘ . . . . f
suffices to single out a unique possible value of 6.
i S S i

_t
b 5700 = B8} amo & S-S e
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In fact we now show that the identity Eq[S(¢)] = Sge™ holds if and only if
# = g, where —_— T

Proof. Using the density of S(f) in the measure Py we have

—_—

/_\ﬁ (logz — log Sy — (a — Ho)t)?

1 oo
o] R N AW -
Eq[S(t)] = /vaf_s-(,}(.r) dr = - /u exp (— 5527 ) dz.

L —

With the change of variable y = %\W, dr = xov/t dy, we obtain

S v 2 1 wtov)?
EQ[S(”] — \/_U_E{u—ﬂo]t / e—?+cr\/?y dy — Sﬂe(u—90+7}£_ / C‘_[ +2 ) dy
k Ji:3

27 — m
\
g g Lt U
As \/% Je e 7 dx = 1, the result follows. o€ 4 O

Wuitcy Wolss FE O = OLZ

Even though the validity of Eg[S(t)] = Spe™ is only necessary for the dis-
counted geometric Brownian motion to be a martingale, one can show that
the following result holds.

tingale in the probability measure Py if and only if # = g

[ The discounted value of the geometric Brownian motion stock price is a mar-

JE——

The previous discussion leads us to the following definition.

TNERT EXS'S A volg Ve CRoS ASLLITY 4\?@\
N W CH THE o@D Stowr SR = A WANTwss de

19
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/ Definition 0.19

V&S AkNoN
R o x L <7
WATY  Trasan€TER

Givenaw € R, ¢ > 0, r € R and 7" = 0, the probability measure ( G

P,(4) = Efe ™4, =0T 7

is called the martingale probability, or risk-neutral probability, in the e = °\\
interval [0, 7] of the Black-Scholes market with parameters a, o, r.

Remark
Vo= wi

In the risk-neutral probability the stock price is given by the geometric Brow- r ot

nian motion gw\: g O?L"\t ¢ SWE = $°€>“>(&b s (\UL.?H’)

,ﬁ \
o peesses! s - s Do Sot) = S et S

/\i/

¢ WL
where, by Girsanov’s theorem, W@ (t) = W (t) + gt is a Brownian motion in ¢
the risk-neutral probability. This follows by replacing o = r + qo — %0'2 in )

(GBM). @—c YW u-)

Moreover repl&cin@:_{bin the density fg?g} (see Theorem 0.17) we obta,m
that the geometric Brownian motion has the following density in the risk-
neutral probability measure [P;:

VENSLT\/ ofF
SWY in yud
LS v - pevwwal

H(x) 1 (logz —log Sy — (r — %

. . ) . : A=, -
At this point we have all we need to define the Black-Scholes price of Euro- Ploe (et /
pean derivatives at time t = 0 using the risk-neutral pricing formula.

20
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Definition 0.8 PWATITY

The Black-Scholes price at timf the European derivative with pay-off
Y at maturity 7" is given by the risk-neutral pricing formula

« — » —
et et N A S T I

i.e., it equals the expected value of the discounted pay-off in the risk-neutral
probability measure of the Black-Scholes market.

¥ %4
Nz
a\

In the case of standard European derivatives we can use the density of the
geometric Brownian motion in the risk-neutral probability measure to write

the Black-Scholes price in the following integral form. -2\
(o) 2 Tysay)]
Theorem 0.20 T(\l € 6'1 %[ (\
N~/

For the standard European derivative with pay-oHlY = qi S(T‘))' at maturity
T > 0, the Black-Scholes price at time + = 0 can be written as IIy(0) = //
v(Sp), where Sy is the price of the underlying stock at time ¢ = 0 and
vy @ (0,00) — R is the pricing function of the derivative at time ¢ = 0,
which is given by -

(404 a
w: A (.S(ﬂ\ oo(z) ZE_@fS’ S N LS R St

0

Proof. Using the density fggg} for t = T in the risk-neutral pricing formula
we obtain - 77

¢
My (0) = e "Ey[Y] = ¢ "JE,[9(S(T))] =&y(x}f§,‘f£-,(r) dr |

e ]m g(@) - (_ (log x —log Sy — (r — Lj)t)?) .
0

2wt T 202t

With the change of variable y = %ﬂ we obtain
21
" [ o Y\Wwc iy ke 7
we o Ffeor T O A

((@EPLICE WNTORATT

RETLACINE -V wdaw v — L B
ML TRoCESSES A

Wytd TUWE eyt IP \U{T’OZ(—@{\ SECHSE N
AAME  NoNukoNEonS YN e

Tl = sEsB) | pbe) = 58

/\’Y\-"t \ 2
-t . (S yem—0 *G@:t%\ T2l 4
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C

1Nt
X C?)K Q"g}h»ﬂ x Gg\:—{f Y v
X C
R

- _a? 1,2 dy
IIy(0) =e ’T/(Se(’" TITHoVTyye—3v" O 40(S0),
v(0) (RJ( 0 ) Jon 0(S0)

as claimed. O

Example

For instance, in the case of the European call option with strike K and
maturity 7', for which the pay-off function is g(z) = (z — K');, Theorem 0.20
gives

Mean(0) = Co(So, K, T),  Cyla, K, T) = x®(dy) — Ke ™" ®(dy)

where ® is the standard normal distribution and

_og g +(r — 10%)T

dy =dy+ oVT.
o’ﬁ 1 2

dy

Remark

The risk-neutral pricing formula for ¢ > 0 is

Iy (t) = e TR [V | Fs(t)],

The right hand side is the expectation of the discounted pay-off in the risk-
neutral probability measure conditional to the information available at time
t, which in a Black-Scholes market is determined by the history of the stock
price up to time t.

It can be shown that in the case of the standard European derivative with
pay-ofl Y = ¢(S(T)) at maturity T, the risk-neutral pricing formula entails

that the Black-Scholes price at time ¢ € [0, 7] can be written in the integral
form

22
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Iy (t) = v(t, S(t)), where v(t,x) = :/2_ / g (1;(.;&—%3"5“\’;”) e Tdy, T=T-t.
T JR

Hence the pricing function v(t, x) of the derivative at time ¢ is the same as
the pricing function vy at time ¢ = 0 but with maturity 7" replaced by the
time 7 left to maturity, which is rather intuitive.

The Monte Carlo method

The Monte Carlo method is, in its simplest form, a numerical method to
compute the expectation of a random variable.

Its mathematical validation is based on the Law of Large Numbers, which
states the following: Suppose {X;}i>1 is a sequence of 1.i.d. random variables
with expectation E[X;| = . Then the sample average of the first n compo-
nents of the sequence, i.e.,

— 1
X=—-(Xi+Xo+ -+ X,),
n
converges (in probability) to p as n — oc.

The law of large mumbers can be used to justify the fact that if we are given a
large number of independent trials X, ..., X, of a random variable X, then

o 1
E[X] = E{X' + Xo+ -+ X))
To measure how reliable is the approximation of E[X] given by the sample

average, consider the standard deviation of the trials X, ..., X

23
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Sy = , ! i(f — X];)z,

n—1+4%
i=1

Viewing X,..., X, as independent copies of X, a simple application of the
Central Limit Theorem proves that the random variable

n—X
sx/v/n

converges in distribution to a standard normal random variable. We use this
result to show that the true value g of E[X] has about 95% probability to
be in the interval

X~ 1.96—=. X + 1.96——].
n n

Vi Vi

Indeed, for n large,

Y L6
]P’(—l,gﬁ <HB=2 o 1,96) ~ [ e 095,
sx/vn J-1.96 27

An application to Black-Scholes theory

Using the Monte Carlo method and the risk-neutral pricing formula, we can
approximate the Black-Scholes price at time ¢ = 0 of the European derivative
with pay-off ¥ and maturity 7' > 0 with the sample average

Yi+...Y,
n '

Oy (0) = e

24
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where Y7, .., Y, is a large number of independent trials of the pay-off. Each

trial Y; is determined by a path of the stock price.

Letting 0 =t < t; < -+ <t = T be a partition of the interval [0, 7] with
size t; — t;_; = h, we may construct a sample of n paths of the geometric
Brownian motion on the given partition with the following simple Matlab
function:

function Path=StockPath(s,sigma,r,T,N,n)

h=T/N;

W=randn(n,N);

gq=ones(n,N);

Path=s*exp((r-sigma~2/2)*h.*cumsum(q’)+sigma*sqrt (h)*cumsum(W’)) ;
Path=[s*ones(1,n);Path];

Note carefully that the stock price is modeled as a geometric Brownian mo-
tion with mean of log return o = r — ¢2/2, which means that the geometric
Brownian motion is risk-neutral. This is of course correct, since the expec-
tation that we want to compute is in the risk-neutral probability measure.

The following Matlab code compute the Black-Scholes price of a call option
using the Monte Carlo method. The code also computes the statistical error

N

Err = 1.96

of the Monte Carlo price, where s is the standard deviation of the pay-off
trials.

function [price, conf95]=MonteCarloCall(s,sigma,r,K,T,N,n)
tic

stockPath=StockPath(s,sigma,r,T,N,n);

pay0ff=max (0,stockPath(N, :)-K);

price=exp(-r*T) *mean (pay0ff) ;

conf95=1.96%*std (pay0ff)/sqrt(n);

toc
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For instance, by running the command
[price, conf95] = MonteCarloCall(10,0.5,0.01,10, 1,100, 100000)

we obtain the output

price = 1.9976
conf95 = 0.0249

The calculation took about half a second.
The exact price for the given call obtained by using the Black-Scholes formula

is 2.0144, which lies within the confidence interval [1.9976 — 0.0249, 1.9976 +
0.0249] = [1.9727,2.0225] of the Monte Carlo price.

Control variate Monte Carlo

The Monte Carlo method just deseribed is also known as crude Monte Carlo
and can be improved in a number of ways.

In order to reduce the error of the Monte Carlo price, one needs to either
(i) increase the number of trials n or
(ii) reduce the standard derivation s.

As increasing n can be very costly in terms of computational time, the ap-
proach (ii) is preferable.

There exist several methods to decrease the standard deviation of a Monte
Carlo computation, which are collectively called variance reduction tech-
niques. Here we describe the control variate method.

Suppose we want to compute E[X]. The idea of the control variate method

is to introduce a second random variable @ for which E|Q] can be computed
exactly and then write

26
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E[X]|=E[Y]|+E[Q], whereY =X —Q.

Hence the Monte Carlo approximation of E[X] can now be written as

b+ Y,
E[X]~ 2 g,

n
where Y, ..., Y, are independent trials of the random variable Y.

This approximation improves the crude Monte Carlo estimate (i.e., without
control variate) if the sample average estimator of E[Y] is better than the
sample average estimator of E[X]. Because of (?7), this will be the case if
(sy)? < (sx)*

It will now be shown that the latter inequality holds if X, Q) have a posi-
tive large correlation. Letting X, ..., X, be independent trials of X and
Q1, ..., be independent trials of ), we compute

i

() = s Y7 =Y = = 3 (X - Q) - (X, - Q)

i=

= (sx)* + (s)* — 20(X, Q).

where C'(X, @) is the sample covariance of the trials (X, ..., X,), (Q1, ..., @.),
namely

T

CX,Q) =) (X~ X)(@ - Q.

i=1

Hence (sy)? < (sx)? holds provided C'(X, Q) is sufficiently large and positive
(precisely, C(X,Q) > so/v2). As C(X,Q) is an unbiased estimator of
Cov(X,Q), then the use of the control variate ¢ will improve the performance
of the crude Monte Carlo method if X, @) have a positive large correlation.

This method is applied in the project on Asian options

27
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