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Basic Stochastic Processes:
Financial applications

Lecture 1 (26 November 2020)

Finite probability theory

Let 2 = I 1 1 RS :_LE

Ml (73 W e a sample space containing m elements.

€ { 1: J m} 5 P I 8 ‘?017" $
A ———

Let p = (p1, ..., pm) be a probability vector, i.e.,

m

0<p;, <1, foralli=1,...,m, and Zp,-_ =1 &
i=1

We define p; = P({w;}) to be the probability of the event {w;}.
[

an

If A CQis anon-empty event, we define the probability of A as
—
Ty, w2, 995% )

A) = pi = w}). <
P(A) = ) pi=)_ P({w}) A N

ty €A weA
a

Moreover P() = 0. The pair (2, P) is called a finite probability space.

- —_—
e
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Example

Ls € g N
For example, given p € (0, 1), the probability space w
- / W ( ‘K O /b n
(%, 1-¢) wwEeg
Oy = {H. TV, w PN (1 — p)Nr) )
VK—D‘B-“EC’TOF /\N/\i\, } ' { } ) '151' = H

—, s called the N-coin toss probability space. Here Ny (w) is the number of
Heads in the toss w € Qy and Ny(w) = N — Ny(w) is the number of Tails.
In this probability space, tosses are independent and each toss has the same
probability p to result in a head.

A random variable is a function X : © — R. VY is said to be X-
measurable if there exists a function g such that ¥ = g(X). ,} N AN iR

Y = o (x(wi) Ve
Tvm random variables XY are independent it P(X € I,Y € J)=P(X €
/7 Y E J) for every I C Im(X) and J C Im(Y'), where Im(X) = {y € R :
y = ~—

) for some w € 1} is the image of X.

X 1S, D @
X( ) = Ny, () &
7 K@) =PE =2 YW= th\ N ~Nyd)

The function

y R (oa)
F’\Zw\?q

=J = -~
&) 15 callcd the probability density function (or probability mass function) °> b= N -%
of X. Clearly fx(z) =0if z ¢ Im(X).

The expectation of X is denoted by E[X]; it is given by

/ P (x »Q-/A/
X =Y KR = Y eh
/7 wED A~ :fl_rli\) X
f KEE T NETT
onu—{ TWE \>€7°>‘TN(

T uave 70
o X

Y-No W LSL\WW

poo wol K 15 X =] b TR M
B L -4 ted® e

VE@\N‘{?D $oc bk 2o A
w e St 7 Pred ”(
v—’\/\

B S < sy oy

- 3

I
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Theorem 0.1 Let X,Y be random variables, g : B — R, a,3 € R. The

/ following holds:

s 1. ElaX + 8Y] = oE[X] + SE[Y] (linearity).
P 2. If X >0 and E[X] =0, then X = 0.

e
Ve

3. If XY are independent then E[XY] = E[X]E[Y].
4. fY = g(X), ie., if Y is X-measurable, then

EUY)-Eu®l= > g@)fx(@) ()

wElm(X) W

X
The quantity E Lx-& i‘e’.‘“" Lx%
Var|X] = E[(X ~E[X)?*] =E[X*| ~E[X?  VrE 1XD &7

NT4
is called variance of the random variable X. The quantity X $Y)< 1 \t v
e, KOsk

= Cov[X,Y] =E[(X - EX])(Y — E[Y]) = E[XY] - EX]|E[Y] DETRM PST L
~— N —

ST INT
is called covariance of the random variables X, Y. /
P If Var[X], Var[Y] are both positive (i.e., if X,Y are not deterministic con-
stants), the quantity =
Cov[X. Y]
Corr[X, Y] = ————— ¢ [-1,1 ~ED> [1nd}
77 _,\,[\ ] Var[X]|Var[Y] [ R ] 3[”'1’& gD

\C X M=e
is called correlation of X,Y. If Corr[X,Y] = 0, the random variables X, Y AnpPEbem

are said to be uncorrelated. \_J

It follows by Theorem 0.1(3) that X,Y independent = X,Y uncorrelated
(while the opposite is in general not true). ~

e
3
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X)) =2 FoTuMdTe o™ W ArED

N \WEDMATRN O pTIARED

ono
Y Y Ry ) X
-
w ET
F(MS) = W,("“/"’l
The conditional expectation of X given Y is denoted by E[X|Y]: W(ew

E[X|Y](w) = Y OBX =Y =Y (W), =

x€lm(X)

—

where P(A|B) = P(B)"'P(AN B) is the conditional probability of the event
A given the event B7

The conditional expectation is a Y'-measurable random variable and satisfies
the following properties.

Theorem 0.2

Let X.Y.Z : ! — R be random variables and a, 3 € R. Then

=z L ElaX + Y |Z] = aE[X|Z] + BE[Y|Z] (linearity).
& 2. If X is independent of Y, then E[X|Y] = E[X].

-
If X is Y-measurable, then E[X|Y] = X. \/ = % (K\
—c e
E[ELX V] -

o

=)

4
5. If X is Z-measurable, then E[XY|Z] = XE[Y|Z]. TAKE OVT WHE V5> xpow M
€ mbirs 6. 1f ZisY ble then E[E[X|Y]|Z] = E[X|Z]
. Y ) is Y-measurable then = .o %  tRopgt
LESS (i1 > - : owe ~
XN PN \{

These properties remain true if the conditional expectation is taken with
respect to several random variables,

%‘Z/gk\g_ \))\)T‘(/ ‘7 o0 O /\'H
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Yoo = (% STz fwa we

pomostoi? T (X )= %x4- e o oxg= K, () %

s,rA:TES COKR SOME uJ_t' e ST

A discrete stochastic process is a (possibly finite) sequence {Xg, Xy,...} =
{ X, }nen of random variables. We refer to the index n in X, as time step.
—_———— —_
If the discrete stochastic process is finite, i.e., if it runs only for a finite
number N > 1 of time steps, we shall denote it by { X, },=0,...y and call it a
N-period process. R

At each time step, a discrete stochastic process on a _ﬁpn/it_e probability space
is a random variable with finitely many possible values. More precisely, for

all n =0,1,2,..., the value x, of X, satisfies x, € Im(X,,). We call x, an
admissible state of the stochastic process. Note that z,, is an admissible
state if and only if P(X,, = x,) > 0. -

A stochastic process {Y; },en is said to be measurable with respect to
77 A X, }uew if for all n € N there exists a function g, : R"1 — R such that

Y'n = gn(XO-. ){f._ . -Xn)'

—— v’"

IfY; = ho(Xo,. ... X,-1) for some function h, : R" — R, n > 1. then

/ {Y, }nen is said to be predictable from the process { X, }nen.
‘_’_/———A——"/—’\——\-

A discrete stochastic process { X, },ern on the finite probability space (Q,[P)

/ﬁ is called a martingale if 4T (W ASTLL

'X‘, erote S v
\ —
_~ EXalXi Xao o () = Xoo forallneN. BAS po <ERPERC
~— - To gAE %
CAaLL

Martingales have constant expectation, i.e., E[X,] = E[Xy|, for all n € N.

1 heE AHE EXGECAAT™DM D F BoTU S(PCS

L (N THEDREM D

1
7 [ EIEKW\Ka(KL\—'K#’B/\ = &[xﬁ*?\l

\l

EL%w )

5o :E/):%Mh’\: EE?(#'\: &{xuq/x - - -
—~—— ) %’X
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A discrete stochastic process { X, }nen on the finite probability space (€2, P)
/ is called a Markov chain if it satisfies the Markov property:

We=%g . XS Xy |

_—
/K(KM - X”‘"\W: P(X-u+1 = :rn+l|Xn = .'L'”) = P(Xn+l = :rn+l|Xl =1, Xo=a,...,. X, = :'Uﬂ,)v
- g A~ b

NeT
LA TOETANR
Vel

for all n € W and for all admissible states xy € Im(Xy),. .., 200 € Im(X,41)
such that P(Xy = x9, X1 = x1,... X,, = x,) is positive.
e T

The left hand side is called the transition probability from the state x,,
to the state x,, 1 and is denoted also as P(x,, — x,.1).
—_—

If P(x, — ®,41) is independent of n = 1,2,..., the Markov process is said
ﬂ to be time homogeneous.

Important remark:
The Markov property and the martingale property depend on the probability

measure, i.e., a stochastic process can be a martingale and/or a Markov
process in one probability P and neither of them in another probability P.

i§
(ﬂ | Ll oA \TT
WE kSO €

6
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Example: Random Walk.

Consider the following stochastic process {X,,},=1, v defined on the N-coin
—_

toss probability space (S, P,): %S TRoB. €O veTl
A WEAD
Loty =4
W= (Y10, ) €y, X,lw)= { 1 ife, =T
‘bt —UHor T
The random variables X, ..., Xy are independent and identically distributed

(i.i.d), namely

Po(X,=1)=p PyX,=-1)=1—p, foralln=1,... N.

b4 —<
\ i
Hence INPETENBEST of AMST V| | P
- E[X, =2p—1, Var[X,]=4p(l—p), foralln=1,...,N.
’\’v——
Now, forn=1,..., N, let

@Mﬁi&. = G (X Sy X»)
i=1

The stochastic process { M,, },,—0.... v is measurable (but not predictable) with
respect to the process { X, }n,—1.. .~ and is called (N-period) random walk.

It satisfies E‘[xAB’r K—LK;'ST-_'\ 4 & [ KM\\

_s EM]=n(2p-1), foralln=0,...,N.

—_———

Moreover, since it is the sum of independent random variables, the random
walk has variance given by
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<
3

_ oA %p\
NM' X},\ K?-(

Xy X Tk

- U

Var[My] =0, Var[M,] = Var(X,+Xo+- -+ X,) = Z Var[X;] = @))
i=1

—, When p = 1/2. the random walk is said to be symmetric. In this case
{M, }zo, . w satisfies E[M,| = 0 and Var[M,| =n,n=0,...,N.
~— -
When p # 1/2, {M,}a—o..~ is called an asymmetric random walk, or a
random walk with drift.

If M, =k then M, is either k + 1 (with probability p), or & — 1 (with
probability 1 — p). Hence we can represent the paths of the random walk by
using a binomial tree, as in the following example for N = 3:

_.'hf:i =3

le/

AN

NIN - TCouwmtp \p ¢
NN AL AEEE

RE@MBINING  Bipoy\ AL TEEE
e~

First_lecture Page 9



APWISHDLE
KATE FC
S \ME W

R(Mu =
XET»'*(“D

—

By inspection we see that the admissible states of the symmetric random
walk at the step n are given by _
w4 ADMISSIBLE
SThEs AT TIME

AN M
Im(M,) ={-n,—n+2,—n+4,....n—2n} ={2k—n, k=0,...,n},
— A —_—

where k is the number of times that the random walk “goes up” up to the
step n included. —

The density of M, is given by the binomial probability density function

xw far, () = (i)pk(l —p)"*é(x = (2k—n)), k=0,...,n, &
where §(z) = 1if z =0 and §(z) = 0 otherwise,
Let mg = 0, my € {=1,1} = Im(M,), ..., my € {-=N,-N +2,....N —

2,N} = Im(My) be the admissible states at each time step. From the
binomial tree of the process it is clear that there exists a path connecting

mo, My, ..., my if and only if m,, = m, £ 1, foralln =1,..., N, and we
have
P(M, =m, My, =my,.... M,y =m,_1) =P(M, =m,|M,_, =m,_1)

_I®» it my, =mp1+1
Tl 1-p ifm,=m,—1
D

Hence the random walk is an example of time homogeneous Markov chain.

9
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Next we show that the symmetric random walk is a martingale.
i
——

Using the linearity of the conditional expectation we have

(’>j’/z_

E[M,|My,.... My_1] =E[M,_1 + XMy, ..., M,_4]
=E[M,_|My, ..., My ] +E[X,|M,.... M,_q].
As M, is measurable with respect to My,..., M, _,, then

]E[ﬂr)rn_l |4'1i:'fl, “say ﬂ-'fn_l] = Al‘l'fvl'_l,

see Theorem 0.2(3).

As X, is independent of M, ..., M, _;, Theorem 0.2(2) gives

E[X,|[Mi, ..., M,_] = E[X,] =0.

It follows that E[M,|M,,..., M, ] = M,_, ie., the symmetric random
walk is a martingale.

“V‘Yl ZHowever the asymmetric random walk (p # 1/2) is not a martingale, as it
i follows by the fact that its expectation E[M,] =71{2p — 1) is not constant.

—

10
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. Generalized random walk.

A random walk may be defined as any discrete stochastic process {M, }en
which satisfies the following properties: -

- = S
=z Ll e - M e 2 %
- ® Im(M,) ={-n,—n+2,—n+4,..., n—2,n} foralln=0,1,...;

o {M,}nen is a time-homogeneous Markov chain;
.

There exists p € (0, 1) such that for (m,_1,m,) € Im(M, 1) xIm(M,).
the transition probability P(m, -, — m,,) is given by

p if My = My 1+ 1 &
P(my—1 —my) =4 1—p ifm, =my_y -1
0 otherwise

‘We may generalize this definition by relaxing the second and third properties
as follows.

Definition 0.1

A discrete stochastic process {M,, },en on a finite probability space is called
a generalized random walk if it satisfics the following properties:

—= 1. Im(M,))={-n,—n+2,-n+4,....,n— 2,-n.}ffor alln=0,1....;

2. {M, },en is a Markov chain; (Mo<  nNTCEsSTARLLY TWe ovusGent M}

3. Foralln=1,2,... there exist@,‘ s Im(M,_1) — (0,1) such that

Prlm,_y) if iy, = m,_ +1 peo, To 4o oF
P, —>32,,_) =< 1—pum,—y) fm, =m,_ -1 . gkos To €0 Yown
0 otherwise
=
11
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The binomial tree of a generalized random walk will be written as in the
following example:

M;=3
M =2 pal2)
n O e | My =2
N pa(1) 1-pa(2) v. (V) +¥v (’\)
’L - ?N‘ KW\""l P ’ = Z
5 M, =] My =1
- 71(0) g\'{“‘] y

=
c/

T

wll ps(=2)

My, = -2

.

My =0

A

1-pa(-2)

My = -3

Remark

The admissible states of a generalized random walk are precisely the same as
for the standard random walk, but they are now attained with different prob-
abilities. In particular the generalized random walk is no longer binomially
distributed, untess of course p, = p forall n=1,2, ...

i [t is clear that any path in the N-period random walk is uniquely identified

by a vector r € {1, 1}V, i.e., a N-dimensional vector where each component

is either —1 or 1. More precisely, the path of the random walk corresponding

to x € {—1,1}" it the unique path satisfying E(liﬂ and M; = M;_| + x;.
i=1,...,1 N. -

KeI\_\\.{“ | K:[Kt\xz\__ K'Dm ) XL'= 4 o2 -4
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Theorem 0.3

Let x € {—1,1}" and set zy = 0. The probability P(z) that the generalized
random walk follows the path x is given by

P(z) = H {— min(wy, 0) + @y (i :rj)] .
= - —

Example

In the 3-period model consider the path @ = (=1, —1,1). Then according to

the previous theorem — _ \ 1
*o+ 4

/—\_/\/'\ /-\_/\/\
P((—=1,-1.1)) = (= min(—1,0) + (=1)p1(0))(— min(—1,0) + (=1)p2(0 — 1))
x (= min(1,0) + (1)pg(0 — 1 —1)) = (1 = p1(0))(1 — p2(~1))py(-2).

> X, X & x,

That this formula is correct is easily seen in the binomial tree above. T\/?o( l
' ’

12
‘\,=o \izl‘ﬁ / \5\*\ = -4
TR SG VaXta

W =-
T _%\)M

= /%
D R R [P PO

13
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S [1=5,7° o SE@ S+ 5[(’3
— } A Y - * — =
NeWzo 4z oz p oo N ZEVTORC
Ne N
Review of the binomial model with constant risk-free
rate

Given 0 < p < 1, Sy > 0 and u > d, the binomial stock price at time { is
given by S(0) = Sy and IN ~HE APPLCLATIHINS
swce Cpol
u»o |, ace
e (t —1)e* with probability p B .
[é(t) B { S(t —1)e  with probability 1 —p fort=1,...,N.
S SToR ew5 W IN

For instance, for N = 3 the binomial stock can be represented as in the
following recombining binomial tree:

‘I‘:’)

\ A \ i \L:\ -\- }9‘(3) — SUC:}u
(&' | &' |- ;— 2 /
(4' v Ay &j 5(2) = Spe
('1:'5"-&\ *:4 / 1-p
(' A A \ A’\ ,t- - 5{1) = Spe" 5(3) — Sﬂe2u+d
\ =~ ) - .
(44 4) —~ e
S(0) =5 S(2) = Spett
e~ 1 ) o
[~44,74) -
S(1) 2@ S(3) = Spev+2
(‘ L 'qu r /
S(2) = Spe*
1=p
5(3) = Spe™

At eAk THE T TUERE x2E Yty qos=BLE
Stoll gE\cES ) NARE L

e (e )
s e Ls e TETY 47

\

X T pBER oF AlNE> Tro ok L{oG> ©F©

LY o T\HE r o LLVPES
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The possible stock prices at time  belong to the set

Im(S(t)) = {Spe*™ P4 k(t) =0,... ¢},

where k is the number of times that the price goes up up to and including
time £. It follows that there are ¢ + 1 possible prices at time ¢ and so the
number of nodes in the binomial tree grows linearly in time.

Moreover the stock price is binomially distributed, namely

fsio () = (:)1(1 )RS — SR ko

The binomial stock price can be interpreted as a stochastic process defined
on the N-coin toss probability space (Qu. ]P’@) To see this, consider the

following i.i.d. random variables
w= (Y, .- ?S,S AR VIR AT

1, if the " toss in wis H
—1, ifthe " tossinwis T '

\/fr()(t:’D =7
RYCKt =- ﬁ =
S(t) = S\(f\—/l)(xp[(u-kd)/?-f—(u—d]X,/&] &«
which upon iteration leads to < Slk- ?] (exe k“ﬁ;’ * VWJ Xt \Ww
=

iy -
LCH uz r \AZ Xtﬁ\

s+ d p—d
S(f):é‘ucxp{f(”; )+(”2 )@ M, =X+ +X,, t=1,....N.

STAWO IMED FANDOM
WAL

X Qv = R, X;(w)Z{ t=1,...,N.

We can rewrite the binomial stock price as

Hence S(t) : Qx — R and therefore {S()}i=o.. . is a N-period stochastic
process on the N-coin toss probability space (Qy.P,).

15

— S = “Xt(“{;\
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In this context, [P, is called physical (or real-world) probability measure,
to distinguish it from the martingale (or risk-neutral) probability introduced
below. T

Letting My = 0, we have that { M, },—q_. n is a random walk (which is asym-
metric for p # 1/2).

to {M, }=o....v-

For each w € Qy, the vector (S(0), S(1,w),...,S(N,w)) is called a path of
_~7 the binomial stock price. s THE )y - P \ob woE L
TH<RE ARC ZN PosSIBLE

Binomial market ?A—‘T’c‘c9 ofF ~ue Sto(e TLe

A binomial market is a market that consists of one stock with price

R

S(t —1)fe? with probability ()

5(0)=52>0. S@t)= { S(t— 1)) with probability 1 —{)

A

and a risk-free asset with value B(f) at time t =1,... N.
A

In the standard binomial model it is assumed that B(t) is a deterministic :\‘ -:A;'l
function of time with constant interest rate, namely ~ . N
N
© \ t Fa
Cw\"ﬂvos(.-/ B 5
t41)— B(t
Gwl0wve® . Jog B(t+ 1) —log B(t), or R Blt+1) - B#t) ) —
LS. feel B(t) SwyL .
® ;T AN V4 1 wvgovndE
\ - -
It follows that the value of the risk-free asset at time f can be written in g";: FegE
~E

either of the two forms

L9

. LB =@e”*1}or WH F=1,...N, @5(0) > 0.
1% ™

t

16

BE e . SU-DC . = (e’

s M(M &)
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g‘ = <§_Hj

etlr

at t

e g.e
= ~&lve pT
T ¢ oF
A \RSIEV
b quE ese-
FREE pssCL
M X\WE {=0

(o® 5‘”“’\{\

Here IR is the discretely compounded risk-free rate and r is the con-

tinuously compounded risk-free rate. w
T = }o% (\+ &
The guantity . \c 'S Iy pucatt
3 e w >0 (ww i
‘ ( THE cAsEj e L Q\—\ ¢S \‘q
S*(t) 7 _";‘(f) or equivalently  S*(f) S(t)
; > ), s equivalently f) = ——————,
€ : 1 ¥ 0

is called the discounted price of the stock (at time t = 0).
T —

In the following we denote by E, the (possibly conditional) expectation in
the probability space (Qy,P,).
| v | Q P _‘_V

If r ¢ (d,u), there is no probability measure(,)on the sample space Qy
such that the discounted stock price process {S™(t) }—o__n is a martingale.
For r € (d,u), {S*(t) }i=n..~ is a martingale with respect to the probability

measure I, if and only if p = ¢, where

Theorem 0.4 | |

v

t,

Due to Theorem 0.4, P, is called martingale probability measure.

Moreover, since martingales have constant expectation, then
—at —at
€ & (s0d= Eqlne = H?\ Lo (ﬂ} _ H;.l[s* H\
C/_\? E,[S(t)] = Soe” - ("DW

S

Thus in the martingale probability measure one expects the same return on
the stock as on the risk-free asset. For this reason, I, is also called risk-
neutral probability. - ’
—_———

CEKL- woaLd Ko 2ABILTT
GREESPNDS T Somrg = th
17 € (o1

RSE- szt enc

UF Tk

e e (C T
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Self-financing portfolios : 2 oL t ey N
MO0 e QB \
(gl U b))

A portfolio process in a binomial market is a stochastic process

A— O

{(hs(0), ha()}izo...x

such that, for t = 1,..., N, (hg(t). hg(t)) corresponds to the portfolio po-

sition (number of shares) on the stock and the risk-free asset held in the
Pl

interval (t — 1,7]. -

A positive number of shares corresponds to a long position on the asset, while
-~ a negative number of shares corresponds to a short position.

As portfolio positions held for one instant of time only are meaningless, we
_~ use the convention hg(0) = hg(1), hg(0) = hg(1), that is to say, hg(1), hg(1)
is the portfolio position in the closed interval [0, 1].

We always assume that the portfolio process is predictable from {S(#) }i—o.._»,
i.e., there exists functions H, : (0,00)" — R? such that

L o\ )
(hs(t).hs(®) = Hi(SO).....SC-1). Tpop” U PR Y
P s -~

= S -

Thus the decision on which position the investor should take in the interval
(t — 1,¢t] depends only on the information available at time ¢ — 1.

The value of the portfolio process is the stochastic process {V(t)}i—o.. n
given by

V() = ha(t)B(t) + hs(t)S(t). t=0,... N.

A PoRTFLLLO (Rrotess) 15 LT~ FINANCNG V€ CASH

= X &solLltD |
Vo SEVER  @EMoVEd ok APUED TP THE Foe
18

;—O“- \'hsfkhce . \ & A stll A >Toc< 53&A% 7“1 ‘Tl}‘-& N T\“’E

iz %  NoT  fprewd Feed PoetroLw , BuT RATUER \T

& US> 4o BV SwARE oF Ae€ Ree ~FEE ASSTT
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ui-\“/.\}(x«o b\ \g (F) N D= W b0 ST
— i& Jﬁ x> \k%[-(—'j AR -0
‘\"I +-4 t /

SED -5 S N = LIS O+

A= Ve (NIRRT ENV W LD

= wﬂs&-nwsk’ﬂ SO
A portfolio process {(hs(t), hg(t))}i=o....s
\l(\'\ N(E-O sm SE-D \Blﬂ %H——l)

oﬁf ) = hs( )55()5\)—1—!;,3 t)oB(t) t=1,...,N,

where df(t) = f(t) — f(t — 1), while it is said to generate the cash flow

C{t—1)if .
EANRE V()@ ICH-1)

————~———

_> V() =hs()0S(t) + hus(WIBE) = C(t ~ 1), t=1,...,N.

Note that C'(¢) > 0 corresponds to cash withdrawn from the portfolio at time
t while C'(¢ )ﬂf&?ﬁm portfolio at time t. The
self-financing property means that no cash is ever added or withdrawn from
the portfolio.
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is a martingale in the Ilbk Ileutral prohablllt_\_ measure. I\Ioreover the follow-
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Arbitrage portfolios (\n T9E WBWoO WA R >

A portfolio process {(hs(t), hp(t)}i—o,_n invested in the binomial market is
called an arbitrage portfolio process if it is predictable and if its value

V(t) satisfies V) = \k$K—Q 5[’\'1 *\k? k\ B(’\’\

=v1) V(0)=0;

- Mlod b AL TFOVBLE TATYS
fo¥TesL(o 2) V(¥.w) > 0, for allw em/" x .
rERYP 5 oV > of THe STek W
NN - NECANE 3) There exists w, € Oy such that V(N,w,) > 0.
/ﬁ S T s AN T CaSE
TUE PoRTE€olL\O
Theorem 0.6 tetuen NW) -NL0)

3 'S Ros\TANG
Assume[d < r < u) ie., assume the existence of a risk-neutral probability

measure for the binomial market. Then the binomial market is free of self-
financing arbitrages.

Proof. Assume that {hs(t), hg(t)}i—o..n is a self-financing arbitrage port-
folio process. Then V(0) = V*(0) =D and since martingales have constant
> - 3 T # — . — T T * ( j
é[\, (@x: o expectation then E,[V*(t)] =0, for all t = 0,1,....N. As V(N) > 0, then N
1 V*(N) 2 Q)rand Theorem 0.1(2) entails wa 0 for aMl.ple we Ny, = 6 Q )J\l )
Hence w: 0, for all w € Qy, contradicting the assumption that the —
portfolio is an arbitrage. (|

Important remark: the existence of a risk-neutral probability measure in
not only sufficient but also necessary for the absence of self-financing arbi-
trages in the binomial market. More precisely, if r ¢ (d, «) one can construct
self-financing arbitrage portfolios in the market. Hﬂ&f—ﬂw
is free of self-financing arbitrages if a v if it admits a risk-neutral proba-
bility measure. The latter result is valid for any discrete (or even continuum)
market model and is known as the first fundamental theorem of asset

pricing.
——
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Risk neutral pricing formula for European derivatives
in the binomial model

Le@ : On — R be a random variable and consider the European-style
derivative with pay-off Y at maturity time 7" = N. This means that the
derivative can only be exercised at time t = N.

For standard European derivatives Y is a deterministic function of S(N),

Le.,
Y =g(S(N))
while for non-standard derivatives Y is a deterministic function of S(0),...,S(N),
thatis — >~ 7 =
- Y =g(S(0),5(1).....5(N))
Examples
ELeoiEAn \,.
STANY A<D . ’l‘h(.{call option with strike K" and maturity N is t.h/giti\/_mdard European

derivative with pay-off

- V= S(N)— K), = max(S(N) — K.0)

e The Asian call option with strike K and maturity 7" is the non-standard
European derivative with pay-off

ST H
! xYlecs
Y= (\i 1 (Z 5(-3‘)) - "") on T CALL
) =0 | + 115 N“é\’ E)R\tgs
- , YN T
Let I1y(¢) be the binomial fair price of the derivative a time . < N u.,,,.&s/
oozt o
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By (leﬁniti(m{ Hyi t) equals the value V(#) of self-financing. hedging portfo-
lios. In particular, Ily(#) is a random variable and so {Ily(#)}i—o_ n is a
stochastic process.

Using the hedging condition V(N) = Y (which means V(N,w) = Y (w), for
all w € Q)) and Theorem 0.5, we have the following formuh for the fair
price at time ¢ of the financial derivative:

RS- R e VAL
\ Fm\)= R, [Y]5(0), ..., S( ]J P GADC CoTtAvLA

which is known as risk-neutral pricing formula. It holds not only for the
binomial model but for any discrete—or even continuum —pricing model for
financial derivatives. It is used for standard as well as non-standard European
derivatives.

For t = 0 the risk-neutral pricing formula becomes

/] Iy (0) = e "VE,[Y]. |<=7P l\\{k’7 %i/ 3

Important remark: We may interpret the previous formula as follows: the *‘ -
current (at time ¢ = 0) fair value of the derivative is our expectation on =C 3 {
the future payment of the derivative (the pay-off) expressed in terms of the

future value of money (discounted pay-off Y* = e7"™VY). The expectation has

to be taken with respect to the martingale probability measure, i.e., ignoring

any (subjective or illegal) estimate on future movements of the stock price

(except for the loss in value due to the time-devaluation of money).

/\/\/\/w
%@Ek‘(’ NWTLL 5( P()J
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Example. - N S (27
2

Consider a 2-period binomial model with the following parameters

3 & 2 —_—~
1= ¢ = i § 1, 2
Tl 4 2 7w Ty b el N =2
——

Assume further that Sy = 36. Consider the European derivative with pay-off

Y =(5(2) — 28), —2(5(2) —32); + (S(2) — 36),
N

and time of maturity 7= 2. Using the risk-neutral pricing formula, the fair
value of the derivative at £ =0 is

Iy (0) = e ¥ E,[Y] = E,[(S(2) —28) 1] — 2E,[(S(2) — 32)4+] + E,[(S(2) — 36)+
By the market parameters we find ¢ = 1/2. Hence the distribution of S(2 \
in the risk-neutral probability measure is

% L W 1/4 1fs-l()0f5—(q)—1 ‘\ o—) C {'\( staj/}
» Pe(S(2) =) =4 L2 ifs=32
Ste) {

e 0 otherwise

1, (Q:o

It follows that
E,[(S(2) — 28)4] = 11, [E,[(S(2) - 32)4] =8, E,[(5(2) —36)+] =7,

hence Iy (0) = 2.

— tp\((scaqz',)A: i[t (16 728), + & [u(_zz)(
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By definition of expectation in the N-coin toss probability space, the risk-
neutral pricing formula at ¢ = 0 for the standard European derivative with

pay-off Y = g(S(N)) and maturity 7' = N takes the explicit form

N- K

§ } H}(O) —e "N Z (g 6 (1 _ {} /f}(SgtkuHV k)d) z—

However this formula is not very convenient for numerical computations,

because the binomial coefficient (:] will reach very ld,rge values for even a

relative small number of steps (e.g., (:?;) is of order 101 ). A much more con-

venient way to compute numerically the binomial price of standard European

derivatives is by using the recurrence formula ITy (V) = Y and
&,:_"’_7“’

My (t) = qH“Qﬂl)-ﬁ-(l—q}]—[ (t+1), t=0,. N-1,

A SR—

where II§-(¢) is the binomial price of the derivative at time ¢ assuming that
. —_—
the stock price goes up at time ¢, 1.e., - (N —{—7
myHd=e

ARG
and similarly one defines II{.(t) by replacing “up” with “down”. The recur-
rence formula above follows immediately by the risk-neutral pricing formula \j

and the definition of conditional expectation.
—_ T~

My (t) = e "R, [Y]S(0),...,S(t — 1), S(t) = S(t — 1)e"]
B g

Important Remark: It can be shown that any European derivative in
the binomial market can be hedged by a self-financing portfolio invested in
the underlying stock and the risk-free asset. For this reason the binomial
market is called a complete market. In fact, the second fundamental
theorem of asset pricing states that market completeness is equivalent
to the uniqueness of the risk-neutral probability measure. An arbitrage free
market is said to be incomplete if the risk-neutral measure is not unique.
When the market is incomplete the price of European derivatives is not
uniquely defined and moreover there exist European derivatives which cannot
be hedged by self-financing portfolios. An example of incomplete market is
the trinomial model discussed in project 2.

24
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Implementation of the binomial model

For real world applications the binomial model must be properly rescaled in \,\ - 1 b#‘-f
time.

= A ygaws
Let 1" = 0 be the maturity of a European derivative and consider the uniform 252
partition of the interval [0, 7] with size h > 0:

& 0=t0<t]_<"'(t‘i\.‘=']n, t; —tioy =h-: for alli=1,...,N.

The binomial stock price on the given partition is given by S(0) = Sy = 0

and
Sl)=Sky)

Je*,  with probability p,

b-1)e i=1,..,N
(t;i_1)e?, with probability 1 — p, Tl

while Tr &k @ A

QL
%\}(&j: %o e :%-De
e Bl)=Be™. BTV | > <M

—_—

The instantaneous mean of log-return and the instantaneous variance
of the binomial stock price are defined respectively by

Lol ¥E(oen 206 AL SiocKk o Tl“\'Z '\NTio'\)A—L

/ @ZéEp’lUg S(fr) - log S{f-r’—l)] = E’pu + (1 — TJ)d], [-/'i:\/‘—« X

o 2
(2 = Iarglog (1) ~log (1) = T

A
p(l _p).‘ /
\ —
Gl \
“

while@itself is called instantaneous volatility. W:<\k’ J\
[ — 1)
The parameters o, are constant in the standard binomial model and are

computed using the physical probability (and not the risk-neutral probabil-

ity).
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In the applications of the binomial model it is customary to give the param-
cters «v, o and then compute u, d. (’D 4>
The risk-neutral probability then becomes 6\ = ~ 8

Dy FD C@' e
q= P@ ¢t/

The binomial model is trustworthy only for i very small compared to T (i.e.,

N =>>1).
The following Matlab code defines a function neck © S
T4i-oF€ waT~ Tl v lerore W =t
=4
S o« ¢ v AANETVIRER ol
= EuroZeroBin(g, T, s, alpha, sigma, r,p,N)
SE) Lo ewysichl REom ALY

that computes the initial price of the standard European derivative with
pay-off Y = g(S(7T')) using the recurrence formula.

The variable s is the initial price Sy of the stock.
The function also checks that ¢ € (0, 1), i.e., that the risk-neutral probability

is well defined (and thus the market is free of self-financing arbitrages). If
not a message appears which asks to increase the number of steps N.

26
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functior@z&EuroZeroBin(g,T,selpha,sigma,r,p,N)

h=T/N;

u=alphaxh+sigmaxsqrt (h)*sqrt((1-p)/p);

d=alpha*h-sigma*sqrt (h)*sqrt(p/(1-p)); —(REASE
<k3

qu=(exp (r*h)-exp(d))/(exp(u)-exp(d)); = ] P C¥ehkse

qd=1-qu;=x -9 X =T

if (qu<0 || qd<0) Q& /)J

display(’Error: the market is not arbitrage free. Increase the

value of N’); o

Pzero=0; ~

return

end

S=zeros(N+1,1);

P=zeros(N+1) ; CoNP \)’Q; 6 (‘_N_)

S=sxexp((N-[0:N])*u+[0:N]*d).’;

P(:,N+1)=g(8); _ = C
for jaNi-1:1 TV COoMxeTE A of € = %CS MW

for i=1:]j ~ P
N SNA Y e

P(i,3)=exp(-r#h)* (qusP (i, J+1)+qd*P(i+1,j+1)); 0 RE A #TEOFEC

end Coesr OLA

end

For instance, upon running the command 7/‘ = dbavTe < 06 [,’(\ = (X’ ﬂ r

&z 9
Pzero = EuroZeroBin(@(x) max(x — 11,0),1/3, 10, &,5,0,01, 1/7‘2, 10000)
N L N—
vsﬂﬁ\\V\” n=\7%
. = - 0
Pzero = 0.7813. =S0 VA

we get the output

which is the (binomial) price at time ¢ = 0 of a European call with strike ~N Gh,\(

K =11 and maturity 7" = 1/3 years (4 months) on a stock which at ¢ = 0 is E©AS <

priced 10 and which has volatility o = 0.5 (i.e., 50%) and zero mean of log-

return (@ = 0). The (annual) risk free rate is r = 0.01 (i.e., 1%). Moreover OO E v
p=1/2and N = 10000.

— ~_ —

The binomial price of the derivative is very weakly dependent on the param-
eter o € R and p € (0,1) (provided N is sufficiently large, say N = 10000).
Hence one normally chooses o = 0 and p = 1/2 in the implementation of the
binomial model. ==
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