Basic Stochastic Processes:
Financial applications

Lecture 3 (3 December 2020)

Probability theory on uncountable sample spaces

In this lecture we assume that €2 is uncountable (e.g., 2 = R).

In this case there is no general procedure to construct a probability space,
but only an abstract definition.

In particular a probability measure P on events A C 2 is defined only ax-

iomatically by requiring that 0 < P(A) < 1, P(2) = 1 and that, for any
sequence of disjoint events Aq, Ao, ..., it should hold

Moreover we do not assume that P is defined for all events A C €.

Denote by F the set of events (i.e., subsets of 2) which have a well defined
probability satisfying the properties above.



The minimial conditions required on F is that

(i) F should contain €2 (the “something happens event”),

(ii) the complement of each element A, i.e., A € F = A° € F (the “A does
not happen event”)

(iii) F must be closed with respect to caountable union (so that the equation
(*) above makes sense)

A collections of event satisfying the properties (i), (ii), (iii) is called a o-
algebra (or o-field).

Example.

Let 2 = R. We say that A C R is a Borel set if it can be written as the
union (or intersection) of countably many open (or closed) intervals.

Let F be the collection of all Borel sets. Let p : R — R be a continuous
non-negative function such that

/R plw)dw = 1.

Then P : F — [0, 1] given by

P(A) = /A p(w) dw

defines a probability. If X : R — R is a random variables, the expectation
of X in this probability measure is given by

E[X] :/RX(w)p(w) dx.



For most applications (and in particular for those in financial mathematics)
the knowledge of the full probability space is not necessary.

More precisely, we are only interested in assigning a probability to events of
the form {X € I'}, where X is a random variable on the (abstract) probability
space and I C R, that is to say, events which can be resolved by one (or more)
random variables.

The probability P(X € I) can be computed explicitly when X has a density.
Definition 0.3

Let fx : R — [0,00) be a continuous function (except possibly on finitely

many points). A continuum random variable X : 0 — R is said to have
probability density fx if

P(X € A) = /Afx(x) dz,

for all Borel sets A C R.

Note that the density fx satisfies

/fo(l') dr =1

and the cumulative distribution Fx(z) = P(X < z) satisfies

dFx

Fx(z) = / fx(y)dy, for all z € R, hence fx = o



Example.

A random variable X : €2 — R is said to be a normal random variable with
mean m € R and variance o > 0 if it admits the density

1 |z —m|?
(@) = ———= exp (——202 ) |

We denote A (m, o?) the set of all such random variables.

A variable X € N(0,1) is called a standard normal random variable.

The cumulative distribution of standard normal random variables is denoted
by ®(x) and is called the standard normal distribution, i.e.,

Theorem 0.8

The following holds for all sufficiently regular functions g : R — R:

(i) Let X : @ — R be a random variable with density fx. Then for all
Borel sets A C R,

P(g(X) e A) = / fx(x)dx.

z:g(x)€A

(ii)) Let X : © — R be a random variable with density fx. Then

E[g(X)] = / 9(y) fx(y) dy.

R

Moreover the properties 1,2,3 in Theorem 0.1 still hold on uncountable prob-
ability spaces.



By (ii) in Theorem 0.8, the expectation and the variance of a continuum
random variable X with density fx are given by

2
E[X] :/a:fx(x) dx, Var[X] :/a:QfX(x) dx — (/ rfx(z) dm) :
R R R
In particular normal variables we obtain

X e N(m,0%) = E[X]=m, Var[X]=o"

Joint probability density

Definition 0.4

Two continuum random variables X, Y : 2 — R are said to have the joint
probability density fxy : R? — [0, 00), if

P(X € A,Y € B) = / / fxy(z,y)dedy,
AJB

for all Borel sets A, B C R.

Note that if fxy is a joint probability density, then

/R/fo’y(x’y) dody = 1.



Moreover if we define the joint cumulative distribution as Fxy(z,y) =
P(X <z,Y <y) then

fX,Y(fEa y) = arayFX,Y(x7y)-

When X,Y have the joint density fxy(z,y), the random variables X,Y
admit the densities

fx () :/fo,y(x,y) dy, fy(y)Z/fo,y(w,y) dx.

Example: Jointly normally distributed random variables.

Let m € R? and C' = (Cj;); ;=12 be a symmetric, positive definite 2x2
matrix. Two random variables X, X5 : 2 — R are said to be jointly normally
distributed with mean m and covariance matrix C' if they admit the joint
density

1 1
X () = —F——=c¢ —~(x—m)C Yz —m) |, forallz=(x,25) € R%
Prole) = oo (5 - mc e - m) (11,22)



The following theorem generalizes Theorem 0.8 in the presence of two vari-
ables.

Theorem 0.9

Let X,Y : Q — R be random variables with joint density fx and ¢ : R? — R.

(i) For all Borel sets A C R there holds

P(g(X,Y) € A) = / ey (2, y) da dy.

(z,y):9(z,y)€A

(ii) There holds

Bl(X.Y)) = [ oo, fxo.y) dady.

By (ii) of Theorem 0.9, if X;, X, have the joint density fx, x,, then the
covariance of X7, X5 can be computed as

COV(Xl,X2> = E[XIXQ] - E[Xl]E[XQ]

= / $1x2fX1,X2<5U1a 1’2) dzy dzo
RQ

—/ l’le1,X2(I1,LL’2)dI1d$2/ JIQfX17X2(I1,JI2)d$1d$2.
R2 R2

In particular, if X;, X, are jointly normal distributed with mean m € R? and
covariance matrix C' = (Cj;); j=12, we find

m = (ml,mg), Oij = COV(Xi,Xj).



The following result on the linear combination of independent normal random
variables will play an important role for the project in multi-asset options.

Theorem 0.10

Let X1, X, € N(0,1) be independent and a,b,c,d € R. Then aX; + bX, €
N(0,a* + b*). Moreover if

Yi =aXi +0Xy, Yy =cX;+dXs,

)

is invertible, then Y7, Y5 are jointly normally distributed with zero mean and
covariant matrix C' = AAT.

and if the matrix

Stochastic processes. Martingales

Let 2 be an uncountable sample space.

A stochastic process is a one parameter family { X (¢) }+>o of random variables
X(t): Q=R

We denote X (t,w) = X (t)(w).

The parameter ¢ is referred to as the time variable, since this is what it
represents in the applications that we have in mind.

For each w € Q fized, the function t — X(t,w) is called a path of the
stochastic process.

If the paths are all the same for all w € €, then we say that X(¢) is a
deterministic function of time.



Martingales

Martingale stochastic processes play a fundamental role in options pricing
theory.

To define martingales on uncountable sample spaces, let Fx(t) denote the
information accumulated by “looking” at the stochastic process up to time
t, i.e., the collection of events resolved by X(s) for 0 < s < t.

Intuitively, the stochastic process { X (t)}+>0 is a martingale if, based on the
information contained in Fx(s), our “best estimate” on X(t) for ¢t > s is
X(s), i.e., we are not able to estimate whether the process will raise or fall

in the interval [s,¢] with the information available at time s.

This intuitive definition is encoded in the formula

E[X (t)|Fx(s)] = X(s), 0<s<t

which generalizes the definition of martingales in finite probability theory.

The left hand side is the conditional expectation of X (t) with respect to the
information Fx(s), whose precise definition is not needed here.

It can be shown that martingales have constant expectation:



Brownian motion

Next we recall the definition of the most important of all stochastic processes.
Definition 0.5

A Brownian motion, or Wiener process, is a stochastic process { W (t) }+>0
with the following properties:

1. For allf]w € Q, the paths are continuous (i.e., t = W(t,w) is a contin-
uous function) and W(0,w) = 0;

2. For all 0 =ty < t; <ty <...,the increments
W(t1) = W(t:) = W(ty), W(ts) = W(t),...,
are independent random variables;
3. The increments are normally distributed, that is to say, for all 0 < s <

t,
P(W(t) — W(s) € A) =

1 y?
ot =) Ja

for all Borel sets A C R.

Important remark:

Since the definition of Brownian motion depends on the probability measure
P, then a stochastic process {W (t)}+>0 which is a Brownian motion in the
probability measure P will in general not be a Brownian motion in another
probability measure P. When we want to emphasize that {IWW(t)}:;>o is a
Brownian motion in the probability measure P, we shall say that {W (¢)}i>o
is a P-Brownian motion.

'More precisely, for all w € Q up to a set of zero probability.
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Remark

Letting s = 0 in property 3 in the definition we obtain that W (t) € N (0, 1),
for all £ > 0. In particular, W(t) has zero expectation for all times. It can
also be shown that Brownian motions are martingales.

The following result is used a few times in some projects.

Theorem 0.11

Let g : (0,00) = R be a differentiable function and let

Then

Remark

By using the formal identity d(g(t)W (t)) = ¢'(t)W (t)dt + g(t)dW (t), as well
as f(f d(g(s)W(s)) = g(t)W(t), we can write the definition of X (¢) in the

previous theorem as
t
X(6) = [ o))
0

which is called It6 integral of the deterministic function g(t).

11



Equivalent probability measures. Girsanov theorem

One further technical complication arising for uncountable sample spaces is
the existence of non-trivial events with zero measure, e.g., the event {WW(t) =
0} that the Brownian motion W (t) takes value zero when ¢ > 0.

We shall need to consider the concept of equivalent probability measures:

Definition 0.6 Two probability measure P, P on the events A € F are said
to be equivalent if P(A) = 0 < P(A) = 0.

Hence equivalent probability measures agree on which events are impossible.

Note that in a finite probability space all probability measures are equivalent,
as in the finite case the empty set is the only event with zero probability.

The following important theorem characterizes the relation between equiva-
lent probability measures on uncountable sample spaces and is known as the
Radon-Nikodym theorem.

We denote I4 the characteristic function of the set A € F, i.e., the random
variable taking value I4(w) =1 if w € A and zero otherwise.

Radon-Nikodym theorem
Let P : F — [0,1] be a probability measure. Then P : F — [0,1] is a
probability measure equivalent to P if and only if there exists a random
variable Z : 2 — R such that
Z>0 E[Z=1 and P(A)=E[ZI4]
Moreover if P and P are equivalent then
E[X] = E[ZX]

for all random variables X : ) — R.

12



Example

Assume Q = R and that P and P are defined as in the example on page,
namely

where A is a Borel set and p, p are two continuous non-negative functions

such that
/p(w) dw = /'ﬁ(w) dw = 1.
R R

Then, according to the Radon-Nikodym Theorem, P and P are equivalent if
and only if there exists a function Z : R — R such that Z > 0, and

IP’(A):/Aﬁ(w) dw:/RZ(w)]IA(w)p(w) dw:/AZ(w)p(w) dw.

As the equality [, p(w) dw = [, Z(w)p(w) dw has to be satisfied for all Borel
sets A C R, then p(w) = Z(w)p(w) must hold for all w € R .

Theorem 0.13 and Definition

Let {W(t)}+>0 be a P-Brownian motion. Given 6 € R and 7" > 0 define

_ _1p2
Zy = ¢ IW—30°T

Then Py(A) = E[Zyl 4], for all Borel sets A C R, defines a probability measure
equivalent to PP, which is called Girsanov’s probability with parameter
0 eR.

Proof. The proof follows immediately from the Radon-Nikodym Theorem,
since the random variable Zy satisfies Zy > 0 and

22
E[Z,] = E[e—HW(T)—%QQT] _ / p—te—30°1 € 2T g 1,
R 2nT
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where we used the density of the normal random variable W(T') € N (0,T)
to compute the expectation of Zy in the probability measure P . O

Note that the Girsanov probability measure Py depend also on T', but this is
not reflected in our notation.

In the following we denote by Egy[-| the expectation computed in the proba-
bility measure Py for 6 # 0.

When 6 = 0 then Py = IP, in which case the expectation is denoted as usual
by E[-].

By Radon-Nikodym Theorem we have Ey[X]| = E[Z,X], for all random vari-
ables X : 0 — R.

Moreover we now show that Ey[W (t)] = —6t. In fact by the Radon-Nikodym
theorem we have

Eo[W ()] = E[ZyW (t)] = E[e "V D287/ (1)].

Adding and subtracting W (t) in the exponent of the exponential function we
have

Eg[W(t)] _ ]E[e—G(W(T)—W(t))—%02T€—9W(t)W(t)] _ ]E[e—G(W(T)—W(t))—%OZT]E[e—QW(t)W(t)]

where in the last step we used that the random variables X = e
and Y = e " OW(t) are independent (being functions of the independent
random variables W(T') — W (t) and W (t)).

Using W(T) — W (t) e N(0,T —t) and W (t) € N(0,t), we can compute the
expectations of X and Y as

E[X] = e‘égQT; / e_ew_ﬂ’fit) dr = €—§t7
27T(T —t) Jr

14
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1
\/ 27t

E[lY] = /e‘ex_gtm dx = —e =0t
R

Hence Ey[W (t)] = E[X|E[Y] = —6t, as claimed.

It follows that {W(t)}i>0 is not a Py-Brownian motion, since Brownian mo-
tions, by definition, have zero expectation at any time.

Now we can state a fundamental theorem in probability theory with deep
applications in financial mathematics, namely Girsanov’s theorem. (Actu-
ally we consider only a special case of this theorem, which suffices for our
purposes)

Girsanov theorem

Let {W () }+>0 be a P-Brownian motion. Given § € Rand 7' > 0, let Py be the
Girsanov probability measure with parameter 6 introduced in Theorem 77.
Define the stochastic process {W @ (t)},50 by

WO () =W(t) + 6t
Then {W@(#)},5¢ is a Pp-Brownian motion.

Note carefully that {W (@ (#)},5¢ is not a P-Brownian motion, as it follows by
the fact that E[W©(¢)] = ot.

In particular, according to the probability measure P, the stochastic process
(WO (t)}1>0 has a drift, i.e., a tendency to move up (if & > 0) or down (if
0 < 0). However in the Girsanov probability this drift is removed, because,
as shown before, Eo[W ) (1)] = Eg[W (¢)] + 6t = 0.

15



Multi-dimensional Girsanov theorem

We conclude with a generalization of Girsanov’s theorem in the presence of
two independent Brownian motions. This generalization is important for the
project on multi-asset options

Theorem 0.15 and Definition Let {WW;(t) }1>0, {W2() }+>0 be P-independent
Brownian motions. Given § = (0;,6,) € R? and T > 0 define

Zy = e~ 1Wi(D)=0:Wa(1)=5 (63+63)T

Then Py(A) = E[Zy]4] defines a probability measure equivalent to P, which
is called Girsanov’s probability with parameters 6;, 0, € R.

2-dimensional Girsanov’s theorem
Let {Wyi(t)}i>0, {Wa(t)}>0 be P-independent Brownian motions. Given
0 = (01,05) € R? and T > 0, let Py be the Girsanov probability with pa-

rameters 61,0y introduced in Theorem ??. Define the stochastic processes

W20}z, {W5" (£)}20 by
WO @) = Wi(t) + 6ut, WiD(t) = Wa(t) + Ot

Then {W?(t)}iz0, {WL?(t)} =0 are Py-independent Brownian motions.

16



Black-Scholes options pricing theory

In the binomial model the stock price at time ¢ is a finite random variable
S(t). In the Black-Scholes model the stock price is a continuum random
variable with image Im(S(¢)) = (0, 00), namely the geometric Brownian
motion

S(t) = Spe W (GBM)

The probability P with respect to which {W(¢)}:>o is Brownian motion is
the physical (or real-world) probability of the Black-Scholes market.

Moreover « is the instantaneous mean of log-return, o is the instanta-
neous volatility and o2 is the instantaneous variance of the geometric

Brownian motion

The geometric Brownian motion admits the density

fswy(z) = - D02y

V2mo?tx
where H(z) is the Heaviside function. It can be shown that the binomial

stock price converges in distribution to the geometric Brownian motion in
the time-continuum limit.

H(z) 1 - (_ (log z — log S(0) — at)2> |

The risk-neutral pricing formula in Black-Scholes mar-
kets

The purpose of this section is to introduce the definition of Black-Scholes
price of European derivatives from a probability theory point of view.

Recall that the probabilistic formulation of the binomial options pricing
model is encoded in the risk-neutral pricing formula.

17



Our goal is to derive a similar risk-neutral pricing formula (at time ¢ = 0)
for the time-continuum Black-Scholes model.

Motivated by the approach for the binomial model, we first look for a prob-
ability measure in which the the discounted stock price in Black-Scholes
markets is a martingale (martingale probability measure).

It is natural to seek such martingale probability within the class of Girsanov
probabilities Py equivalent to the physical probability P.

To this purpose we shall need the form of the density function of the geometric
Brownian motion in the probability measure Py.

Theorem 0.17

Let 6 € R, T > 0 and Py be the Girsanov probability measure equivalent to
the physical probability P. The geometric Brownian motion has the following
density in the probability measure Py:

_ Hx) 1 exp (- (logz —log Sy — (o — 0o )t)?
V2mo?tx 202t .

Proof. Since
S(t) — Soeat+UW(t) — Soe(anU)tJraW(g)(t)’ W(B) (t) _ W(t) + 0t

and since {W©(¢)};>¢ is a Brownian motion in the probability measure Py

(see Girsanov’s Theorem ?7), then the density fée(z) is the same as fg(;) with
a replaced by a — fo. n

Let Ey[-] denote the expectation in the probability Py.

Recall that martingales have constant expectation. Hence in the martingale
(or risk-neutral) probability measure the expectation of the discounted value
of the stock must be constant, i.e., Eg[S(¢)] = Spe™. This condition alone
suffices to single out a unique possible value of 6.

18



In fact we now show that the identity Eq[S ()] = Spe™ holds if and only if
0 = q, where

Proof. Using the density of S(t) in the measure Py we have

_ (logw —log Sy — (o — fo)t)? I
202t '

Eo[S(t)] = /Rx ée(z)t)(x) dx = \/W/

With the change of variable y = 82— log:\‘)[ (@=80)t " gy = xo\/t dy, we obtain

S ) o o,
Ey[S(t)] = 20 la=bo)t [~ toviy dy = Soe(a—ea—f— o _ tovd)?

As \/% Ja % dp = 1, the result follows. O

Even though the validity of Ep[S(t)] = Spe™ is only necessary for the dis-
counted geometric Brownian motion to be a martingale, one can show that
the following result holds.

The discounted value of the geometric Brownian motion stock price is a mar-
tingale in the probability measure Py if and only if 0 = q

The previous discussion leads us to the following definition.
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Definition 0.19

Given a € R, 0 >0, r € R and T > 0, the probability measure

B,(4) = Ele DL, q= "+ 2
o

is called the martingale probability, or risk-neutral probability, in the
interval [0, 7] of the Black-Scholes market with parameters «, o, r.

Remark
In the risk-neutral probability the stock price is given by the geometric Brow-

nian motion

S(t) _ S(Q)e(r;%)ﬂraw@(t)’

where, by Girsanov’s theorem, W@ (t) = W (t) + ¢t is a Brownian motion in
the risk-neutral probability. This follows by replacing a = r + go — %02 in
(GBM).

Moreover replacing # = ¢ in the density fég(i) (see Theorem 0.17) we obtain
that the geometric Brownian motion has the following density in the risk-
neutral probability measure P,:

H(z) 1 (logz — log Sy — (r — Z)t)?
(9) — 2
fS(t)(w) = — eXp (‘ 502t :

\V2mo?t T

At this point we have all we need to define the Black-Scholes price of Euro-
pean derivatives at time ¢ = 0 using the risk-neutral pricing formula.
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Definition 0.8

The Black-Scholes price at time ¢ = 0 of the European derivative with pay-off
Y at maturity T is given by the risk-neutral pricing formula

Iy (0) = e " "E, [Y),

i.e., it equals the expected value of the discounted pay-off in the risk-neutral
probability measure of the Black-Scholes market.

In the case of standard European derivatives we can use the density of the
geometric Brownian motion in the risk-neutral probability measure to write
the Black-Scholes price in the following integral form.

Theorem 0.20

For the standard European derivative with pay-off Y = ¢(S(7')) at maturity
T > 0, the Black-Scholes price at time ¢ = 0 can be written as IIy(0) =
vo(So), where Sy is the price of the underlying stock at time ¢ = 0 and
vo @ (0,00) — R is the pricing function of the derivative at time t = 0,
which is given by

R

V271

Proof. Using the density féfii) for t = T in the risk-neutral pricing formula
we obtain

Hﬂ@ze”Eﬁﬂze@%Mﬂﬂﬂ=AM@ﬁ%wwx

—rT o] 1 —1 . _cr_t2
e g(:c)exp<_(oga: 0g Sy — (r 2>)>d:c.

T V2mott Jo @ 20°t

With the change of variable y = longlog:\o/g(a*eo)t we obtain
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o2 1,2 dy
Iy (0) = eTT/ Soer = FITHVTN)=30" 2 — gy (Sp),
y(0) Rg( 0 ) V21 o(50)
as claimed. -
Example

For instance, in the case of the European call option with strike K and
maturity 7', for which the pay-off function is ¢g(z) = (¢ — K4, Theorem 0.20
gives

Hcall(0> = CVO(SOa Ka T)7 CO('CEa K? T) = xq)(dl) - Ke—TTq)<d2)

where @ is the standard normal distribution and

0 log % + (r — 502)T

= . dy=dy+0oVT.
2 O’\/T 1 2

Remark

The risk-neutral pricing formula for ¢ > 0 is

Iy (t) = e "TVE, [Y]Fs(2)],

The right hand side is the expectation of the discounted pay-off in the risk-
neutral probability measure conditional to the information available at time
t, which in a Black-Scholes market is determined by the history of the stock
price up to time t.

It can be shown that in the case of the standard European derivative with
pay-oft Y = ¢(S(T)) at maturity 7', the risk-neutral pricing formula entails
that the Black-Scholes price at time ¢ € [0, T can be written in the integral
form
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Iy (t) = v(t, S(t)), where v(t,x) =

—rT 0_2 2
f/ﬂ / g (xe(”_T)Te”ﬁy) e T dy, T=T-t.
R

Hence the pricing function v(¢, x) of the derivative at time ¢ is the same as
the pricing function vy at time ¢ = 0 but with maturity 7" replaced by the
time 7 left to maturity, which is rather intuitive.

The Monte Carlo method

The Monte Carlo method is, in its simplest form, a numerical method to
compute the expectation of a random variable.

Its mathematical validation is based on the Law of Large Numbers, which
states the following: Suppose {X;};>1 is a sequence of i.i.d. random variables

with expectation E[X;] = p. Then the sample average of the first n compo-
nents of the sequence, i.e.,

— 1
X:E(X1+X2+"'+Xn)v

converges (in probability) to u as n — oc.

The law of large numbers can be used to justify the fact that if we are given a
large number of independent trials X, ..., X,, of a random variable X, then

E[X]~—(X;+Xo+ -+ X,,).

S|

To measure how reliable is the approximation of E[X] given by the sample
average, consider the standard deviation of the trials Xi,..., X,:
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1 o~ —
SX n—liz:;( )

Viewing X1,..., X, as independent copies of X, a simple application of the
Central Limit Theorem proves that the random variable

n—X
sx/vn

converges in distribution to a standard normal random variable. We use this
result to show that the true value p of E[X] has about 95% probability to
be in the interval

[X—196\/_X+196\/ﬁ]

Indeed, for n large,

( = ) 1.96 29 dr
P(-1.96 < < 1.96 / e v —— =~ 0.95.
SX/\/_ ~1.96 V2m

An application to Black-Scholes theory

Using the Monte Carlo method and the risk-neutral pricing formula, we can
approximate the Black-Scholes price at time ¢ = 0 of the European derivative
with pay-off Y and maturity 7" > 0 with the sample average

Yi+...Y,
Ty (0) = ¢ T2
n
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where Y7, ...,Y,, is a large number of independent trials of the pay-off. Each
trial Y; is determined by a path of the stock price.

Letting 0 =ty < t; < --- <ty = T be a partition of the interval [0, 7] with
size t; — t;_1 = h, we may construct a sample of n paths of the geometric
Brownian motion on the given partition with the following simple Matlab
function:

function Path=StockPath(s,sigma,r,T,N,n)

h=T/N;
W=randn(n,N) ;
g=ones (n,N) ;

Path=s*exp((r-sigma~2/2)*h.*cumsum(q’)+sigma*sqrt (h)*cumsum(W’)) ;
Path=[s*ones(1,n) ;Path];

Note carefully that the stock price is modeled as a geometric Brownian mo-
tion with mean of log return o = r — 02/2, which means that the geometric
Brownian motion is risk-neutral. This is of course correct, since the expec-
tation that we want to compute is in the risk-neutral probability measure.

The following Matlab code compute the Black-Scholes price of a call option
using the Monte Carlo method. The code also computes the statistical error

Err — 1.96%

of the Monte Carlo price, where s is the standard deviation of the pay-off
trials.

function [price, conf95]=MonteCarloCall(s,sigma,r,K,T,N,n)
tic

stockPath=StockPath(s,sigma,r,T,N,n);
pay0ff=max(0,stockPath(N, :)-K);

price=exp (-r*T)*mean (pay0ff) ;

conf95=1.96*std (pay0ff)/sqrt(n);

toc
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For instance, by running the command
[price, conf95] = MonteCarloCall(10,0.5,0.01,10, 1,100, 100000)

we obtain the output

price = 1.9976
conf95 = 0.0249

The calculation took about half a second.
The exact price for the given call obtained by using the Black-Scholes formula

is 2.0144, which lies within the confidence interval [1.9976 — 0.0249, 1.9976 +
0.0249] = [1.9727,2.0225] of the Monte Carlo price.

Control variate Monte Carlo

The Monte Carlo method just described is also known as crude Monte Carlo
and can be improved in a number of ways.

In order to reduce the error of the Monte Carlo price, one needs to either
(i) increase the number of trials n or
(ii) reduce the standard derivation s.

As increasing n can be very costly in terms of computational time, the ap-
proach (ii) is preferable.

There exist several methods to decrease the standard deviation of a Monte
Carlo computation, which are collectively called variance reduction tech-
niques. Here we describe the control variate method.

Suppose we want to compute E[X]. The idea of the control variate method

is to introduce a second random variable @) for which E[Q] can be computed
exactly and then write
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E[X] =E[Y]|+E[Q], whereY =X —Q.

Hence the Monte Carlo approximation of E[X] can now be written as

Ex] ~ 2t g,

n
where Y7, ...,Y, are independent trials of the random variable Y.

This approximation improves the crude Monte Carlo estimate (i.e., without
control variate) if the sample average estimator of E[Y] is better than the
sample average estimator of E[X]. Because of (?77), this will be the case if

(sv)? < (sx)*

It will now be shown that the latter inequality holds if X, Q) have a posi-
tive large correlation. Letting Xy,..., X, be independent trials of X and
Q1,...,Q, be independent trials of (), we compute

= (sx)* + (s)* — 2C(X, Q)

where C'(X, Q) is the sample covariance of the trials (Xi,..., X,), (Q1,--., @),

namely

C(X,Q) = S (X - X)(@ - Q).

=1
Hence (sy)? < (sx)? holds provided C(X, Q) is sufficiently large and positive
(precisely, C(X,Q) > so/v2). As C(X,Q) is an unbiased estimator of

Cov(X, @), then the use of the control variate @) will improve the performance
of the crude Monte Carlo method if X, () have a positive large correlation.

This method is applied in the project on Asian options
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