Basic financial concepts

for the course Basic Stochastic Processes and Financial Applications

Simone Calogero

Chalmers

This text is an abridged version of Chapter 1 in [1].

Financial assets

The term asset may be used to identify any resource capable of producing value and which, under specific legal terms, can be bought and sold (i.e., converted into cash). Assets may be tangible (e.g., lands, buildings, commodities, etc.) or intangible (e.g., patents, copyrights, stocks, etc.). Assets are also divided into real assets, i.e, assets whose value is derived by an intrinsic property (e.g., tangible assets), and financial assets, such as stocks, options, bonds, etc., whose value is instead derived from a contractual claim on the income generated by another (possibly real) asset. For example, upon holding shares of the Volvo stock (a financial asset), we can make a profit from the production and sale of cars even if we do not own an auto plant (a real asset). As we consider only financial assets in this text, the terms "asset" and "financial asset" will be henceforth used interchangeably.

Price

The price of a financial asset is the value, measured in some units of currency (e.g. dollars), at which the buyer and the seller agree to exchange ownership of the asset. The price is chosen by the two parties as a result of some kind of "negotiation". More precisely, the ask price is the minimum price at which the seller is willing to sell the asset, while the bid price is the maximum price that the buyer is willing to pay for the asset. When the difference between these two values, called bid-ask spread, becomes zero, the exchange of the asset takes place at the corresponding price.
A generic financial asset will be denoted by \mathcal{U} and its price at time t by $\Pi^{\mathcal{U}}(t)$. Prices are generally positive, although some financial assets (e.g., forward contracts) have zero price.

The asset price refers to the price per share of the asset, where "share" stands for the minimum amount of an asset that can be traded. All prices in this text are given in a fixed currency, which is however left unspecified.

Markets

Financial assets can be traded in exchange markets or over the counter (OTC). In the former case all trades are subject to a common regulation, while in the latter the trading conditions are more flexible and, to a certain degree, can be agreed upon by the individual traders. The same asset can often be traded both in an exchange market and OTC, usually for a different price. The advantage of trading in regularized exchange markets is the higher level of transparency and protection offered by standardized contracts.

Any transaction in the market is subject to transaction costs (e.g., broker's commissions) and transaction delays (trading in real markets is not instantaneous).

Buyers and sellers of assets in a market will be called investors or agents.

Long and short position

Besides the usual operations of "buying" and "selling" the asset, we need to consider an additional common type of transaction, which is called short-selling. Short-selling an asset (typically a stock) is the practice of selling the asset without actually owning it. Concretely, an investor is short-selling N shares of an asset if the investor borrows the shares from a third party and then sell them immediately on the market. The reason for short-selling an asset is the expectation that the price of the asset will decrease in the future. In fact, assume that N shares of an asset \mathcal{U} are short-sold at time $t=0$ for the price $\Pi^{\mathcal{U}}(0)$ and let $T>0$. If $\Pi^{\mathcal{U}}(T)<\Pi^{\mathcal{U}}(0)$, then upon re-purchasing the N shares at time T, and returning them to the lender, the short-seller will make the profit $N\left(\Pi^{\mathcal{U}}(0)-\Pi^{\mathcal{U}}(T)\right)$.

An investor is said to have a long position on an asset if the investor owns the asset and will therefore profit from an increase of the price of the asset. Conversely, the investor is said to have a short position on the asset if the investor will profit from a decrease of its value, as it happens for instance when the investor is short-selling the asset.

Stocks and dividends

The capital stock of a company is the part of the company equity capital that is made publicly available for trading. Stocks are most commonly traded in official exchange markets. For instance, over 300 company stocks are traded in the Stockholm exchange market. The price per share of a generic stock at time t will be denoted by $S(t)$.
A stock may occasionally pay a dividend to its shareholders, usually in form of a cash
deposit. The amount (per share) of the dividend and its payment date must be declared in advance (announcement date). The ex-dividend date is the first day before the payment date (from a few days to a few months before it) at which buying the stock does not entitle to the dividend. At the ex-dividend day, the price of the stock often (but not always!) drops of roughly the same amount paid by the dividend.

Exercise 1 (?). Explain why it is reasonable to expect that at the ex-dividend day the price of the stock will drop by the same amount paid by the dividend.

Market index and ETF's

A market index is a weighted average of the value of a collection of assets traded in one or more exchange markets. For example, S\&P500 (Standard and Poor 500) measures the average value of 500 stocks traded at the New York stock exchange (NYSE) and NASDAQ markets. Market indexes can be regarded themselves as tradable assets. More precisely an ETF (Exchange Traded Fund) on a market index is a financial asset whose value tracks exactly the value of the market index (or a given fraction thereof). Hence one share of an ETF on S\&P500 will increase its value of 1% in one day if during that day S\&P 500 has gained 1%. An inverse ETF however will in the same example decrease its value of 1%. Thus ETF's give investors the possibility to speculate whether the market will gain or loose value in the future.

Portfolio position and portfolio process

Consider an agent that invests on N assets $\mathcal{U}_{1}, \ldots, \mathcal{U}_{N}$ during the time interval $[0, T]$. Assume that the agent trades on a_{1} shares of the asset \mathcal{U}_{1}, a_{2} shares of the asset $\mathcal{U}_{2}, \ldots, a_{N}$ shares of the asset \mathcal{U}_{N}. Here $a_{i} \in \mathbb{Z}$, where $a_{i}<0$ means that the investor has a short position on the asset \mathcal{U}_{i}, while $a_{i}>0$ means that the investor has a long position on the asset \mathcal{U}_{i} (the reason for this interpretation will become soon clear). The vector $\mathcal{A}=\left(a_{1}, a_{2}, \ldots, a_{N}\right) \in \mathbb{Z}^{N}$ is called a portfolio position, or simply a portfolio. The value of the portfolio at time t is given by

$$
\begin{equation*}
V_{\mathcal{A}}(t)=\sum_{i=1}^{N} a_{i} \Pi^{\mathcal{U}_{i}}(t), \quad t \in[0, T] \tag{1}
\end{equation*}
$$

where $\Pi^{\mathcal{U}_{i}}(t)$ denotes the price of the asset \mathcal{U}_{i} at time t. The value of the portfolio measures the wealth of the investor: the higher is $V(t)$, the "richer" is the investor at time t. Now we see that when the price of the asset \mathcal{U}_{i} increases, the value of the portfolio increases if $a_{i}>0$ and decreases if $a_{i}<0$, which explains why $a_{i}>0$ corresponds to a long position on the asset \mathcal{U}_{i} and $a_{i}<0$ to a short position. We also remark that portfolios can be added by using the linear structure on \mathbb{Z}^{N}, namely if $\mathcal{A}, \mathcal{B} \in \mathbb{Z}^{N}, \mathcal{A}=\left(a_{1}, \ldots, a_{N}\right), \mathcal{B}=\left(b_{1}, \ldots, b_{N}\right)$ are two portfolios and $\alpha, \beta \in \mathbb{Z}$, then $\mathcal{C}=\alpha \mathcal{A}+\beta \mathcal{B}$ is the portfolio $\mathcal{C}=\left(\alpha a_{1}+\beta b_{1}, \ldots, \alpha a_{N}+\beta b_{N}\right)$, whose value is given by $V_{\mathcal{C}}(t)=\alpha V_{\mathcal{A}}(t)+\beta V_{\mathcal{B}}(t)$.

In the definition of portfolio position and portfolio value given above, the investor keeps the same number of shares of each asset during the whole time interval $[0, T]$. Suppose now that the investor changes the position on the assets at some times t_{1}, \ldots, t_{M-1}, where

$$
0=t_{0}<t_{1}<t_{2}<\cdots<t_{M-1}<t_{M}=T
$$

for simplicity we assume that at each time t_{1}, \ldots, t_{M-1} the change in the portfolio position occurs instantaneously. Let \mathcal{A}_{0} denote the initial (at time $t=t_{0}=0$) portfolio position of the investor and \mathcal{A}_{j} denote the portfolio position of the investor in the interval of time $\left(t_{j-1}, t_{j}\right]$, $j=1, \ldots, M$. As positions hold for one instance of time only are clearly meaningless, we may assume that $\mathcal{A}_{0}=\mathcal{A}_{1}$, i.e., \mathcal{A}_{1} is the portfolio position in the closed interval $\left[0, t_{1}\right]$. The vector $\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{M}\right)$ is called a portfolio process. If we denote by $a_{i j}$ the number of shares of the asset i in the portfolio \mathcal{A}_{j}, then we see that a portfolio process is in fact equivalent to the $N \times M$ matrix $A=\left(a_{i j}\right), i=1, \ldots, N, j=1, \ldots, M$. The value $V(t)$ of the portfolio process at time t is given by the value of the corresponding portfolio position at time t as defined by (11), that is

$$
V(t)= \begin{cases}V_{\mathcal{A}_{1}}(t)=\sum_{i=1}^{N} a_{i 1} \Pi^{\mathcal{U}_{i}}(t), & \text { for } t \in\left[0, t_{1}\right] \\ V_{\mathcal{A}_{2}}(t)=\sum_{i=1}^{N} a_{i 2} \Pi^{\mathcal{U}_{i}}(t), & \text { for } t \in\left(t_{1}, t_{2}\right] \\ \vdots & \vdots \\ V_{\mathcal{A}_{M}}(t)=\sum_{i=1}^{N} a_{i M} \Pi^{\mathcal{U}_{i}}(t), & \text { for } t \in\left(t_{M-1}, t_{M}\right]\end{cases}
$$

The initial value $V(0)=V_{\mathcal{A}_{0}}=V_{\mathcal{A}_{1}}(0)$ of the portfolio, when it is positive, is called the initial wealth of the investor.

A portfolio process is said to be self-financing if the portfolio assets pay no dividends and if no cash is ever withdrawn or infused in the portfolio. Let us look at one example. Let \mathcal{U}_{1}, $\mathcal{U}_{2}, \mathcal{U}_{3}$ be non-dividend paying assets in the interval $[0, T]$. Suppose that at time $t_{0}=0$ the investor is short 400 shares on the asset \mathcal{U}_{1}, long 200 shares on the asset \mathcal{U}_{2} and long 100 shares on the asset \mathcal{U}_{3}. This corresponds to the portfolio

$$
\mathcal{A}_{0}=(-400,200,100)
$$

whose value is

$$
V_{\mathcal{A}_{0}}=-400 \Pi^{\mathcal{U}_{1}}(0)+200 \Pi^{\mathcal{U}_{2}}(0)+100 \Pi^{\mathcal{U}_{3}}(0) .
$$

If this value is positive, the investor needs an initial wealth to set up this portfolio position: the income derived from short selling the asset \mathcal{U}_{1} does not suffice to open the desired long position on the other two assets.

As mentioned before, we may assume that the investor keeps the same position in the interval $\left(0, t_{1}\right]$, i.e., $\mathcal{A}_{1}=\mathcal{A}_{0}$. The value of the portfolio process at time $t=t_{1}$ is

$$
V\left(t_{1}\right)=V_{\mathcal{A}_{1}}\left(t_{1}\right)=-400 \Pi^{\mathcal{U}_{1}}\left(t_{1}\right)+200 \Pi^{\mathcal{U}_{2}}\left(t_{1}\right)+100 \Pi^{\mathcal{U}_{3}}\left(t_{1}\right) .
$$

Now suppose that at time $t=t_{1}$ the investor buys 500 shares of \mathcal{U}_{1}, sells x shares of \mathcal{U}_{2}, and sells all the shares of \mathcal{U}_{3}. Then in the interval $\left(t_{1}, t_{2}\right]$ the investor has a new portfolio which is given by

$$
\mathcal{A}_{2}=(100,200-x, 0),
$$

and so the value of the portfolio process for $t \in\left(t_{1}, t_{2}\right]$ is given by

$$
V(t)=100 \Pi^{\mathcal{U}_{1}}(t)+(200-x) \Pi^{\mathcal{U}_{2}}(t), \quad t \in\left(t_{1}, t_{2}\right] .
$$

If we now take the limit of this quantity as $t \rightarrow t_{1}^{+}$, we get the value of the portfolio "immediately after" the position has been changed at time t_{1}. Denoting

$$
V\left(t_{1}^{+}\right)=\lim _{t \rightarrow t_{1}^{+}} V(t)
$$

and assuming that the prices are continuous, we have

$$
V\left(t_{1}^{+}\right)=100 \Pi^{\mathcal{U}_{1}}\left(t_{1}\right)+(200-x) \Pi^{\mathcal{U}_{2}}\left(t_{1}\right) .
$$

The difference between the value of the two portfolios immediately after and immediately before the transaction is then

$$
\begin{aligned}
V\left(t_{1}^{+}\right)-V\left(t_{1}\right)= & 100 \Pi^{\mathcal{U}_{1}}\left(t_{1}\right)+(200-x) \Pi^{\mathcal{U}_{2}}\left(t_{1}\right) \\
& -\left(-400 \Pi^{\mathcal{U}_{1}}\left(t_{1}\right)+200 \Pi^{\mathcal{U}_{2}}\left(t_{1}\right)+100 \Pi^{\mathcal{U}_{3}}\left(t_{1}\right)\right) \\
= & 500 \Pi^{\mathcal{U}_{1}}\left(t_{1}\right)-x \Pi^{\mathcal{U}_{2}}\left(t_{1}\right)-100 \Pi^{\mathcal{U}_{3}}\left(t_{1}\right) .
\end{aligned}
$$

If this difference is positive, then the new portfolio cannot be created from the old one without infusing extra cash. Conversely, if this difference is negative, then the new portfolio is less valuable than the old one, the difference being equivalent to cash withdrawn from the portfolio. Hence for self-financing portfolio processes we must have $V\left(t_{1}^{+}\right)-V\left(t_{1}\right)=0$, and similarly $V\left(t_{j}^{+}\right)-V\left(t_{j}\right)=0$, for all $j=1, \ldots M-1$. This implies in particular that the number x of shares of the asset \mathcal{U}_{2} to be sold at time t_{1} in a self-financing portfolio must be

$$
x=\frac{500 \Pi^{\mathcal{U}_{1}}\left(t_{1}\right)-100 \Pi^{\mathcal{U}_{3}}\left(t_{1}\right)}{\Pi^{\mathcal{U}_{2}}\left(t_{1}\right)} .
$$

Of course, x will be an integer only in exceptional cases, which means that perfect selffinancing strategies in real markets are almost impossible.
If $V\left(t_{j}^{+}\right) \neq V\left(t_{j}\right)$, i.e., if the portfolio value is discontinuous at time t_{j}, we say that the portfolio process generates the cash flow

$$
C\left(t_{j}\right)=-\left(V\left(t_{j}^{+}\right)-V\left(t_{j}\right)\right)
$$

at time t_{j}. Note that a positive cash flow corresponds to cash removed from the portfolio (causing a decrease of its value), while a negative cash flow corresponds to cash added to the portfolio. For instance if at time t_{1} we sell shares of \mathcal{U}_{1} and the income is not used to
buy shares of another asset, i.e., if it is removed from the portfolio, then $V\left(t_{1}^{+}\right)<V\left(t_{1}\right)$ and thus $C\left(t_{1}\right)>0$. The total cash flow generated by the portfolio process in the interval $[0, T]$ is $C_{\text {tot }}=\sum_{j=1}^{M-1} C\left(t_{j}\right)$ and can be negative, positive or zero.
If an asset pays a dividend D at some time $t_{*} \in(0, T)$, then the portfolio process generates the positive cash flow D at time t_{*} if the portfolio is long on the asset and the negative cash flow $-D$ if it is short on the asset (because the dividend is due to the original owner of the asset). Note also that constant portfolio positions are self-financing provided the assets pay no dividends.

Portfolios and assets return

Suppose that a portfolio process is opened at time $t=0$ and closed at time $t=T>0$, i.e., all positions in the portfolio are liquidated at time T. If the portfolio process is self-financing, then its return in the interval $[0, T]$ is given by

$$
\begin{equation*}
R(T)=V(T)-V(0) \tag{2}
\end{equation*}
$$

where $V(t)$ denotes the value of the portfolio at time t. If the return is positive, the investor makes a profit in the interval $[0, T]$, if it is negative the investor incurs in a loss. When $V(0)>0$ we may also compute the rate of return of the portfolio, which is given by

$$
\begin{equation*}
R_{\mathrm{rate}}(T)=\frac{V(T)-V(0)}{V(0)} \tag{3}
\end{equation*}
$$

The total cash flow C generated by a (non-self-financing) portfolio process must be included in the computation of the return of the portfolio in the interval $[0, T]$ according to the formula

$$
\begin{equation*}
R(T)=V(T)-V(0)+C . \tag{4}
\end{equation*}
$$

Portfolio returns are commonly "annualized" by dividing the return $R(T)$ by the time T expressed in fraction of years (e.g., $T=6$ months $=1 / 2$ years).
Consider now a portfolio that consists of one long position on an asset \mathcal{U} in the interval $[t, t+h]$ and assume that the asset pays non dividend in this time interval. The annualized rate of return of this portfolio is given by

$$
R_{h}(t)=\frac{\Pi^{\mathcal{U}}(t+h)-\Pi^{\mathcal{U}}(t)}{h \Pi^{\mathcal{U}}(t)}
$$

and is also called simply compounded rate of return of \mathcal{U}. In the limit $h \rightarrow 0^{+}$we obtain the continuously compounded (or instantaneous) rate of return of the asset:

$$
r(t)=\lim _{h \rightarrow 0^{+}} R_{h}(t)=\frac{d \log \Pi^{\mathcal{U}}(t)}{d t}
$$

where we assume that the price of \mathcal{U} is differentiable in time.
Asset returns are often computed using the logarithm of the price rather than the price itself. For instance the quantity ${ }^{11}$

$$
\widehat{R}_{h}(t)=\log \Pi^{\mathcal{U}}(t+h)-\log \Pi^{\mathcal{U}}(t)=\log \left(\frac{\Pi^{\mathcal{U}}(t+h)}{\Pi^{\mathcal{U}}(t)}\right)
$$

is called log-return of the asset \mathcal{U} in the interval $[t, t+h]$. The use of the log-price is convenient in some computations because $\Pi^{\mathcal{U}}(t)>0$, while $\log \Pi^{\mathcal{U}}(t) \in \mathbb{R}$, i.e., the boundary at zero of the asset price is removed when the log-price is employed. As $\widehat{R}_{h}(t) / h$ and $R_{h}(t)$ have the same limit when $h \rightarrow 0^{+}$, namely

$$
\lim _{h \rightarrow 0^{+}} \frac{1}{h} \widehat{R}_{h}(t)=\lim _{h \rightarrow+} \frac{\log \Pi^{\mathcal{U}}(t+h)-\log \Pi^{\mathcal{U}}(t)}{h}=\frac{d \log \Pi^{\mathcal{U}}(t)}{d t}=r(t),
$$

then $r(t)$ is also called instantaneous log-return of the asset. Note carefully that in general $\widehat{R}_{h}(t), R_{h}(t)$ and $r(t)$ are not known at time t, because they depend on the future value of the asset \mathcal{U}; an exception to this are money market assets described below.

Historical volatility

The historical volatility of an asset measures the amplitude of the time fluctuations of the asset price, thereby giving information on its level of uncertainty. It is computed as the standard deviation of the log-returns of the asset based on historical data. More precisely, let $\left[t_{0}, t\right]$ be some interval of time in the past, with t denoting possibly the present time, and let $T=t-t_{0}>0$ be the length of this interval. Let us divide $\left[t_{0}, t\right]$ into n equally long periods, say

$$
t_{0}<t_{1}<t_{2}<\cdots<t_{n}=t, \quad t_{i}-t_{i-1}=h, \quad \text { for all } i=1, \ldots, n .
$$

The set of points $\left\{t_{0}, t_{1}, \ldots t_{n}\right\}$ is called a partition of the interval $\left[t_{0}, t\right]$. Assume for instance that the asset is a stock. Denote the log-return of the stock price in the interval $\left[t_{i-1}, t_{i}\right]$ as

$$
\begin{equation*}
\widehat{R}_{i}=\log S\left(t_{i}\right)-\log S\left(t_{i-1}\right)=\log \left(\frac{S\left(t_{i}\right)}{S\left(t_{i-1}\right)}\right), \quad i=1, \ldots n \tag{5}
\end{equation*}
$$

The average of the log-returns is

$$
\begin{equation*}
\widehat{R}(t)=\frac{1}{n} \sum_{i=1}^{n} \widehat{R}_{i}=\frac{1}{n} \log \left(\frac{S(t)}{S\left(t_{0}\right)}\right) . \tag{6}
\end{equation*}
$$

[^0]The T-historical mean of log-return of the stock is obtained by "annualizing" the average of log-returns, i.e., by dividing $\widehat{R}(t)$ by the length h of the interval in which the log returns are computed:

$$
\begin{equation*}
\alpha_{T}(t)=\frac{1}{n h} \log \left(\frac{S(t)}{S\left(t_{0}\right)}\right)=\frac{1}{T} \log \left(\frac{S(t)}{S\left(t_{0}\right)}\right) \quad \text { (T-historical mean of log-return). } \tag{7}
\end{equation*}
$$

The (corrected) sample variance of the log-returns is

$$
\Delta(t)=\frac{1}{n-1} \sum_{i=1}^{n}\left(\widehat{R}_{i}-\widehat{R}(t)\right)^{2}
$$

The T-historical variance of the stock is obtained by "annualizing" $\Delta(t)$, i.e.,

$$
\begin{equation*}
\sigma_{T}^{2}(t)=\frac{1}{h} \frac{1}{n-1} \sum_{i=1}^{n}\left(\widehat{R}_{i}-\widehat{R}(t)\right)^{2} \quad(T \text {-historical variance }) \tag{8}
\end{equation*}
$$

The square root of the T-historical variance is the T-historical volatility of the stock:

$$
\begin{equation*}
\sigma_{T}(t)=\frac{1}{\sqrt{h}} \sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(\widehat{R}_{i}-\widehat{R}(t)\right)^{2}} \quad(T \text {-historical volatility }) \tag{9}
\end{equation*}
$$

Note carefully that the historical volatility of the stock depends on the partition being used to compute it.
Suppose for example that $t-t_{0}=T=20$ days, which is quite common in the applications, and let t_{1}, \ldots, t_{20} be the market closing times at these days. Let $h=1$ day $=1 / 365$ years. Then

$$
\sigma_{20}(t)=\sqrt{365} \sqrt{\frac{1}{19} \sum_{i=1}^{n}\left(\widehat{R}_{i}-\widehat{R}(t)\right)^{2}}
$$

is called the 20days-historical volatility. We remark that $h=1 / 252$ is also commonly used as normalization factor, since there are 252 trading days in one year (markets are closed in the week-end). As a way of example, Figure 1 shows the 20days-volatility of four stocks in the Stockholm exchange market from January $1^{\text {st }}, 2014$ until May $2^{\text {nd }}, 2014$ (88 trading days). Note that in a few cases the historical volatility remains approximately constant within periods of about 20 days.

Exercise 2 (Matlab). Write a Matlab function TwentyDaysAlphaSigma(data) which computes the 20days-historical mean of log-return and volatility of a stock. Here data is a 20-dimensional column (or row) vector containing the closing market price of the stock on 20 successive days.

Assets correlation

Consider again a uniform partition $\left\{t_{0}, \ldots, t_{n}=t\right\}$ of the past interval $\left[t_{0}, t\right]$ with length $T=t-t_{0}$. Let $S^{(1)}(t), S^{(2)}(t)$ be the prices of two stocks. Let $\widehat{R}_{i}^{(1)}, \widehat{R}_{i}^{(2)}$ be the log-returns of each stock in the interval $\left[t_{i-1}, t_{i}\right]$ and $R^{(1)}, R^{(2)}$ be the averages of log-returns. The T-historical correlation of log-returns is computed with the formula

$$
\begin{equation*}
\rho_{T}(t)=\frac{\sum_{i=1}^{n}\left(\widehat{R}_{i}^{(1)}-\widehat{R}^{(1)}\right)\left(\widehat{R}_{i}^{(2)}-\widehat{R}^{(2)}\right)}{\sqrt{\sum_{i=1}^{n}\left(\widehat{R}_{i}^{(1)}-\widehat{R}^{(1)}\right)^{2} \sum_{i=1}^{n}\left(\widehat{R}_{i}^{(2)}-\widehat{R}^{(2)}\right)^{2}}} . \tag{10}
\end{equation*}
$$

Denoting a_{1}, a_{2} the n-dimensional vectors $a_{j}=\left(\widehat{R}_{1}^{(j)}-\widehat{R}^{(j)}, \widehat{R}_{2}^{(j)}-\widehat{R}^{(j)}, \ldots, \widehat{R}_{n}^{(j)}-\widehat{R}^{(j)}\right)$, $j=1,2$, we can rewrite $\rho_{T}(t)$ as

$$
\rho_{T}(t)=\frac{a_{1} \cdot a_{2}}{\left|a_{1}\right|\left|a_{2}\right|}=\cos \theta
$$

where \cdot denotes the inner product of vectors, $\left|a_{j}\right|$ is the norm of the vector a_{j} and $\theta \in[0, \pi]$ is the angle between a_{1} and a_{2}. Hence $\rho_{T}(t) \in[-1,1]$ and the closer is $\rho_{T}(t)$ to 1 (resp. -1) the more the stock prices have tendency to move in the same (resp. opposite) direction.

Exercise 3 (Matlab). Write a Matlab function that computes the 20days-historical correlation of two stocks.

Financial derivatives. Options

A financial derivative (or derivative security) is an asset whose value depends on the performance of one (or more) other asset(s), which is called the underlying asset. There exist several types of financial derivatives, the most common being options, futures, forwards and swaps. In this section we discuss option derivatives on a single asset, which could be for instance a stock ${ }^{2}$.

A call option is a contract between two parties: the buyer, or owner, of the call and the seller, or writer, of the call. The contract gives the owner the right, but not the obligation, to buy the underlying asset for a given price, which is fixed at the time when the contract is stipulated, and which is called strike price of the call. If the buyer can exercise this right only at some given time T in the future then the call option is called European, while if the option can be exercised at any time earlier than or equal to T, then the option is called American. The time T is called maturity time, or expiration date of the call. The writer of the call is obliged to sell the asset to the buyer if the latter decides to exercise the option. If the option to buy in the definition of a call is replaced by the option to sell, then the option is called a put option.

[^1]

Figure 1: 20-days volatility of 4 stocks in the Stockholm exchange market on May $2^{\text {nd }}, 2014$. The caption in each graph shows the ticker of the stock.

In exchange for the option, the buyer must pay a premium to the seller (options are not free). Suppose that the option is a European option with strike price K and maturity time T. Assume that the underlying asset is a stock with price $S(t)$ at time $t \leq T$ and let Π_{0} be the premium paid by the buyer to the seller. In which case is it then convenient for the buyer to exercise the option at maturity? Let us define the pay-off of the European call as

$$
Y_{\text {call }}=(S(T)-K)_{+}:=\max (0, S(T)-K)= \begin{cases}0 & \text { if } S(T) \leq K \\ S(T)-K & \text { if } S(T)>K\end{cases}
$$

Similarly, we define the pay-off of the European put by

$$
Y_{\mathrm{put}}=(K-S(T))_{+}=\left\{\begin{array}{ll}
0 & \text { if } S(T) \geq K \\
K-S(T) & \text { if } S(T)<K
\end{array} .\right.
$$

Clearly, the buyer should exercise the call option at maturity if and only if $Y_{\text {call }}>0$, as in this case it is cheaper to buy the stock at the strike price rather than at the market price. Similarly the owner of the put should exercise if and only if $Y_{\text {put }}>0$, as in this case the

Figure 2: The call option with strike $K=200$ and maturity T is in the money in the upper region and out of the money in the lower region. The put option with the same parameters is in the money in the lower region and out of the money in the upper region.
income generated by selling the stock at the strike price is higher then the income generated by selling it at the market price. Hence the call or put option must be exercised at maturity if and only if the pay-off is positive, in which case the option is said to expire in the money. The return for the owner of the option is given by $N\left(Y_{\text {call }}-\Pi_{0}\right)$ in the case of the call and by $N\left(Y_{\text {put }}-\Pi_{0}\right)$ in the case of the put, where N is the number of option contracts in the buyer portfolio. Note carefully that the buyer makes a profit only if the pay-off is greater than the premium. One of the main problems in options pricing theory is to define a reasonable fair value for the price Π_{0} of options (and other derivatives).
Let us introduce some further terminology. The European call (resp. put) with strike K is said to be in the money at time t if $S(t)>K$ (resp. $S(t)<K)$. The call (resp. put) is said to be out of the money at time t if $S(t)<K$ (resp. $S(t)>K$). If $S(t)=K$, the (call or put) option is said to be at the money at time t. The meaning of this terminology is self-explanatory, see Figure 2 .
The pay-off of the American call exercised at time t is $Y(t)=(S(t)-K)_{+}$, while for the American put we have $Y(t)=(K-S(t))_{+}$. The quantity $Y(t)$ is also called intrinsic value of the American option. In particular, the intrinsic value of an out-of-the-money American option is zero.

Exercise 4 (?). What is the new major factor of risk in trading on stock options as compared to trading on stocks?

Option markets

Option markets are relatively new compared to stock markets. The first one has been established in Chicago in 1974 (the Chicago Board Options Exchange, CBOE). Market options are available on different assets (stocks, debts, indexes, etc.) and with different strikes and maturities. Most commonly, market options are of American style.
Clearly, the deeper in the money is the option, the higher will be its price in the market, while the price of an option deeply out of the money is usually quite low (but never zero!). It is also clear that the buyer of the option is the party holding the long position on the option, since the buyer owns the option and thus hopes for an increase of its value, while the writer is the holder of the short position.

One reason why investors buy call options is to protect a short position on the underlying asset. Suppose for instance that an investor short-sells 100 shares of a stock at time $t=0$ for the price $S(0)$. A cautious investor will also buy 100 shares of the American call option on the stock with strike $K \approx S(0)$ and maturity $T>0$. If at some time $t_{0} \in(0, T)$ the price of the stock is no lower than $S(0)$ the investor has the option to exercise the call and thus obtain 100 shares of the stock for the price $K \approx S(0)$. In this way the investor will be able to close the short position on the stock with minimal losses. At the same fashion, investors buy put options to protect a long position on the underlying asset ${ }^{3}$.
Of course, speculation is also an important factor in option markets. However the standard theory of options pricing is firmly based on the interpretation of options as derivative securities and does not take speculation into account.

European, American and Asian derivatives

By far the majority of financial derivatives, including options other than simple calls and puts, are traded OTC. In this section we discuss a few examples, but first it is convenient to introduce a precise mathematical definition of European and American derivatives.
Given a function $g:(0, \infty) \rightarrow \mathbb{R}$, the standard ${ }^{4}$ European derivative with pay-off $Y=$ $g(S(T))$ and maturity time $T>0$ is the contract that pays to its owner the amount Y at time $T>0$. Here $S(T)$ is the price of the underlying stock at time T, while g is the pay-off function of the derivative (e.g., $g(x)=(x-K)_{+}$for European call options, while $g(x)=(K-x)_{+}$for European put options). Hence, the pay-off of standard European derivatives depends only on the price of the stock at maturity and not on the earlier history of the stock price. An important example of standard European derivative (other than call

[^2]and put options) is the digital option. Denote by $H(x)$ the Heaviside function,
\[

H(x)= $$
\begin{cases}1, & \text { for } x>0 \tag{11}\\ 0, & \text { for } x \leq 0\end{cases}
$$
\]

and let $K, L>0$ be constants expressed in units of some currency (e.g., dollars). The standard European derivative with pay-off function $g(x)=L H(x-K)$ is called cash-settled digital call option; this derivative pays the amount L if $S(T)>K$, and nothing otherwise. The physically-settled digital call option has the pay-off function $g(x)=x H(x-K)$, which means that at maturity the buyer receives either the stock (when $S(T)>K$), or nothing. Digital options are also called binary options. Figure 3 shows the graph of the pay-off function for call, put and digital call options with strike $K=10$.

Figure 3: Pay-off function (continuous line) and return (dashed line) of some standard European derivatives.

If the pay-off depends on the history of the stock price during the interval $[0, T]$, and not just on $S(T)$, we shall say that the contract is a non-standard European derivative. An example of non-standard European derivative is the so-called Asian call option, the pay-off of which is given by $Y=\left(\frac{1}{T} \int_{0}^{T} S(t) d t-K\right)_{+}$.
The value at time t of the European derivative with pay-off Y and expiration date T will be denoted by $\Pi_{Y}(t)$ (we do not include the expiration date in our notation).

The term "European" refers to the fact that the contract cannot be exercised before time T. For a standard American derivative the buyer can exercise the contract at any time $t \in(0, T]$ and so doing the buyer will receive the amount $Y(t)=g(S(t))$, where g is the payoff function of the American derivative. Non-standard American derivatives can be defined similarly to the European ones, but with the further option of earlier exercise. The price at time t of the American derivative with intrinsic value $Y(t)$ and maturity T will be denoted $\widehat{\Pi}_{Y}(t)$.

Exercise 5. Look for the definition of the following options: Bermuda option, Compound option, Lookback option, Barrier option, Chooser option. Classify them as American/European, standard/non-standard and write down their pay-off function.

Money market

The money market is a component of the debt market consisting of short term loans, i.e., loan contracts with maturity between one day and one year. Examples of money market assets are treasury bills, commercial papers, certificates of deposit, saving accounts and repurchase agreements (repo). In contrast to stock and option markets, money markets are typically accessible only by financial institutions and not by private investors.

The value at time t of a generic asset in the money market will be denoted by $B(t)$. The difference $B\left(t_{2}\right)-B\left(t_{1}\right), t_{1}<t_{2}$, determines the interest rate of the asset in the interval [t_{1}, t_{2}]. In particular, let $\left\{t_{0}=0, t_{1}, \ldots, t_{N}=t\right\}$ be a uniform partition of the interval $[0, t]$ with size $h=t_{i}-t_{i-1}$. The money market asset is said to have simply compounded interest rate $R_{h}(s)$ in the time period $[s, s+h]$, where $s \in\left\{t_{0}, \ldots, t_{N-1}\right\}$, if the value of the asset satisfies

$$
\begin{equation*}
B(s+h)=B(s)\left(1+R_{h}(s) h\right), \quad s \in\left\{t_{0}, \ldots, t_{N-1}\right\} . \tag{12}
\end{equation*}
$$

Inverting (12) we have

$$
\begin{equation*}
R_{h}(s)=\frac{B(s+h)-B(s)}{h B(s)}, \tag{13}
\end{equation*}
$$

i.e., $R_{h}(s)$ is the annualized rate of return of the asset in the interval $[s, s+h]$. Note carefully that $R_{h}(s)$ is known at time s (as opposed for instance to the return stocks in the interval $[s, s+h]$, which is not known at time s). Moreover iterating (12) we can express the value at time $t=t_{N}$ of the risk-free asset in terms of the value at time $t=0$ by the formula

$$
\begin{align*}
B(t) & =B\left(t_{N-1}\right)\left(1+R_{h}\left(t_{N-1}\right) h\right)=B\left(t_{N-2}\right)\left(1+R_{h}\left(t_{N-2}\right) h\right)\left(1+R_{h}\left(t_{N-1}\right) h\right) \\
& =\cdots=B(0) \prod_{i=0}^{N-1}\left(1+R_{h}\left(t_{i}\right) h\right) . \tag{14}
\end{align*}
$$

Example. Suppose an investor is borrowing $B(0)=1000000 \mathrm{Kr}$ for one year with 3months compounded interest rate, i.e., $h=1 / 4$. Suppose $R_{h}\left(t_{0}\right)=0.03$ in the first quarter,
$R_{h}\left(t_{1}\right)=0.02$ in the second quarter, $R_{h}\left(t_{2}\right)=0.01$ in the third quarter and $R_{h}\left(t_{3}\right)=0.04$ in the last quarter. Here $t_{0}=0, t_{1}=1 / 4, t_{2}=1 / 2, t_{3}=3 / 4$. The debt of the investor at time $t_{4}=1$ year is

$$
B\left(t_{4}\right)=B\left(t_{0}\right)\left(1+\frac{1}{4} R_{h}\left(t_{0}\right)\right)\left(1+\frac{1}{4} R_{h}\left(t_{1}\right)\right)\left(1+\frac{1}{4} R_{h}\left(t_{2}\right)\right)\left(1+\frac{1}{4} R_{h}\left(t_{3}\right)\right) \approx 1025220 \mathrm{Kr}
$$

If the investor borrows instead at the yearly compounded rate $R_{h}=0.03$ (i.e., $h=1$), the debt after 1 year is $B\left(t_{4}\right)=B\left(t_{0}\right)\left(1+R_{h}\right)=1030000 \mathrm{Kr}$. Of course at time $t=0$ the investor does not know the values of $R\left(t_{1}\right), R\left(t_{2}\right), R\left(t_{3}\right)$ and thus cannot anticipate whether it is more convenient to borrow at variable or constant interest rate. Investors may use financial instruments such as interest rate swaps or interest rate caps/floors to hedge against the risk derived from the fluctuations of interest rates in the market.

Letting $h \rightarrow 0$ in (13) we obtain the continuously compounded interest rate (or short rate) $r(t)$ of the money market asset, namely

$$
\begin{equation*}
R_{h}(s) \rightarrow r(s)=\frac{B^{\prime}(s)}{B(s)}=\frac{d}{d s} \log B(s), \quad \text { as } h \rightarrow 0 \tag{15}
\end{equation*}
$$

Thus $r(t)$ is the interest rate to borrow at time t for an "infinitesimal" interval of time, which in the real world corresponds to overnight loans. Integrating (15) on $[t, t+h]$ we find

$$
\begin{equation*}
B(t+h)=B(t) e^{\int_{t}^{t+h} r(s) d s} \tag{16}
\end{equation*}
$$

which is the continuum analog of (12). Integrating (15) in the time interval $[0, t]$ we obtain the continuum analog of (14), namely

$$
\begin{equation*}
B(t)=B(0) \exp \left(\int_{0}^{t} r(s) d s\right) \tag{17}
\end{equation*}
$$

Thus simply compounded and continuously compounded rates differ by how frequently the interest rate is compounded. In the simple case the interest rate is compounded over finite time intervals, while in the continuous case the interest rate is compounded instantaneously. Note that, since $r(t)$ and h are small, then $e^{\int_{t}^{t+h} r(s) d s} \approx e^{r(t) h} \approx 1+r(t) h$ and thus, comparing (12) and (16), we have $r(t) \approx R(t)$.

Frictionless markets

As all mathematical models, also those in financial mathematics are based on a number of assumptions. Some of these assumptions are introduced only with the purpose of simplifying the analysis of the models and often correspond to facts that do not occur in reality. Among these "simplifying" assumptions we impose that

1. There is no bid/ask spread ${ }^{5}$
2. There are no transaction costs and trades occur instantaneously
3. An investor can trade any fraction of shares
4. When a stock pays a dividend, the ex-dividend date and the payment date are the same and the stock price at this date drops by the exact same amount paid by the dividend

We have seen in the previous sections that real markets do not satisfy exactly these assumptions, although in some case they do it with reasonable approximation. For instance, if the investor is a professional agent managing large portfolios then the above assumptions reflect reality quite well. However they work very badly for private investors. We summarize the validity of these assumptions by saying that the market has no friction. The idea is that, when the above assumptions hold, trading proceeds "smoothly without resistance".

In a frictionless market we may define the portfolio process of an agent who is investing on N assets during the time interval $[0, T]$ as a function

$$
\mathcal{A}:[0, T] \rightarrow \mathbb{R}^{N}, \quad \mathcal{A}(t)=\left(a_{1}(t), \ldots, a_{N}(t)\right)
$$

i.e., by assumptions 2 and 3, the number of shares $a_{i}(t)$ of each single asset at time t is now allowed to be any real number and to change at any arbitrary time in the interval $[0, T]$; of course, in real market applications $a_{1}(t), \ldots, a_{N}(t)$ must be rounded to integer numbers. Portfolio processes can be added using the linear structure in \mathbb{R}^{N}, namely if $\mathcal{B}=\left(b_{1}(t), \ldots, b_{N}(t)\right)$, and $\alpha, \beta \in \mathbb{R}$, then $\alpha \mathcal{A}+\beta \mathcal{B}$ is the portfolio process

$$
\alpha \mathcal{A}+\beta \mathcal{B}=\left(\alpha a_{1}(t)+\beta b_{1}(t), \ldots, \alpha a_{N}(t)+\beta b_{N}(t)\right) .
$$

The value at time t of the portfolio process \mathcal{A} is

$$
V_{\mathcal{A}}(t)=\sum_{i=1}^{N} a_{i}(t) \Pi^{\mathcal{U}_{i}}(t),
$$

and clearly

$$
V_{\alpha \mathcal{A}}(t)+V_{\beta \mathcal{B}}(t)=V_{\alpha \mathcal{A}+\beta \mathcal{B}}(t) .
$$

Moreover, thanks to assumption 3, perfect self-financing portfolio processes in frictionless markets always exist.

[^3]
Existence of risk-free assets

An asset \mathcal{U} is said to be risk-free in the interval $[t, T]$ if the value of \mathcal{U} at time T is known at time t. For instance the value of a money market asset at time $t+h$, where h varies between 1 day and 1 year, is given by $B(t+h)=B(t)\left(1+R_{h}(t) h\right)$, see (12), and thus it is known at time t. Hence, provided the borrower party bears no risk of default, money market assets are risk-free in the interval $[t, t+h]$. Of course in the real world it is impossible to exclude with certainty the default of a financial institution, but this event can be sometimes considered very unlikely within a reasonably short time period in the future. For instance, while there is no general consensus on this, many investors believe that the US treasure bills are actual risk-free assets. In this course we make the following assumption.

There exist risk-free assets in the money market.

In a frictionless market the interest rate of all risk-free assets in the money market must necessarily be the same, otherwise one would generate a profit by borrowing at the lower rate and lending at the higher rate (this is an example of arbitrage opportunity, see below). The (hypothetical) common short rate of all risk-free assets in the money market will be referred to as the risk-free rate. Which market parameter represents a realistic estimate for the value of the risk-free rate is an important and constantly debated issue in finance. A popular choice is the yield of domestic treasure bills. Another frequent choice is to identify the risk-free rate with an interbank offered rate, such as LIBOR, or EURIBOR, etc., i.e., the average interest rate at which banks in a given geographical zone lend money to one another. An alternative approach is to interpret the risk-free rate as an implied parameter, i.e., a parameter whose value is determined by calibrating a mathematical model for the market dynamics.

Arbitrage-free principle and fair price of assets

Let t be the present time and $T>t$. A portfolio process \mathcal{A} is called an arbitrage in the interval $[t, T]$ if
(a) $V_{\mathcal{A}}(t)=0$;
(b) It is known at time t that the return of \mathcal{A} is positive in the interval $[t, T]$.

Hence an arbitrage portfolio is an investment strategy that requires no initial wealth and which ensures a positive profit without taking any risk. Despite appearing "too good to be true", arbitrage opportunities do actually exist in real markets, but only for a very short time, as they are quickly exploited and "traded away" by investors. In this course we neglect arbitrage opportunities altogether by imposing the arbitrage-free principle:

[^4]\[

$$
\begin{aligned}
& \text { Asset prices are such that no arbitrage can } \\
& \text { be found in the market. }
\end{aligned}
$$
\]

Prices of assets in the market are said to be fair if they agree with the arbitrage-free principle, i.e., if one cannot set up an arbitrage portfolio by investing on these assets.

References

[1] S. Calogero: A first course on options pricing theory. Lecture notes for the course "Options and Mathematics" at Chalmers. Available on the course homepage.

[^0]: ${ }^{1}$ Throughout this text, $\log x$ stands for the natural logarithm of $x>0$, which is also frequently denoted by $\ln x$ in the literature.

[^1]: ${ }^{2}$ Options are available on many different types of assets, including currencies, market indexes, bonds, commodities, etc.

[^2]: ${ }^{3} \mathrm{~A}$ trading position that is not covered by a suitable security is said to be naked.
 ${ }^{4}$ The terminology "standard" and "non-standard" derivative is used in this text for easy reference. It is not employed in the financial world.

[^3]: ${ }^{5}$ In particular, any offer to buy/sell an asset is matched by an offer to sell/buy the asset, provided of course the price is fair.

[^4]: ${ }^{6}$ Investors who try to make profits by exploiting arbitrage opportunities in the market are called arbitragers.

