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Lecture 1: Introduction and course overview

Goals for today:
• To know about the background of MPC and the ideas behind the course
• To get motivated by being reminded about the limitations of linear design
• To understand the receding horizon control (RHC) idea
• To understand how the course is organized
• To understand the learning objectives of the course
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Background on MPC

• The origin:

• Process control in petrochemical industry (1970s).
• Dynamic Matrix Control (DMC).

• Early drivers:

• Operation close to limits⇒ linear control shortcomings.
• Large returns on small improvements in e.g. product quality or energy/material consumption.
• Slow time scale allows time-consuming computations.

• Limitations of linear control design:

• Saturation on control and control rates.
• Process output limitations.
• Buffer control (zone objectives).

• Important attributes of MPC:

• MPC handles actuator limitations and process constraints.
• MPC handles multivariable systems.
• MPC is model based (step responses, state-space models etc.).

• Current driving factors:

• Development of theory and new application areas.
• Improvements in numerical computations.
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Example: feedback control of a double integrator system

xs = 0
−

Controller Saturation
uk

Plant xk

+

Figure 1: Feedback control loop with input saturation.

The control input is to be kept within bounds uk ∈ [−1, 1], ∀k. For safety reasons, a saturation function
is imposed

sat(u) ,


1, u > 1

u, |u| ≤ 1

−1, u < −1.
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LQ control of the double integrator system
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(a) Cautious design with uk = −Kxk and R = 20.
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(b) Serendipitous design for constrained and unconstrained LQR
with uk = −Kxk and uk = −sat(Kxk), respectively, and
R = 2.

Figure 2: LQ control of the double integrator system.
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LQ vs. receding horizon control
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(a) Serendipitous design for constrained and unconstrained LQR
with uk = −Kxk and uk = −sat(Kxk), respectively, and
R = 0.1.
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(b) Unconstrained LQR with uk = −Kxk and receding horizon
control with R = 0.1.

Figure 3: Comparison between LQ and receding horizon control of the double integrator system.
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The receding horizon idea

a) At time instant k, predict the process response over a finite prediction horizon N ; this response
depends on the sequence of future control inputs over the control horizon M .

b) Pick the control sequence which gives the best performance in terms of a specified objective,
cost function or criterion.

c) Apply the first element in the control sequence to the process, discard the rest of the sequence,
and return to step 1.
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An illustration of a receding horizon control

k − 2 k − 2 + M k − 2 + N

−0.4
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u

Past control
Present and planned control

k − 2 k − 2 + M k − 2 + N

−0.5

0

y

Past output
Present and planned output
Free response

Figure 4: An illustration of a receding horizon control. The free response is the future response when the control signal stays at its
current level.
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Example: Receding horizon control of an integrator system

• System at time k, with output dynamics: y(k + 1) = y(k) + u(k).
• Past inputs: {. . . , u(k − 2), u(k − 1)}.
• u(k + 1|k): planned (future) control input at time k + 1, given information at time k.
• ∆u(k + 1|k) = u(k + 1|k)− u(k|k): control increment.
• ŷ(k + 1|k): predicted output at time k + 1 given information at time k.
• Prediction horizon: N = 2.
• r(k): a reference signal to be followed by the output.

The predicted outputs can be written as:

ŷ(k + 1|k) = y(k) + u(k|k) = y(k) + u(k − 1) + ∆u(k|k) = yf (k + 1|k) + ∆u(k|k)

ŷ(k + 2|k) = y(k) + u(k|k) + u(k + 1|k) = y(k) + 2u(k|k) + ∆u(k + 1|k)

= y(k) + 2u(k − 1) + 2∆u(k|k) + ∆u(k + 1|k)

= yf (k + 2|k) + 2∆u(k|k) + ∆u(k + 1|k)

where yf (·|k) is the free response, i.e. the predicted output if the control input is frozen at time k to its
last value u(k − 1).
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• ŷ(k + 1|k): predicted output at time k + 1 given information at time k.
• Prediction horizon: N = 2.
• r(k): a reference signal to be followed by the output.

The predicted outputs can be written as:
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Case 1: control horizon of M = 1

Only one future control input is to be chosen, and we assume that the control stays constant after that,
i.e. ∆u(k + 1|k) = 0. A natural criterion for having future outputs close to the reference signal

V2 = (ŷ(k + 1|k)− r(k + 1))2 + (ŷ(k + 2|k)− r(k + 2))2

= (yf (k + 1|k) + ∆u(k|k)− r(k + 1))2 + (yf (k + 2|k) + 2∆u(k|k)− r(k + 2))2.

We can solve for the optimal value by differentiating V2, and set the derivative equal to zero:

∂V2

∂∆u(k|k)
= 2(yf (k + 1|k) + ∆u(k|k)− r(k + 1)) + 2(yf (k + 2|k) + 2∆u(k|k)− r(k + 2)) · 2 = 0.

This gives the optimal (incremental) control (remember that u(k) = u(k − 1) + ∆u(k|k))

∆u(k|k) =
1

5
((r(k + 1)− yf (k + 1|k)) + 2(r(k + 2)− yf (k + 2|k))) . (1)
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= (yf (k + 1|k) + ∆u(k|k)− r(k + 1))2 + (yf (k + 2|k) + 2∆u(k|k)− r(k + 2))2.

We can solve for the optimal value by differentiating V2, and set the derivative equal to zero:

∂V2

∂∆u(k|k)
= 2(yf (k + 1|k) + ∆u(k|k)− r(k + 1)) + 2(yf (k + 2|k) + 2∆u(k|k)− r(k + 2)) · 2 = 0.

This gives the optimal (incremental) control (remember that u(k) = u(k − 1) + ∆u(k|k))

∆u(k|k) =
1

5
((r(k + 1)− yf (k + 1|k)) + 2(r(k + 2)− yf (k + 2|k))) . (1)



Nikolce Murgovski - SSY281 Model Predictive Control 9 of 172

Case 1: control horizon of M = 1

Only one future control input is to be chosen, and we assume that the control stays constant after that,
i.e. ∆u(k + 1|k) = 0. A natural criterion for having future outputs close to the reference signal
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Alternatively, we could describe this procedure as trying to solve the system of linear equations{
ŷ(k + 1|k) = yf (k + 1|k) + ∆u(k|k) = r(k + 1)

ŷ(k + 2|k) = yf (k + 2|k) + 2∆u(k|k) = r(k + 2)

or, using vector notation,[
yf (k + 1|k)
yf (k + 2|k)

]
+

[
1
2

]
∆u(k|k) =

[
r(k + 1)
r(k + 2)

]
⇔

yf + Θ∆u(k|k) = r.

Since there is only one variable to fulfil two conditions, a natural solution is to find the value of ∆u(k|k)
that solves this system of linear equations in a least-squares sense, i.e. by minimizing
‖Θ∆u(k|k)− (r − yf )‖2. Expressing this in Matlab notation gives

∆u(k|k) = Θ\(r − yf ) = (Θ>Θ)−1Θ>(r − yf ), (2)

which is identical to the solution (1).
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Case 2: control horizon of M = 2

There are two free variables. Hence, with the system of linear equations interpretation, the conditions
to be fulfilled now become[

yf (k + 1|k)
yf (k + 2|k)

]
+

[
1 0
2 1

] [
∆u(k|k)

∆u(k + 1|k)

]
=

[
r(k + 1)
r(k + 2)

]

which can now be solved uniquely for the optimal control sequence:[
∆u(k|k)

∆u(k + 1|k)

]
=

[
1 0
2 1

]−1

(r − yf ). (3)

Sticking to the receding horizon principle, only the first element in the optimal control sequence is used,
namely ∆u(k|k), and the other element is discarded.
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Summary

The MPC recipe for the example:
a) At time k, predict the output N samples ahead:

ŷ(k + 1|k), . . . , ŷ(k + N |k).

b) The predictions depend on future control inputs

u(k|k), u(k + 1|k), . . . , u(k + M − 1|k).

(Normally, M ≤ N , and we assume that u is either 0 or unchanged after this.)
c) Minimize a criterion (now adopting the index notation as in Matlab)

V (k) = V (ŷ(k + 1:k + N |k), u(k :k + M − 1|k))

with respect to the control sequence u(k :k + M − 1|k).
d) Apply the first control signal in the sequence to the process:

u(k) = u(k|k).

e) Increment time k := k + 1 and go to 1.
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MPC ingredients

• An internal model describing process and disturbances.
• An estimator/predictor to determine the evolution of the state.
• An objective/criterion to express the desired system behaviour.
• An online optimisation algorithm to determine future control actions.
• The receding horizon principle.
• Our focus: linear models, quadratic criteria with linear constraints.
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Outline of the course

• What is MPC? Introduction, motivation and review.
• MPC basics and relations to dynamic programming.
• How to cope with incomplete state information.
• Solving predictive control problems.
• User aspects, case study, guest lecture.
• MPC theory.
• Review and outlook.
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Learning objectives

After completion of the course, you should be able to:
• Understand and explain the basic principles of model predictive control, its pros and cons, and the

challenges met in implementation and applications.
• Correctly state, in mathematical form, MPC formulations of control problems in various

applications.
• Describe and construct MPC controllers based on a linear model, quadratic costs and linear

constraints.
• Describe basic properties of MPC controllers and analyse algorithmic details on simple examples.
• Understand and explain basic properties of the optimisation problem as an ingredient of MPC, in

particular concepts like linear, quadratic and convex optimisation, optimality conditions, and
feasibility.
• Use software tools for analysis and synthesis of MPC controllers.
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Practical information

• Canvas: syllabus, news, schedule, assignments and more...
• Literature.
• Lectures: slides and Lecture Notes. Lectures will be recorded.
• Problem solving sessions: analytical problems + Matlab coding.
• Home assignments.
• Micro assignments.
• Examination.
• Course representatives.
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Literature

• Model Predictive Control, Lecture Notes.
• J.B. Rawlings, D.Q. Mayne, M.M. Diehl: Model Predictive Control. Theory, Computation, and

Design, 2nd ed. Amazon or online.
• Supplementary literature suggested at the course homepage.
• Also @Canvas: Assignments, Matlab files, etc.
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Home and micro assignments

There are 7 mandatory home assignments and 1 optional. The home assignments constitute the
main part of the examination in the course and should be pursued individually.
Note:
• Read the instructions carefully.
• Start working early to meet deadlines.
• Use Supervision sessions to get help.

There are also 13 compulsory micro-assignments to be completed before each lecture.
• They are designed in the form of quizzes, to be completed online, on Canvas.
• Each micro-assignment gives maximum of 2 points.
• At least 18 points are needed in order to pass the course.
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Grading scheme for home assignments

• Each assignment gives maximum 15 points, except assignment 1 that gives max 10 points.
• The seven compulsory assignments thus give in total max 100 points.
• The optional assignment 8 can give additional 15 points.
• The total score decides the grade with limits 40, 60, 80 points.
• To ensure enough coverage of the course, a minimum of 5 points is required for each of at least 6

assignments.

Each assignment has a deadline. Possible late submissions are handled in the following way:
• A cumulative ”delay budget” of max 5 days is available for each student.
• Total delay within this limit will not affect the score, but once the limit is reached, assignments

submitted late will render 0 points, as will any assignment submitted more than 3 days late.
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Course representatives

The following student representatives will participate in the course evaluation:
• Alfred Hazard
• Subramanya Mallappa
• Nathaly Sanchez Chan
• Pramod Sivaramakrishnan
• Ahmad Wahba
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