
Basic Stochastic Processes:
Financial applications

Lecture 1 (26 November 2020)

Finite probability theory

Let Ω = {ω1, . . . , ωm} be a sample space containing m elements.

Let p = (p1, . . . , pm) be a probability vector, i.e.,

0 < pi < 1, for all i = 1, . . . ,m, and
m∑
i=1

pi = 1.

We define pi = P({ωi}) to be the probability of the event {ωi}.

If A ⊆ Ω is a non-empty event, we define the probability of A as

P(A) =
∑
i:ωi∈A

pi =
∑
ω∈A

P({ω}).

Moreover P(∅) = 0. The pair (Ω,P) is called a finite probability space.
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Example

For example, given p ∈ (0, 1), the probability space

ΩN = {H,T}N , Pp({ω}) = pNH(ω)(1− p)NT (ω)

is called the N-coin toss probability space. Here NH(ω) is the number of
Heads in the toss ω ∈ ΩN and NT (ω) = N −NH(ω) is the number of Tails.
In this probability space, tosses are independent and each toss has the same
probability p to result in a head.

A random variable is a function X : Ω → R. Y is said to be X-
measurable if there exists a function g such that Y = g(X).

Two random variables X, Y are independent if P(X ∈ I, Y ∈ J) = P(X ∈
I)P(Y ∈ J) for every I ⊆ Im(X) and J ⊆ Im(Y ), where Im(X) = {y ∈ R :
y = X(ω) for some ω ∈ Ω} is the image of X.

The function

fX(x) = P(X = x),

is called the probability density function (or probability mass function)
of X. Clearly fX(x) = 0 if x /∈ Im(X).

The expectation of X is denoted by E[X]; it is given by

E[X] =
∑
ω∈Ω

X(ω)P({ω}) =
∑

x∈Im(X)

xfX(x)
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Theorem 0.1 Let X, Y be random variables, g : R → R, α, β ∈ R. The
following holds:

1. E[αX + βY ] = αE[X] + βE[Y ] (linearity).

2. If X ≥ 0 and E[X] = 0, then X = 0.

3. If X, Y are independent then E[XY ] = E[X]E[Y ].

4. If Y = g(X), i.e., if Y is X-measurable, then

E[g(X)] =
∑

x∈Im(X)

g(x)fX(x). (1)

The quantity

Var[X] = E[(X − E[X])2] = E[X2]− E[X]2

is called variance of the random variable X. The quantity

Cov[X, Y ] = E[(X − E[X])(Y − E[Y ]) = E[XY ]− E[X]E[Y ]

is called covariance of the random variables X, Y .

If Var[X],Var[Y ] are both positive (i.e., if X, Y are not deterministic con-
stants), the quantity

Corr[X, Y ] =
Cov[X,Y]√

Var[X]Var[Y ]
∈ [−1, 1]

is called correlation of X, Y . If Corr[X, Y ] = 0, the random variables X, Y
are said to be uncorrelated.

It follows by Theorem 0.1(3) that X, Y independent ⇒ X, Y uncorrelated
(while the opposite is in general not true).
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The conditional expectation of X given Y is denoted by E[X|Y ]:

E[X|Y ](ω) =
∑

x∈Im(X)

P(X = x|Y = Y (ω))x,

where P(A|B) = P(B)−1P(A ∩B) is the conditional probability of the event
A given the event B.

The conditional expectation is a Y -measurable random variable and satisfies
the following properties.

Theorem 0.2

Let X, Y, Z : Ω→ R be random variables and α, β ∈ R. Then

1. E[αX + βY |Z] = αE[X|Z] + βE[Y |Z] (linearity).

2. If X is independent of Y , then E[X|Y ] = E[X].

3. If X is Y -measurable, then E[X|Y ] = X.

4. E[E[X|Y ]] = E[X].

5. If X is Z-measurable, then E[XY |Z] = XE[Y |Z].

6. If Z is Y -measurable then E[E[X|Y ]|Z] = E[X|Z].

These properties remain true if the conditional expectation is taken with
respect to several random variables.
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A discrete stochastic process is a (possibly finite) sequence {X0, X1, . . . } =
{Xn}n∈N of random variables. We refer to the index n in Xn as time step.

If the discrete stochastic process is finite, i.e., if it runs only for a finite
number N ≥ 1 of time steps, we shall denote it by {Xn}n=0,...,N and call it a
N-period process.

At each time step, a discrete stochastic process on a finite probability space
is a random variable with finitely many possible values. More precisely, for
all n = 0, 1, 2, . . . , the value xn of Xn satisfies xn ∈ Im(Xn). We call xn an
admissible state of the stochastic process. Note that xn is an admissible
state if and only if P(Xn = xn) > 0.

A stochastic process {Yn}n∈N is said to be measurable with respect to
{Xn}n∈N if for all n ∈ N there exists a function gn : Rn+1 → R such that
Yn = gn(X0, X2, . . . , Xn).

If Yn = hn(X0, . . . , Xn−1) for some function hn : Rn → R, n ≥ 1, then
{Yn}n∈N is said to be predictable from the process {Xn}n∈N.

A discrete stochastic process {Xn}n∈N on the finite probability space (Ω,P)
is called a martingale if

E[Xn+1|X1, X2, . . . Xn] = Xn, for all n ∈ N.

Martingales have constant expectation, i.e., E[Xn] = E[X0], for all n ∈ N.
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A discrete stochastic process {Xn}n∈N on the finite probability space (Ω,P)
is called a Markov chain if it satisfies the Markov property:

P(Xn+1 = xn+1|Xn = xn) = P(Xn+1 = xn+1|X1 = x1, X2 = x2, . . . , Xn = xn),

for all n ∈ N and for all admissible states x0 ∈ Im(X0), . . . , xn+1 ∈ Im(Xn+1)
such that P(X0 = x0, X1 = x1, . . . Xn = xn) is positive.

The left hand side is called the transition probability from the state xn
to the state xn+1 and is denoted also as P(xn → xn+1).

If P(xn → xn+1) is independent of n = 1, 2, . . . , the Markov process is said
to be time homogeneous.

Important remark:

The Markov property and the martingale property depend on the probability
measure, i.e., a stochastic process can be a martingale and/or a Markov

process in one probability P and neither of them in another probability P̃.
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Example: Random Walk.

Consider the following stochastic process {Xn}n=1,...,N defined on the N -coin
toss probability space (ΩN ,Pp):

ω = (γ1, . . . , γN) ∈ ΩN , Xn(ω) =

{
1 if γn = H
−1 if γn = T

.

The random variablesX1, . . . , XN are independent and identically distributed
(i.i.d), namely

Pp(Xn = 1) = p, Pp(Xn = −1) = 1− p, for all n = 1, . . . , N.

Hence

E[Xn] = 2p− 1, Var[Xn] = 4p(1− p), for all n = 1, . . . , N .

Now, for n = 1, . . . , N , let

M0 = 0, Mn =
n∑
i=1

Xi.

The stochastic process {Mn}n=0,...,N is measurable (but not predictable) with
respect to the process {Xn}n=1,...,N and is called (N-period) random walk.
It satisfies

E[Mn] = n(2p− 1), for all n = 0, . . . , N.

Moreover, since it is the sum of independent random variables, the random
walk has variance given by
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Var[M0] = 0, Var[Mn] = Var(X1+X2+· · ·+Xn) =
n∑
i=1

Var[Xi] = 4np(1−p).

When p = 1/2, the random walk is said to be symmetric. In this case
{Mn}n=0,...,N satisfies E[Mn] = 0 and Var[Mn] = n, n = 0, . . . , N .

When p 6= 1/2, {Mn}n=0,...,N is called an asymmetric random walk, or a
random walk with drift.

If Mn = k then Mn+1 is either k + 1 (with probability p), or k − 1 (with
probability 1− p). Hence we can represent the paths of the random walk by
using a binomial tree, as in the following example for N = 3:

M3 = 3

M2 = 2

p
77

1−p

''
M1 = 1

p
77

1−p

''

M3 = 1

M0 = 0

p
77

1−p

''

M2 = 0

p
77

1−p

''
M1 = −1

p
77

1−p

''

M3 = −1

M2 = −2

p
77

1−p

''
M3 = −3
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By inspection we see that the admissible states of the symmetric random
walk at the step n are given by

Im(Mn) = {−n,−n+ 2,−n+ 4, . . . , n− 2, n} = {2k − n, k = 0, . . . , n},

where k is the number of times that the random walk “goes up” up to the
step n included.

The density of Mn is given by the binomial probability density function

fMn(x) =

(
n

k

)
pk(1− p)n−kδ(x− (2k − n)), k = 0, . . . , n,

where δ(z) = 1 if z = 0 and δ(z) = 0 otherwise.

Let m0 = 0, m1 ∈ {−1, 1} = Im(M1), . . . , mN ∈ {−N,−N + 2, . . . , N −
2, N} = Im(MN) be the admissible states at each time step. From the
binomial tree of the process it is clear that there exists a path connecting
m0,m1, . . . ,mN if and only if mn = mn−1 ± 1, for all n = 1, . . . , N , and we
have

P(Mn = mn|M1 = m1, . . . ,Mn−1 = mn−1) = P(Mn = mn|Mn−1 = mn−1)

=

{
p if mn = mn−1 + 1
1− p if mn = mn−1 − 1

.

Hence the random walk is an example of time homogeneous Markov chain.
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Next we show that the symmetric random walk is a martingale.

Using the linearity of the conditional expectation we have

E[Mn|M1, . . . ,Mn−1] = E[Mn−1 +Xn|M1, . . . ,Mn−1]

= E[Mn−1|M1, . . . ,Mn−1] + E[Xn|M1, . . . ,Mn−1].

As Mn−1 is measurable with respect to M1, . . . ,Mn−1, then

E[Mn−1|M1, . . . ,Mn−1] = Mn−1,

see Theorem 0.2(3).

As Xn is independent of M1, . . . ,Mn−1, Theorem 0.2(2) gives

E[Xn|M1, . . . ,Mn−1] = E[Xn] = 0.

It follows that E[Mn|M1, . . . ,Mn−1] = Mn−1, i.e., the symmetric random
walk is a martingale.

However the asymmetric random walk (p 6= 1/2) is not a martingale, as it
follows by the fact that its expectation E[Mn] = n(2p− 1) is not constant.
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Generalized random walk.

A random walk may be defined as any discrete stochastic process {Mn}n∈N
which satisfies the following properties:

• Im(Mn) = {−n,−n+ 2,−n+ 4, . . . , n− 2, n}, for all n = 0, 1, . . . ;

• {Mn}n∈N is a time-homogeneous Markov chain;

• There exists p ∈ (0, 1) such that for (mn−1,mn) ∈ Im(Mn−1)×Im(Mn),
the transition probability P(mn−1 → mn) is given by

P(mn−1 → mn) =


p if mn = mn−1 + 1
1− p if mn = mn−1 − 1
0 otherwise

.

We may generalize this definition by relaxing the second and third properties
as follows.

Definition 0.1

A discrete stochastic process {Mn}n∈N on a finite probability space is called
a generalized random walk if it satisfies the following properties:

1. Im(Mn) = {−n,−n+ 2,−n+ 4, . . . , n− 2, n}, for all n = 0, 1, . . . ;

2. {Mn}n∈N is a Markov chain;

3. For all n = 1, 2, . . . there exist pn : Im(Mn−1)→ (0, 1) such that

P(mn−1 → mn) =


pn(mn−1) if mn = mn−1 + 1
1− pn(mn−1) if mn = mn−1 − 1
0 otherwise

.
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The binomial tree of a generalized random walk will be written as in the
following example:

M3 = 3

M2 = 2

p3(2)
77

1−p3(2)

''
M1 = 1

p2(1)
77

1−p2(1)

''

M3 = 1

M0 = 0

p1(0)
77

1−p1(0)

''

M2 = 0

p3(0)
77

1−p3(0)

''
M1 = −1

p2(−1)
77

1−p2(−1)

''

M3 = −1

M2 = −2

p3(−2)
77

1−p3(−2)

''
M3 = −3

Remark

The admissible states of a generalized random walk are precisely the same as
for the standard random walk, but they are now attained with different prob-
abilities. In particular the generalized random walk is no longer binomially
distributed, unless of course pn ≡ p for all n = 1, 2, . . . .

It is clear that any path in the N -period random walk is uniquely identified
by a vector x ∈ {−1, 1}N , i.e., a N -dimensional vector where each component
is either −1 or 1. More precisely, the path of the random walk corresponding
to x ∈ {−1, 1}N it the unique path satisfying M0 = 0 and Mi = Mi−1 + xi,
i = 1, . . . , N .
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Theorem 0.3

Let x ∈ {−1, 1}N and set x0 = 0. The probability P(x) that the generalized
random walk follows the path x is given by

P(x) =
N∏
t=1

[
−min(xt, 0) + xtpt

(
t−1∑
j=0

xj

)]
.

Example

In the 3-period model consider the path x = (−1,−1, 1). Then according to
the previous theorem

P((−1,−1, 1)) = (−min(−1, 0) + (−1)p1(0))(−min(−1, 0) + (−1)p2(0− 1))

× (−min(1, 0) + (1)p2(0− 1− 1)) = (1− p1(0))(1− p2(−1))p2(−2).

That this formula is correct is easily seen in the binomial tree above.
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Review of the binomial model with constant risk-free
rate

Given 0 < p < 1, S0 > 0 and u > d, the binomial stock price at time t is
given by S(0) = S0 and

S(t) =

{
S(t− 1)eu with probability p
S(t− 1)ed with probability 1− p , for t = 1, . . . , N.

For instance, for N = 3 the binomial stock can be represented as in the
following recombining binomial tree:

S(3) = S0e
3u

S(2) = S0e
2u

p
66

1−p

((
S(1) = S0e

u

p
66

1−p

((

S(3) = S0e
2u+d

S(0) = S0

p
66

1−p

((

S(2) = S0e
u+d

p
66

1−p

((
S(1) = S0e

d

p
66

1−p

((

S(3) = S0e
u+2d

S(2) = S0e
2d

p
66

1−p

((
S(3) = S0e

3d
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The possible stock prices at time t belong to the set

Im(S(t)) = {S0e
ku+(t−k)d, k(t) = 0, . . . , t},

where k is the number of times that the price goes up up to and including
time t. It follows that there are t + 1 possible prices at time t and so the
number of nodes in the binomial tree grows linearly in time.

Moreover the stock price is binomially distributed, namely

fS(t)(x) =

(
t

k

)
pk(1− p)t−kδ(x− S0e

ku+(t−k)d), k = 0, . . . , t.

The binomial stock price can be interpreted as a stochastic process defined
on the N -coin toss probability space (ΩN ,Pp). To see this, consider the
following i.i.d. random variables

Xt : ΩN → R, Xt(ω) =

{
1, if the tth toss in ω is H
−1, if the tth toss in ω is T

, t = 1, . . . , N.

We can rewrite the binomial stock price as

S(t) = S(t− 1) exp[(u+ d)/2 + (u− d)Xt/2]

which upon iteration leads to

S(t) = S0 exp

[
t

(
u+ d

2

)
+

(
u− d

2

)
Mt

]
, Mt = X1+· · ·+Xt, t = 1, . . . , N.

Hence S(t) : ΩN → R and therefore {S(t)}t=0,...,N is a N -period stochastic
process on the N -coin toss probability space (ΩN ,Pp).
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In this context, Pp is called physical (or real-world) probability measure,
to distinguish it from the martingale (or risk-neutral) probability introduced
below.

Letting M0 = 0, we have that {Mt}t=0,...,N is a random walk (which is asym-
metric for p 6= 1/2).

It follows that {S(t)}t=0,...,N is measurable, but not predictable, with respect
to {Mt}t=0,...,N .

For each ω ∈ ΩN , the vector (S(0), S(1, ω), . . . , S(N,ω)) is called a path of
the binomial stock price.

Binomial market

A binomial market is a market that consists of one stock with price

S(0) = S0 > 0, S(t) =

{
S(t− 1)eu with probability p
S(t− 1)ed with probability 1− p , for t = 1, . . . , N.

and a risk-free asset with value B(t) at time t = 1, . . . , N .

In the standard binomial model it is assumed that B(t) is a deterministic
function of time with constant interest rate, namely

r = logB(t+ 1)− logB(t), or R =
B(t+ 1)−B(t)

B(t)
.

It follows that the value of the risk-free asset at time t can be written in
either of the two forms

B(t) = B0e
rt, or B(t) = B0(1 +R)t, t = 1, . . . , N, B0 = B(0) > 0.
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Here R is the discretely compounded risk-free rate and r is the con-
tinuously compounded risk-free rate.

The quantity

S∗(t) = e−rtS(t), or equivalently S∗(t) =
S(t)

(1 +R)t
,

is called the discounted price of the stock (at time t = 0).

In the following we denote by Ep the (possibly conditional) expectation in
the probability space (ΩN ,Pp).

Theorem 0.4

If r /∈ (d, u), there is no probability measure Pp on the sample space ΩN

such that the discounted stock price process {S∗(t)}t=0,...,N is a martingale.
For r ∈ (d, u), {S∗(t)}t=0,...,N is a martingale with respect to the probability
measure Pp if and only if p = q, where

q =
er − ed

eu − ed
.

Due to Theorem 0.4, Pq is called martingale probability measure.

Moreover, since martingales have constant expectation, then

Eq[S(t)] = S0e
rt.

Thus in the martingale probability measure one expects the same return on
the stock as on the risk-free asset. For this reason, Pq is also called risk-
neutral probability.
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Self-financing portfolios

A portfolio process in a binomial market is a stochastic process

{(hS(t), hB(t))}t=0,...,N

such that, for t = 1, . . . , N , (hS(t), hB(t)) corresponds to the portfolio po-
sition (number of shares) on the stock and the risk-free asset held in the
interval (t− 1, t].

A positive number of shares corresponds to a long position on the asset, while
a negative number of shares corresponds to a short position.

As portfolio positions held for one instant of time only are meaningless, we
use the convention hS(0) = hS(1), hB(0) = hB(1), that is to say, hS(1), hB(1)
is the portfolio position in the closed interval [0, 1].

We always assume that the portfolio process is predictable from {S(t)}t=0,...,N ,
i.e., there exists functions Ht : (0,∞)t → R2 such that

(hS(t), hB(t)) = Ht(S(0), . . . , S(t− 1)).

Thus the decision on which position the investor should take in the interval
(t− 1, t] depends only on the information available at time t− 1.

The value of the portfolio process is the stochastic process {V (t)}t=0,...,N

given by

V (t) = hB(t)B(t) + hS(t)S(t), t = 0, . . . , N.
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A portfolio process {(hS(t), hB(t))}t=0,...,N is said to be self-financing if

δV (t) = hS(t)δS(t) + hB(t)δB(t), t = 1, . . . , N,

where δf(t) = f(t) − f(t − 1), while it is said to generate the cash flow
C(t− 1) if

δV (t) = hS(t)δS(t) + hB(t)δB(t)− C(t− 1), t = 1, . . . , N.

Note that C(t) > 0 corresponds to cash withdrawn from the portfolio at time
t while C(t) < 0 corresponds to cash added to the portfolio at time t. The
self-financing property means that no cash is ever added or withdrawn from
the portfolio.

Theorem 0.5

Let {(hS(t), hB(t))}t=0,...,N be a self-financing predictable portfolio process
with value {V (t)}t=0,...,N . Then the discounted portfolio value {V ∗(t)}t=0,...,N

is a martingale in the risk-neutral probability measure. Moreover the follow-
ing identity holds:

V ∗(t) = Eq[V ∗(N)|S(0), . . . , S(t)], t = 0, . . . , N.
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Arbitrage portfolios

A portfolio process {(hS(t), hB(t)}t=0,...,N invested in the binomial market is
called an arbitrage portfolio process if it is predictable and if its value
V (t) satisfies

1) V (0) = 0;

2) V (N,ω) ≥ 0, for all ω ∈ ΩN ;

3) There exists ω∗ ∈ ΩN such that V (N,ω∗) > 0.

Theorem 0.6

Assume d < r < u, i.e., assume the existence of a risk-neutral probability
measure for the binomial market. Then the binomial market is free of self-
financing arbitrages.

Proof. Assume that {hS(t), hB(t)}t=0,...,N is a self-financing arbitrage port-
folio process. Then V (0) = V ∗(0) = 0 and since martingales have constant
expectation then Eq[V ∗(t)] = 0, for all t = 0, 1, . . . , N . As V (N) ≥ 0, then
V ∗(N) ≥ 0 and Theorem 0.1(2) entails V ∗(N,ω) = 0 for any sample ω ∈ ΩN .
Hence V (N,ω) = 0, for all ω ∈ ΩN , contradicting the assumption that the
portfolio is an arbitrage.

Important remark: the existence of a risk-neutral probability measure in
not only sufficient but also necessary for the absence of self-financing arbi-
trages in the binomial market. More precisely, if r /∈ (d, u) one can construct
self-financing arbitrage portfolios in the market. Hence the binomial market
is free of self-financing arbitrages if and only if it admits a risk-neutral proba-
bility measure. The latter result is valid for any discrete (or even continuum)
market model and is known as the first fundamental theorem of asset
pricing.
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Risk neutral pricing formula for European derivatives
in the binomial model

Let Y : ΩN → R be a random variable and consider the European-style
derivative with pay-off Y at maturity time T = N . This means that the
derivative can only be exercised at time t = N .

For standard European derivatives Y is a deterministic function of S(N),
i.e.,

Y = g(S(N))

while for non-standard derivatives Y is a deterministic function of S(0), . . . , S(N),
that is

Y = g(S(0), S(1), . . . , S(N))

Examples

• The call option with strike K and maturity N is the standard European
derivative with pay-off

Y = (S(N)−K)+ = max(S(N)−K, 0)

• The Asian call option with strike K and maturity T is the non-standard
European derivative with pay-off

Y =

(
1

N + 1

(
N∑
j=0

S(j)

)
−K

)
+

Let ΠY (t) be the binomial fair price of the derivative a time t.
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By definition, ΠY (t) equals the value V (t) of self-financing, hedging portfo-
lios. In particular, ΠY (t) is a random variable and so {ΠY (t)}t=0,...,N is a
stochastic process.

Using the hedging condition V (N) = Y (which means V (N,ω) = Y (ω), for
all ω ∈ ΩN)) and Theorem 0.5, we have the following formula for the fair
price at time t of the financial derivative:

ΠY (t) = e−r(N−t)Eq[Y |S(0), . . . , S(t)].

which is known as risk-neutral pricing formula. It holds not only for the
binomial model but for any discrete—or even continuum —pricing model for
financial derivatives. It is used for standard as well as non-standard European
derivatives.

For t = 0 the risk-neutral pricing formula becomes

ΠY (0) = e−rNEq[Y ].

Important remark: We may interpret the previous formula as follows: the
current (at time t = 0) fair value of the derivative is our expectation on
the future payment of the derivative (the pay-off) expressed in terms of the
future value of money (discounted pay-off Y ∗ = e−rNY ). The expectation has
to be taken with respect to the martingale probability measure, i.e., ignoring
any (subjective or illegal) estimate on future movements of the stock price
(except for the loss in value due to the time-devaluation of money).
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Example.

Consider a 2-period binomial model with the following parameters

eu =
4

3
, ed =

2

3
, r = 0, p ∈ (0, 1).

Assume further that S0 = 36. Consider the European derivative with pay-off

Y = (S(2)− 28)+ − 2(S(2)− 32)+ + (S(2)− 36)+

and time of maturity T = 2. Using the risk-neutral pricing formula, the fair
value of the derivative at t = 0 is

ΠY (0) = e−2rEq[Y ] = Eq[(S(2)−28)+]−2Eq[(S(2)−32)+]+Eq[(S(2)−36)+].

By the market parameters we find q = 1/2. Hence the distribution of S(2)
in the risk-neutral probability measure is

Pq(S(2) = s) =


1/4 if s = 16 of s = 64
1/2 if s = 32
0 otherwise

.

It follows that

Eq[(S(2)− 28)+] = 11, Eq[(S(2)− 32)+] = 8, Eq[(S(2)− 36)+] = 7,

hence ΠY (0) = 2.
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By definition of expectation in the N -coin toss probability space, the risk-
neutral pricing formula at t = 0 for the standard European derivative with
pay-off Y = g(S(N)) and maturity T = N takes the explicit form

ΠY (0) = e−rN
N∑
k=0

(
N

k

)
qk(1− q)kg(S0e

ku+(N−k)d).

However this formula is not very convenient for numerical computations,
because the binomial coefficient

(
N
k

)
will reach very large values for even a

relative small number of steps (e.g.,
(

50
25

)
is of order 1014). A much more con-

venient way to compute numerically the binomial price of standard European
derivatives is by using the recurrence formula ΠY (N) = Y and

ΠY (t) = e−r(qΠu
Y (t+ 1) + (1− q)Πd

Y (t+ 1)), t = 0, . . . , N − 1,

where Πu
Y (t) is the binomial price of the derivative at time t assuming that

the stock price goes up at time t, i.e.,

Πu
Y (t) = e−r(N−t)Eq[Y |S(0), . . . , S(t− 1), S(t) = S(t− 1)eu]

and similarly one defines Πd
Y (t) by replacing “up” with “down”. The recur-

rence formula above follows immediately by the risk-neutral pricing formula
and the definition of conditional expectation.

Important Remark: It can be shown that any European derivative in
the binomial market can be hedged by a self-financing portfolio invested in
the underlying stock and the risk-free asset. For this reason the binomial
market is called a complete market. In fact, the second fundamental
theorem of asset pricing states that market completeness is equivalent
to the uniqueness of the risk-neutral probability measure. An arbitrage free
market is said to be incomplete if the risk-neutral measure is not unique.
When the market is incomplete the price of European derivatives is not
uniquely defined and moreover there exist European derivatives which cannot
be hedged by self-financing portfolios. An example of incomplete market is
the trinomial model discussed in project 2.
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Implementation of the binomial model

For real world applications the binomial model must be properly rescaled in
time.

Let T > 0 be the maturity of a European derivative and consider the uniform
partition of the interval [0, T ] with size h > 0:

0 = t0 < t1 < · · · < tN = T, ti − ti−1 = h, for all i = 1, . . . , N.

The binomial stock price on the given partition is given by S(0) = S0 > 0
and

S(ti) =

{
S(ti−1)eu, with probability p,
S(ti−1)ed, with probability 1− p, i = 1, . . . , N,

while

B(ti) = B0e
rhi.

The instantaneous mean of log-return and the instantaneous variance
of the binomial stock price are defined respectively by

α =
1

h
Ep[logS(ti)− logS(ti−1)] =

1

h
[pu+ (1− p)d],

σ2 =
1

h
Varp[logS(ti)− logS(ti−1)] =

(u− d)2

h
p(1− p),

while σ itself is called instantaneous volatility.

The parameters α, σ are constant in the standard binomial model and are
computed using the physical probability (and not the risk-neutral probabil-
ity).
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Inverting the equations above we obtain

u = αh+ σ

√
1− p
p

√
h, d = αh− σ

√
p

1− p
√
h.

In the applications of the binomial model it is customary to give the param-
eters α, σ and then compute u, d.

The risk-neutral probability then becomes

q =
erh − eαh−σ

√
p

1−p

√
h

e
αh+σ

√
1−p
p

√
h − eαh−σ

√
p

1−p

√
h
.

The binomial model is trustworthy only for h very small compared to T (i.e.,
N >> 1).

The following Matlab code defines a function

EuroZeroBin(g, T, s, alpha, sigma, r, p, N)

that computes the initial price of the standard European derivative with
pay-off Y = g(S(T )) using the recurrence formula.

The variable s is the initial price S0 of the stock.

The function also checks that q ∈ (0, 1), i.e., that the risk-neutral probability
is well defined (and thus the market is free of self-financing arbitrages). If
not a message appears which asks to increase the number of steps N .
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function Pzero=EuroZeroBin(g,T,s,alpha,sigma,r,p,N)

h=T/N;

u=alpha*h+sigma*sqrt(h)*sqrt((1-p)/p);

d=alpha*h-sigma*sqrt(h)*sqrt(p/(1-p));

qu=(exp(r*h)-exp(d))/(exp(u)-exp(d));

qd=1-qu;

if (qu<0 || qd<0)

display(’Error: the market is not arbitrage free. Increase the

value of N’);

Pzero=0;

return

end

S=zeros(N+1,1);

P=zeros(N+1);

S=s*exp((N-[0:N])*u+[0:N]*d).’;

P(:,N+1)=g(S);

for j=N:-1:1

for i=1:j

P(i,j)=exp(-r*h)*(qu*P(i,j+1)+qd*P(i+1,j+1));

end

end

For instance, upon running the command

Pzero = EuroZeroBin(@(x) max(x− 11, 0), 1/3, 10, 0, 0.5, 0.01, 1/2, 10000)

we get the output
Pzero = 0.7813,

which is the (binomial) price at time t = 0 of a European call with strike
K = 11 and maturity T = 1/3 years (4 months) on a stock which at t = 0 is
priced 10 and which has volatility σ = 0.5 (i.e., 50%) and zero mean of log-
return (α = 0). The (annual) risk free rate is r = 0.01 (i.e., 1%). Moreover
p = 1/2 and N = 10000.

The binomial price of the derivative is very weakly dependent on the param-
eter α ∈ R and p ∈ (0, 1) (provided N is sufficiently large, say N ≈ 10000).
Hence one normally chooses α = 0 and p = 1/2 in the implementation of the
binomial model.
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