
Basic Stochastic Processes:
Financial applications

Lecture 3 (3 December 2020)

Probability theory on uncountable sample spaces

In this lecture we assume that Ω is uncountable (e.g., Ω = R).

In this case there is no general procedure to construct a probability space,
but only an abstract definition.

In particular a probability measure P on events A ⊆ Ω is defined only ax-
iomatically by requiring that 0 ≤ P(A) ≤ 1, P(Ω) = 1 and that, for any
sequence of disjoint events A1, A2, . . . , it should hold

P(A1 ∪ A2 ∪ . . . ) = P(A1) + P(A2) + . . . (∗)

Moreover we do not assume that P is defined for all events A ⊂ Ω.

Denote by F the set of events (i.e., subsets of Ω) which have a well defined
probability satisfying the properties above.
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The minimial conditions required on F is that

(i) F should contain Ω (the “something happens event”),

(ii) the complement of each element A, i.e., A ∈ F ⇒ Ac ∈ F (the “A does
not happen event”)

(iii) F must be closed with respect to caountable union (so that the equation
(*) above makes sense)

A collections of event satisfying the properties (i), (ii), (iii) is called a σ-
algebra (or σ-field).

Example.

Let Ω = R. We say that A ⊆ R is a Borel set if it can be written as the
union (or intersection) of countably many open (or closed) intervals.

Let F be the collection of all Borel sets. Let p : R → R be a continuous
non-negative function such that

∫
R
p(ω) dω = 1.

Then P : F → [0, 1] given by

P(A) =

∫
A

p(ω) dω

defines a probability. If X : R → R is a random variables, the expectation
of X in this probability measure is given by

E[X] =

∫
R
X(ω)p(ω) dx.
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For most applications (and in particular for those in financial mathematics)
the knowledge of the full probability space is not necessary.

More precisely, we are only interested in assigning a probability to events of
the form {X ∈ I}, where X is a random variable on the (abstract) probability
space and I ⊂ R, that is to say, events which can be resolved by one (or more)
random variables.

The probability P(X ∈ I) can be computed explicitly when X has a density.

Definition 0.3

Let fX : R → [0,∞) be a continuous function (except possibly on finitely
many points). A continuum random variable X : Ω → R is said to have
probability density fX if

P(X ∈ A) =

∫
A

fX(x) dx,

for all Borel sets A ⊆ R.

Note that the density fX satisfies

∫
R
fX(x) dx = 1

and the cumulative distribution FX(x) = P(X ≤ x) satisfies

FX(x) =

∫ x

−∞
fX(y) dy, for all x ∈ R, hence fX =

dFX
dx

.
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Example.

A random variable X : Ω→ R is said to be a normal random variable with
mean m ∈ R and variance σ2 > 0 if it admits the density

fX(x) =
1√

2πσ2
exp

(
−|x−m|

2

2σ2

)
.

We denote N (m,σ2) the set of all such random variables.

A variable X ∈ N (0, 1) is called a standard normal random variable.

The cumulative distribution of standard normal random variables is denoted
by Φ(x) and is called the standard normal distribution, i.e.,

Φ(x) =
1√
2π

∫ x

−∞
e−

1
2
y2 dy.

Theorem 0.8

The following holds for all sufficiently regular functions g : R→ R:

(i) Let X : Ω → R be a random variable with density fX . Then for all
Borel sets A ⊆ R,

P(g(X) ∈ A) =

∫
x:g(x)∈A

fX(x) dx.

(ii) Let X : Ω→ R be a random variable with density fX . Then

E[g(X)] =

∫
R
g(y)fX(y) dy.

Moreover the properties 1,2,3 in Theorem 0.1 still hold on uncountable prob-
ability spaces.
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By (ii) in Theorem 0.8, the expectation and the variance of a continuum
random variable X with density fX are given by

E[X] =

∫
R
xfX(x) dx, Var[X] =

∫
R
x2fX(x) dx−

(∫
R
xfX(x) dx

)2

.

In particular normal variables we obtain

X ∈ N (m,σ2) =⇒ E[X] = m, Var[X] = σ2.

Joint probability density

Definition 0.4

Two continuum random variables X, Y : Ω → R are said to have the joint
probability density fX,Y : R2 → [0,∞), if

P(X ∈ A, Y ∈ B) =

∫
A

∫
B

fX,Y (x, y) dx dy,

for all Borel sets A,B ⊆ R.

Note that if fX,Y is a joint probability density, then

∫
R

∫
R
fX,Y (x, y) dx dy = 1.
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Moreover if we define the joint cumulative distribution as FX,Y (x, y) =
P(X ≤ x, Y ≤ y) then

fX,Y (x, y) = ∂x∂yFX,Y (x, y).

When X, Y have the joint density fX,Y (x, y), the random variables X, Y
admit the densities

fX(x) =

∫
R
fX,Y (x, y) dy, fY (y) =

∫
R
fX,Y (x, y) dx.

Example: Jointly normally distributed random variables.

Let m ∈ R2 and C = (Cij)i,j=1,2 be a symmetric, positive definite 2×2
matrix. Two random variablesX1, X2 : Ω→ R are said to be jointly normally
distributed with mean m and covariance matrix C if they admit the joint
density

fX1,X2(x) =
1√

(2π)2 detC
exp

(
−1

2
(x−m)C−1(x−m)

)
, for all x = (x1, x2) ∈ R2.

6



The following theorem generalizes Theorem 0.8 in the presence of two vari-
ables.

Theorem 0.9

Let X, Y : Ω→ R be random variables with joint density fX and g : R2 → R.

(i) For all Borel sets A ⊆ R there holds

P(g(X, Y ) ∈ A) =

∫
(x,y):g(x,y)∈A

fX,Y (x, y) dx dy.

(ii) There holds

E[g(X, Y )] =

∫
R2

g(x, y)fX,Y (x, y) dx dy.

By (ii) of Theorem 0.9, if X1, X2 have the joint density fX1,X2 , then the
covariance of X1, X2 can be computed as

Cov(X1, X2) = E[X1X2]− E[X1]E[X2]

=

∫
R2

x1x2fX1,X2(x1, x2) dx1 dx2

−
∫
R2

x1fX1,X2(x1, x2) dx1 dx2

∫
R2

x2fX1,X2(x1, x2) dx1 dx2.

In particular, if X1, X2 are jointly normal distributed with mean m ∈ R2 and
covariance matrix C = (Cij)i,j=1,2, we find

m = (m1,m2), Cij = Cov(Xi, Xj).
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The following result on the linear combination of independent normal random
variables will play an important role for the project in multi-asset options.

Theorem 0.10

Let X1, X2 ∈ N (0, 1) be independent and a, b, c, d ∈ R. Then aX1 + bX2 ∈
N (0, a2 + b2). Moreover if

Y1 = aX1 + bX2, Y2 = cX1 + dX2,

and if the matrix

A =

(
a b
c d

)
is invertible, then Y1, Y2 are jointly normally distributed with zero mean and
covariant matrix C = AAT .

Stochastic processes. Martingales

Let Ω be an uncountable sample space.

A stochastic process is a one parameter family {X(t)}t≥0 of random variables
X(t) : Ω→ R.

We denote X(t, ω) = X(t)(ω).

The parameter t is referred to as the time variable, since this is what it
represents in the applications that we have in mind.

For each ω ∈ Ω fixed, the function t → X(t, ω) is called a path of the
stochastic process.

If the paths are all the same for all ω ∈ Ω, then we say that X(t) is a
deterministic function of time.
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Martingales

Martingale stochastic processes play a fundamental role in options pricing
theory.

To define martingales on uncountable sample spaces, let FX(t) denote the
information accumulated by “looking” at the stochastic process up to time
t, i.e., the collection of events resolved by X(s) for 0 ≤ s ≤ t.

Intuitively, the stochastic process {X(t)}t≥0 is a martingale if, based on the
information contained in FX(s), our “best estimate” on X(t) for t > s is
X(s), i.e., we are not able to estimate whether the process will raise or fall
in the interval [s, t] with the information available at time s.

This intuitive definition is encoded in the formula

E[X(t)|FX(s)] = X(s), 0 ≤ s ≤ t,

which generalizes the definition of martingales in finite probability theory.

The left hand side is the conditional expectation of X(t) with respect to the
information FX(s), whose precise definition is not needed here.

It can be shown that martingales have constant expectation:
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Brownian motion

Next we recall the definition of the most important of all stochastic processes.

Definition 0.5

A Brownian motion, or Wiener process, is a stochastic process {W (t)}t≥0
with the following properties:

1. For all 1 ω ∈ Ω, the paths are continuous (i.e., t→ W (t, ω) is a contin-
uous function) and W (0, ω) = 0;

2. For all 0 = t0 < t1 < t2 < . . . , the increments

W (t1) = W (t1)−W (t0), W (t2)−W (t1), . . . ,

are independent random variables;

3. The increments are normally distributed, that is to say, for all 0 ≤ s <
t,

P(W (t)−W (s) ∈ A) =
1√

2π(t− s)

∫
A

e−
y2

2(t−s) dy,

for all Borel sets A ⊆ R.

Important remark:

Since the definition of Brownian motion depends on the probability measure
P, then a stochastic process {W (t)}t≥0 which is a Brownian motion in the
probability measure P will in general not be a Brownian motion in another
probability measure P̃. When we want to emphasize that {W (t)}t≥0 is a
Brownian motion in the probability measure P, we shall say that {W (t)}t≥0
is a P-Brownian motion.

1More precisely, for all ω ∈ Ω up to a set of zero probability.

10



Remark

Letting s = 0 in property 3 in the definition we obtain that W (t) ∈ N (0, t),
for all t > 0. In particular, W (t) has zero expectation for all times. It can
also be shown that Brownian motions are martingales.

The following result is used a few times in some projects.

Theorem 0.11

Let g : (0,∞)→ R be a differentiable function and let

X(t) = g(t)W (t)−
∫ t

0

g′(s)W (s) ds.

Then

X(t) ∈ N (0,∆(t)), ∆(t) =

∫ t

0

g(s)2 ds.

Remark

By using the formal identity d(g(t)W (t)) = g′(t)W (t)dt+ g(t)dW (t), as well
as
∫ t
0
d(g(s)W (s)) = g(t)W (t), we can write the definition of X(t) in the

previous theorem as

X(t) =

∫ t

0

g(s)dW (s),

which is called Itô integral of the deterministic function g(t).
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Equivalent probability measures. Girsanov theorem

One further technical complication arising for uncountable sample spaces is
the existence of non-trivial events with zero measure, e.g., the event {W (t) =
0} that the Brownian motion W (t) takes value zero when t > 0.

We shall need to consider the concept of equivalent probability measures:

Definition 0.6 Two probability measure P, P̃ on the events A ∈ F are said
to be equivalent if P(A) = 0⇔ P̃(A) = 0.

Hence equivalent probability measures agree on which events are impossible.

Note that in a finite probability space all probability measures are equivalent,
as in the finite case the empty set is the only event with zero probability.

The following important theorem characterizes the relation between equiva-
lent probability measures on uncountable sample spaces and is known as the
Radon-Nikodým theorem.

We denote IA the characteristic function of the set A ∈ F , i.e., the random
variable taking value IA(ω) = 1 if ω ∈ A and zero otherwise.

Radon-Nikodým theorem

Let P : F → [0, 1] be a probability measure. Then P̃ : F → [0, 1] is a
probability measure equivalent to P if and only if there exists a random
variable Z : Ω→ R such that

Z > 0 E[Z] = 1 and P̃(A) = E[ZIA]

Moreover if P and P̃ are equivalent then

Ẽ[X] = E[ZX]

for all random variables X : Ω→ R.
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Example

Assume Ω = R and that P and P̃ are defined as in the example on page,
namely

P(A) =

∫
A

p(ω) dω, P̃(A) =

∫
A

p̃(ω) dω,

where A is a Borel set and p, p̃ are two continuous non-negative functions
such that

∫
R
p(ω) dω =

∫
R
p̃(ω) dω = 1.

Then, according to the Radon-Nikodým Theorem, P and P̃ are equivalent if
and only if there exists a function Z : R→ R such that Z > 0, and

P̃(A) =

∫
A

p̃(ω) dω =

∫
R
Z(ω)IA(ω)p(ω) dω =

∫
A

Z(ω)p(ω) dω.

As the equality
∫
A
p̃(ω) dω =

∫
A
Z(ω)p(ω) dω has to be satisfied for all Borel

sets A ⊂ R, then p̃(ω) = Z(ω)p(ω) must hold for all ω ∈ R .

Theorem 0.13 and Definition

Let {W (t)}t≥0 be a P-Brownian motion. Given θ ∈ R and T > 0 define

Zθ = e−θW (T )− 1
2
θ2T .

Then Pθ(A) = E[ZθIA], for all Borel sets A ⊆ R, defines a probability measure
equivalent to P, which is called Girsanov’s probability with parameter
θ ∈ R.

Proof. The proof follows immediately from the Radon-Nikodým Theorem,
since the random variable Zθ satisfies Zθ > 0 and

E[Zθ] = E[e−θW (T )− 1
2
θ2T ] =

∫
R
e−θx−

1
2
θ2T e−

x2

2T

√
2πT

dx = 1,
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where we used the density of the normal random variable W (T ) ∈ N (0, T )
to compute the expectation of Zθ in the probability measure P .

Note that the Girsanov probability measure Pθ depend also on T , but this is
not reflected in our notation.

In the following we denote by Eθ[·] the expectation computed in the proba-
bility measure Pθ for θ 6= 0.

When θ = 0 then Pθ = P, in which case the expectation is denoted as usual
by E[·].

By Radon-Nikodým Theorem we have Eθ[X] = E[ZθX], for all random vari-
ables X : Ω→ R.

Moreover we now show that Eθ[W (t)] = −θt. In fact by the Radon-Nikodým
theorem we have

Eθ[W (t)] = E[ZθW (t)] = E[e−θW (T )− 1
2
θ2TW (t)].

Adding and subtracting W (t) in the exponent of the exponential function we
have

Eθ[W (t)] = E[e−θ(W (T )−W (t))− 1
2
θ2T e−θW (t)W (t)] = E[e−θ(W (T )−W (t))− 1

2
θ2T ]E[e−θW (t)W (t)],

where in the last step we used that the random variablesX = e−θ(W (T )−W (t))− 1
2
θ2T

and Y = e−θW (t)W (t) are independent (being functions of the independent
random variables W (T )−W (t) and W (t)).

Using W (T )−W (t) ∈ N (0, T − t) and W (t) ∈ N (0, t), we can compute the
expectations of X and Y as

E[X] = e−
1
2
θ2T 1√

2π(T − t)

∫
R
e−θx−

x2

2(T−t) dx = e−
θ2

2
t,
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E[Y ] =
1√
2πt

∫
R
e−θx−

x2

2t x dx = −e
θ2

2
tθt.

Hence Eθ[W (t)] = E[X]E[Y ] = −θt, as claimed.

It follows that {W (t)}t≥0 is not a Pθ-Brownian motion, since Brownian mo-
tions, by definition, have zero expectation at any time.

Now we can state a fundamental theorem in probability theory with deep
applications in financial mathematics, namely Girsanov’s theorem. (Actu-
ally we consider only a special case of this theorem, which suffices for our
purposes)

Girsanov theorem

Let {W (t)}t≥0 be a P-Brownian motion. Given θ ∈ R and T > 0, let Pθ be the
Girsanov probability measure with parameter θ introduced in Theorem ??.
Define the stochastic process {W (θ)(t)}t≥0 by

W (θ)(t) = W (t) + θt.

Then {W (θ)(t)}t≥0 is a Pθ-Brownian motion.

Note carefully that {W (θ)(t)}t≥0 is not a P-Brownian motion, as it follows by
the fact that E[W (θ)(t)] = θt.

In particular, according to the probability measure P, the stochastic process
{W (θ)(t)}t≥0 has a drift, i.e., a tendency to move up (if θ > 0) or down (if
θ < 0). However in the Girsanov probability this drift is removed, because,
as shown before, Eθ[W (θ)(t)] = Eθ[W (t)] + θt = 0.
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Multi-dimensional Girsanov theorem

We conclude with a generalization of Girsanov’s theorem in the presence of
two independent Brownian motions. This generalization is important for the
project on multi-asset options

Theorem 0.15 and Definition Let {W1(t)}t≥0, {W2(t)}t≥0 be P-independent
Brownian motions. Given θ = (θ1, θ2) ∈ R2 and T > 0 define

Zθ = e−θ1W1(T )−θ2W2(T )− 1
2
(θ21+θ

2
2)T .

Then Pθ(A) = E[ZθIA] defines a probability measure equivalent to P, which
is called Girsanov’s probability with parameters θ1, θ2 ∈ R.

2-dimensional Girsanov’s theorem

Let {W1(t)}t≥0, {W2(t)}t≥0 be P-independent Brownian motions. Given
θ = (θ1, θ2) ∈ R2 and T > 0, let Pθ be the Girsanov probability with pa-
rameters θ1, θ2 introduced in Theorem ??. Define the stochastic processes
{W (θ)

1 (t)}t≥0, {W (θ)
2 (t)}t≥0 by

W
(θ)
1 (t) = W1(t) + θ1t, W

(θ)
2 (t) = W2(t) + θ2t

Then {W (θ)
1 (t)}t≥0, {W (θ)

2 (t)}t≥0 are Pθ-independent Brownian motions.
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Black-Scholes options pricing theory

In the binomial model the stock price at time t is a finite random variable
S(t). In the Black-Scholes model the stock price is a continuum random
variable with image Im(S(t)) = (0,∞), namely the geometric Brownian
motion

S(t) = S0e
αt+σW (t) (GBM)

The probability P with respect to which {W (t)}t≥0 is Brownian motion is
the physical (or real-world) probability of the Black-Scholes market.

Moreover α is the instantaneous mean of log-return, σ is the instanta-
neous volatility and σ2 is the instantaneous variance of the geometric
Brownian motion

The geometric Brownian motion admits the density

fS(t)(x) =
H(x)√
2πσ2t

1

x
exp

(
−(log x− logS(0)− αt)2

2σ2t

)
,

where H(x) is the Heaviside function. It can be shown that the binomial
stock price converges in distribution to the geometric Brownian motion in
the time-continuum limit.

The risk-neutral pricing formula in Black-Scholes mar-
kets

The purpose of this section is to introduce the definition of Black-Scholes
price of European derivatives from a probability theory point of view.

Recall that the probabilistic formulation of the binomial options pricing
model is encoded in the risk-neutral pricing formula.
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Our goal is to derive a similar risk-neutral pricing formula (at time t = 0)
for the time-continuum Black-Scholes model.

Motivated by the approach for the binomial model, we first look for a prob-
ability measure in which the the discounted stock price in Black-Scholes
markets is a martingale (martingale probability measure).

It is natural to seek such martingale probability within the class of Girsanov
probabilities Pθ equivalent to the physical probability P.

To this purpose we shall need the form of the density function of the geometric
Brownian motion in the probability measure Pθ.

Theorem 0.17

Let θ ∈ R, T > 0 and Pθ be the Girsanov probability measure equivalent to
the physical probability P. The geometric Brownian motion has the following
density in the probability measure Pθ:

f
(θ)
S(t)(x) =

H(x)√
2πσ2t

1

x
exp

(
−(log x− logS0 − (α− θσ)t)2

2σ2t

)
.

Proof. Since

S(t) = S0e
αt+σW (t) = S0e

(α−θσ)t+σW (θ)(t), W (θ)(t) = W (t) + θt

and since {W (θ)(t)}t≥0 is a Brownian motion in the probability measure Pθ
(see Girsanov’s Theorem ??), then the density f

(θ)
S(t) is the same as fS(t) with

α replaced by α− θσ.

Let Eθ[·] denote the expectation in the probability Pθ.

Recall that martingales have constant expectation. Hence in the martingale
(or risk-neutral) probability measure the expectation of the discounted value
of the stock must be constant, i.e., Eθ[S(t)] = S0e

rt. This condition alone
suffices to single out a unique possible value of θ.
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In fact we now show that the identity Eθ[S(t)] = S0e
rt holds if and only if

θ = q, where

q =
α− r
σ

+
σ

2
.

Proof. Using the density of S(t) in the measure Pθ we have

Eθ[S(t)] =

∫
R
xf

(θ)
S(t)(x) dx =

1√
2πσ2t

∫ ∞
0

exp

(
−(log x− logS0 − (α− θσ)t)2

2σ2t

)
dx.

With the change of variable y = log x−logS0−(α−θσ)t
σ
√
t

, dx = xσ
√
t dy, we obtain

Eθ[S(t)] =
S0√
2π
e(α−θσ)t

∫
R
e−

y2

2
+σ
√
ty dy = S0e

(α−θσ+σ2

2
)t 1√

2π

∫
R
e−

(y+σ
√
t)2

2 dy.

As 1√
2π

∫
R e
−x

2

2 dx = 1, the result follows.

Even though the validity of Eθ[S(t)] = S0e
rt is only necessary for the dis-

counted geometric Brownian motion to be a martingale, one can show that
the following result holds.

The discounted value of the geometric Brownian motion stock price is a mar-
tingale in the probability measure Pθ if and only if θ = q

The previous discussion leads us to the following definition.
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Definition 0.19

Given α ∈ R, σ > 0, r ∈ R and T > 0, the probability measure

Pq(A) = E[e−θW (T )− 1
2
θ2T IA], q =

α− r
σ

+
σ

2

is called the martingale probability, or risk-neutral probability, in the
interval [0, T ] of the Black-Scholes market with parameters α, σ, r.

Remark

In the risk-neutral probability the stock price is given by the geometric Brow-
nian motion

S(t) = S(0)e(r−
σ2

2
)t+σW (q)(t),

where, by Girsanov’s theorem, W (q)(t) = W (t) + qt is a Brownian motion in
the risk-neutral probability. This follows by replacing α = r + qσ − 1

2
σ2 in

(GBM).

Moreover replacing θ = q in the density f
(θ)
S(t) (see Theorem 0.17) we obtain

that the geometric Brownian motion has the following density in the risk-
neutral probability measure Pq:

f
(q)
S(t)(x) =

H(x)√
2πσ2t

1

x
exp

(
−

(log x− logS0 − (r − σ2

2
)t)2

2σ2t

)
.

At this point we have all we need to define the Black-Scholes price of Euro-
pean derivatives at time t = 0 using the risk-neutral pricing formula.
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Definition 0.8

The Black-Scholes price at time t = 0 of the European derivative with pay-off
Y at maturity T is given by the risk-neutral pricing formula

ΠY (0) = e−rTEq[Y ],

i.e., it equals the expected value of the discounted pay-off in the risk-neutral
probability measure of the Black-Scholes market.

In the case of standard European derivatives we can use the density of the
geometric Brownian motion in the risk-neutral probability measure to write
the Black-Scholes price in the following integral form.

Theorem 0.20

For the standard European derivative with pay-off Y = g(S(T )) at maturity
T > 0, the Black-Scholes price at time t = 0 can be written as ΠY (0) =
v0(S0), where S0 is the price of the underlying stock at time t = 0 and
v0 : (0,∞) → R is the pricing function of the derivative at time t = 0,
which is given by

v0(x) = e−rT
∫
R
g(xe(r−

σ2

2
)T+σ

√
Ty)e−

1
2
y2 dy√

2π
.

Proof. Using the density f
(q)
S(t) for t = T in the risk-neutral pricing formula

we obtain

ΠY (0) = e−rTEq[Y ] = e−rTEq[g(S(T ))] =

∫
R
g(x)f

(q)
S(T )(x) dx

=
e−rT√
2πσ2t

∫ ∞
0

g(x)

x
exp

(
−

(log x− logS0 − (r − σ2

2
)t)2

2σ2t

)
dx.

With the change of variable y = log x−logS0−(α−θσ)t
σ
√
t

we obtain
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ΠY (0) = e−rT
∫
R
g(S0e

(r−σ
2

2
)T+σ

√
Ty)e−

1
2
y2 dy√

2π
= v0(S0),

as claimed.

Example

For instance, in the case of the European call option with strike K and
maturity T , for which the pay-off function is g(z) = (z−K)+, Theorem 0.20
gives

Πcall(0) = C0(S0, K, T ), C0(x,K, T ) = xΦ(d1)−Ke−rTΦ(d2)

where Φ is the standard normal distribution and

d2 =
log x

K
+ (r − 1

2
σ2)T

σ
√
T

, d1 = d2 + σ
√
T .

Remark

The risk-neutral pricing formula for t > 0 is

ΠY (t) = e−r(T−t)Eq[Y |FS(t)],

The right hand side is the expectation of the discounted pay-off in the risk-
neutral probability measure conditional to the information available at time
t, which in a Black-Scholes market is determined by the history of the stock
price up to time t.

It can be shown that in the case of the standard European derivative with
pay-off Y = g(S(T )) at maturity T , the risk-neutral pricing formula entails
that the Black-Scholes price at time t ∈ [0, T ] can be written in the integral
form
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ΠY (t) = v(t, S(t)), where v(t, x) =
e−rτ√

2π

∫
R
g
(
xe(r−

σ2

2
)τeσ

√
τ y
)
e−

y2

2 dy, τ = T−t.

Hence the pricing function v(t, x) of the derivative at time t is the same as
the pricing function v0 at time t = 0 but with maturity T replaced by the
time τ left to maturity, which is rather intuitive.

The Monte Carlo method

The Monte Carlo method is, in its simplest form, a numerical method to
compute the expectation of a random variable.

Its mathematical validation is based on the Law of Large Numbers, which
states the following: Suppose {Xi}i≥1 is a sequence of i.i.d. random variables
with expectation E[Xi] = µ. Then the sample average of the first n compo-
nents of the sequence, i.e.,

X =
1

n
(X1 +X2 + · · ·+Xn),

converges (in probability) to µ as n→∞.

The law of large numbers can be used to justify the fact that if we are given a
large number of independent trials X1, . . . , Xn of a random variable X, then

E[X] ≈ 1

n
(X1 +X2 + · · ·+Xn).

To measure how reliable is the approximation of E[X] given by the sample
average, consider the standard deviation of the trials X1, . . . , Xn:
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sX =

√√√√ 1

n− 1

n∑
i=1

(X −Xi)2.

Viewing X1, . . . , Xn as independent copies of X, a simple application of the
Central Limit Theorem proves that the random variable

µ−X
sX/
√
n

converges in distribution to a standard normal random variable. We use this
result to show that the true value µ of E[X] has about 95% probability to
be in the interval

[X − 1.96
s√
n
,X + 1.96

s√
n

].

Indeed, for n large,

P
(
−1.96 ≤ µ−X

sX/
√
n
≤ 1.96

)
≈
∫ 1.96

−1.96
e−x

2/2 dx√
2π
≈ 0.95.

An application to Black-Scholes theory

Using the Monte Carlo method and the risk-neutral pricing formula, we can
approximate the Black-Scholes price at time t = 0 of the European derivative
with pay-off Y and maturity T > 0 with the sample average

ΠY (0) = e−rT
Y1 + . . . Yn

n
,
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where Y1, . . . , Yn is a large number of independent trials of the pay-off. Each
trial Yi is determined by a path of the stock price.

Letting 0 = t0 < t1 < · · · < tN = T be a partition of the interval [0, T ] with
size ti − ti−1 = h, we may construct a sample of n paths of the geometric
Brownian motion on the given partition with the following simple Matlab
function:

function Path=StockPath(s,sigma,r,T,N,n)

h=T/N;

W=randn(n,N);

q=ones(n,N);

Path=s*exp((r-sigma^2/2)*h.*cumsum(q’)+sigma*sqrt(h)*cumsum(W’));

Path=[s*ones(1,n);Path];

Note carefully that the stock price is modeled as a geometric Brownian mo-
tion with mean of log return α = r − σ2/2, which means that the geometric
Brownian motion is risk-neutral. This is of course correct, since the expec-
tation that we want to compute is in the risk-neutral probability measure.

The following Matlab code compute the Black-Scholes price of a call option
using the Monte Carlo method. The code also computes the statistical error

Err = 1.96
s√
n

of the Monte Carlo price, where s is the standard deviation of the pay-off
trials.

function [price, conf95]=MonteCarloCall(s,sigma,r,K,T,N,n)

tic

stockPath=StockPath(s,sigma,r,T,N,n);

payOff=max(0,stockPath(N,:)-K);

price=exp(-r*T)*mean(payOff);

conf95=1.96*std(payOff)/sqrt(n);

toc
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For instance, by running the command

[price, conf95] = MonteCarloCall(10, 0.5, 0.01, 10, 1, 100, 100000)

we obtain the output

price = 1.9976

conf95 = 0.0249

The calculation took about half a second.

The exact price for the given call obtained by using the Black-Scholes formula
is 2.0144, which lies within the confidence interval [1.9976− 0.0249, 1.9976 +
0.0249] = [1.9727, 2.0225] of the Monte Carlo price.

Control variate Monte Carlo

The Monte Carlo method just described is also known as crude Monte Carlo
and can be improved in a number of ways.

In order to reduce the error of the Monte Carlo price, one needs to either

(i) increase the number of trials n or

(ii) reduce the standard derivation s.

As increasing n can be very costly in terms of computational time, the ap-
proach (ii) is preferable.

There exist several methods to decrease the standard deviation of a Monte
Carlo computation, which are collectively called variance reduction tech-
niques. Here we describe the control variate method.

Suppose we want to compute E[X]. The idea of the control variate method
is to introduce a second random variable Q for which E[Q] can be computed
exactly and then write
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E[X] = E[Y ] + E[Q], where Y = X −Q.

Hence the Monte Carlo approximation of E[X] can now be written as

E[X] ≈ Y1 + · · ·+ Yn
n

+ E[Q],

where Y1, . . . , Yn are independent trials of the random variable Y .

This approximation improves the crude Monte Carlo estimate (i.e., without
control variate) if the sample average estimator of E[Y ] is better than the
sample average estimator of E[X]. Because of (??), this will be the case if
(sY )2 < (sX)2.

It will now be shown that the latter inequality holds if X,Q have a posi-
tive large correlation. Letting X1, . . . , Xn be independent trials of X and
Q1, . . . , Qn be independent trials of Q, we compute

(sY )2 =
1

n− 1

n∑
i=1

(Y − Yi)2 =
1

n− 1

n∑
i=1

((X −Q)− (Xi −Qi))
2

= (sX)2 + (sQ)2 − 2C(X,Q),

where C(X,Q) is the sample covariance of the trials (X1, . . . , Xn), (Q1, . . . , Qn),
namely

C(X,Q) =
n∑
i=1

(X −Xi)(Q−Qi).

Hence (sY )2 < (sX)2 holds provided C(X,Q) is sufficiently large and positive
(precisely, C(X,Q) > sQ/

√
2). As C(X,Q) is an unbiased estimator of

Cov(X,Q), then the use of the control variateQ will improve the performance
of the crude Monte Carlo method if X,Q have a positive large correlation.

This method is applied in the project on Asian options
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