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Lecture 2: Review and preliminaries

Goals for today:
• To master different discrete-time state space models used for MPC.
• To understand conditions for setpoint tracking and disturbance rejection.
• To refresh basic concepts used to solve systems of linear equations.
• To refresh and learn a new way to test for controllability and observability.
• To know how to use quadratic forms for stability investigations of linear systems.
• To refresh how to handle LTI systems in Matlab.

Learning objectives:
• Understand and explain the basic principles of model predictive control, its pros and cons, and the

challenges met in implementation and applications.
• Use software tools for analysis and synthesis of MPC controllers.
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Continuous State space model

We will study continues state space models of the form

ẋ(t) = Acx(t) +Bcu(t)

y(t) = Cyx(t)

z(t) = Czx(t)

(4)

where

x = (x1, . . . , xn) is the state vector

u = (u1, . . . , um) is the control input vector

y = (y1, . . . , ypy ) is the vector of measured outputs
z = (z1, . . . , zpz ) is the vector of controlled outputs.

Often, z = y = (y1, . . . , yp), and then we simply write y(t) = Cx(t).
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Discrete state space model

The solution of (4) with initial condition x(t0) is

x(t) = eAc(t−t0)x(t0) +

∫ t

t0

eAc(t−s)Bcu(s)ds. (5)

Assume that the control signal u is piecewise constant (h is the sampling interval),

u(t) = u(kh), kh ≤ t < (k + 1)h.

By using this in (5) with t = (k + 1)h and t0 = kh, we get the discrete time state equation

x(k + 1) = eAchx(k) +

(∫ h

0

eAcsBc ds

)
u(k) = Ax(k) +Bu(k),

where, for simplicity of notation, h has been omitted from the time argument. The output equation of (4)
is the same (but with t replaced by k). A compact version of the discrete state-space model in the
case z = y is

x+ = Ax+Bu

y = Cx.
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Sampling and computational delay
y

u

(a) Instantaneous computation.
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(b) Full sampling interval delay.
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(c) Fractional delay.

Figure 5: Control action and computational delay.
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Computational delay

Allowing for a computational delay τ , the control signal is still piecewise constant but now given by

u(t) =

{
u(k − 1), kh ≤ t < kh+ τ

u(k), kh+ τ ≤ t < (k + 1)h.

The solution (5) is now obtained in two steps (corresponding to the two different input signal levels) as

x(k + 1) = eAc(h−τ)x(kh+ τ) +

∫ h−τ

0

eAcsBc ds · u(k)

= eAc(h−τ)
(
eAcτx(kh) +

∫ τ

0

eAcsBc ds · u(k − 1)

)
+

∫ h−τ

0

eAcsBc ds · u(k)

= eAchx(kh) + eAc(h−τ)
∫ τ

0

eAcsBc ds︸ ︷︷ ︸
B1

·u(k − 1) +

∫ h−τ

0

eAcsBc ds︸ ︷︷ ︸
B2

·u(k)

= Ax(k) +B1u(k − 1) +B2u(k)

.
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This can be put in a standard form by introducing the augmented state vector

ξ(k) =

[
x(k)

u(k − 1)

]
.

The new state space model becomes

ξ(k + 1) =

[
x(k + 1)
u(k)

]
=

[
A B1

0 0

]
ξ(k) +

[
B2

I

]
u(k).
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State space model with incremental control

x+ = Ax+Bu

y = Cx.

Introduce the incremental control (or control move)

∆u(k) = u(k)− u(k − 1)

and the augmented state vector

ξ(k) =

[
x(k)

u(k − 1)

]
.

This leads to the new model

ξ+ = Aξ + B∆u

y = Cξ

with

A =

[
A B
0 I

]
B =

[
B
I

]
C =

[
C 0

]
.
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Setpoint tracking

Consider the system

x+ = Ax+Bu (6)

y = Cx. (7)

A steady state (xs, us) of the system satisfies the equation

[
I −A −B

] [xs
us

]
= 0.

The task to bring the system output y to a desired, constant setpoint ysp is termed setpoint tracking.
At steady state, this requires Cxs = ysp and the condition for setpoint tracking becomes[

I −A −B
C 0

] [
xs
us

]
=

[
0
ysp

]
. (8)

This is a system of n+ p equations with n+m unknowns.
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Regulation problem for deviation variables

Assume that equation (8) holds. Then the deviation variables

δx(k) = x(k)− xs
δu(k) = u(k)− us

satisfy the following dynamics

δx(k + 1) = Ax(k) +Bu(k)− xs = Ax(k) +Bu(k)− (Axs +Bus) = Aδx(k) +Bδu(k)

δy(k) = y(k)− ysp = Cx(k)− Cxs = Cδx(k).

Thus, the deviation variables satisfy the same state equation as the original variables.
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Systems of linear equations

For any m× n matrix A ∈ Rm×n we have,

Rank of A : rank(A) = rank(A>) = r.

Range of A : R(A) = {Ax | x ∈ Rn} dimR(A) = r.

Nullspace of A : N (A) = {x | Ax = 0} dimN (A) = n− r.

Orthogonal subspaces: R(A>) ⊥ N (A) R(A) ⊥ N (A>).

For the system of linear equations

Ax = b, A ∈ Rm×n

we have:
• There exists a solution x for every b if and only if r = m, i.e. R(A) = Rm.
• The solution is unique if and only if r = n, i.e. N (A) = {0}.
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Solution to overdetermined linear system

Consider the overdetermined system of linear equations

Ax = b, A ∈ Rm×n

with m > n. Assume that A has maximal rank r = n. Then the solution to the minimization problem

min
x∈Rn

|Ax− b|

is given by

x∗ = A†b

where the pseudo-inverse A† is defined by

A† = (A>A)−1A>.

Remark

Ax∗ = AA†b is the orthogonal projection of b onto R(A), i.e. x∗ is mapped to the vector in R(A) that is
closest to b. In Matlab notation, x∗ = A\b.
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Solutions to undetermined linear system

Consider, e.g., the undetermined system of linear equations

Ax = b, A ∈ Rm×n

with m < n. Assume that A has maximal rank r = m. Since the system has many solutions, a common
choice is to pick a representative solution, e.g. the one which minimises the least-norm

min
x∈Rn, Ax=b

x>x. (9)

Proposition

The solution to (9), where A is a full row rank, is

x∗ = A>(AA>)−1b.

Remark

The matrix A>(AA>)−1 is also known as right pseudo-inverse.
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Observability

Definition (Observability)
A linear, discrete time system

x+ = Ax

y = Cx

is observable if for some N , any x(0) can be determined from {y(0), y(1), . . . , y(N − 1)}.
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Lemma (Observability)
The system is observable if and only if any of the following, equivalent, conditions hold:

• The matrix


C
CA

...
CAn−1

 has full rank n.

• The matrix
[
λI −A
C

]
has rank n for all λ ∈ C.

Remark
A weaker condition is detectability, which requires that any unobservable modes are strictly stable.
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Controllability

Definition (Controllability)
A linear, discrete time system

x+ = Ax+Bu

is controllable if it is possible to steer the system from any state x0 to any state xf in finite time.

Lemma (Controllability)
The system is controllable if and only if any of the following, equivalent conditions hold:
• The matrix

[
B AB · · · An−1B

]
has full rank n.

• The matrix
[
λI −A B

]
has rank n for all λ ∈ C.

Remark
A weaker condition is stabilisability which requires that any uncontrollable modes are strictly stable.
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Constant disturbance modelling

A constant disturbance d of dimension nd can be modelled by the state equation

d+ = d.

Augmenting the state model (6) with this disturbance gives the model[
x
d

]+
=

[
A Bd
0 I

] [
x
d

]
+

[
B
0

]
u

y =
[
C Cd

] [x
d

] (10)

where the disturbance affects both state and output equations through the matrices Bd and Cd.
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Proposition (Detectability of the augmented system)

The augmented system (10) is detectable if and only if the original system is detectable and the
following condition holds:

rank

([
I −A −Bd
C Cd

])
= n+ nd (11)

Remark
In order for the rank condition to be satisfied, we must have

nd ≤ p

i.e. we must have at least as many measured outputs as the dimension of the disturbance vector.
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nd ≤ p

i.e. we must have at least as many measured outputs as the dimension of the disturbance vector.
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Quadratic forms

A quadratic form is given by the expression

x>Sx = |x|2S

with x ∈ Rn and S a real, symmetric matrix. The matrix S is positive definite (S � 0) if and only if

x>Sx > 0, ∀ nonzero x ∈ Rn

and the matrix S is positive semidefinite (S � 0) if and only if

x>Sx ≥ 0, ∀x ∈ Rn.



Nikolce Murgovski - SSY281 Model Predictive Control 39 of 174

Stability

Definition (Stability)
The linear, discrete time system

x+ = Ax (12)

is asymptotically stable (solutions converge to the origin) if and only if the magnitudes of the
eigenvalues of A are strictly less than 1 (A is stable).

The evolution of the state trajectory can be studied via the quadratic form

V (x) = x>Sx = |x|2S , S � 0

which can be interpreted as a generalization of the Euclidean norm |x| (squared). Evaluated along
solutions to (12), V changes according to

V (x+)− V (x) = −x>(S −A>SA)x ≡ −x>Qx.

Hence, the matrix Q determines whether V will decay or not.
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Lemma (Stability)
For a stable system, the following conditions are equivalent:

(a) The matrix A is stable.

(b) For each Q � 0 there is a unique solution S � 0 of the discrete Lyapunov equation

S −A>SA = Q. (13)
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LTI systems in Matlab

Example: Paper machine headbox – Ex 2.4 in [4].

% Create continuous time LTI object
Ac = [-1.93 0 0 0;

0.394 -0.426 0 0;
0 0 -0.63 0;
0.82 -0.784 0.413 -0.426 ];

Bc = [ 1.274 1.274;
0 0;
1.34 -0.65;
0 0 ];

Cc = [ 0 1 0 0;
0 0 1 0;
0 0 0 1 ];

Dc = zeros(3,2);
csys = ss(Ac,Bc,Cc,Dc); %create state space model

% Assign variable names
set(csys,'InputName',{'Stock flowrate';'WW flowrate'},...

'OutputName',{'Headbox level';'Feed tank conc';'Headbox conc'},...
'StateName',{'Feed tank level';'Headbox level';...
'Feed tank conc';'Headbox conc'},...
'TimeUnit','minutes');

get(csys);
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% Compute eigenvalues
eig(Ac);

% Create discrete time model
Ts=2;
dsys=c2d(csys,Ts);

% Compute eigenvalues
eig(dsys.A);
exp(eig(Ac)*Ts);

% Controllability
rank(ctrb(dsys));
rank(ctrb(dsys.A,dsys.B(:,1)));
rank(ctrb(dsys.A,dsys.B(:,2)));

% Observability
rank(obsv(dsys))
rank(obsv(dsys.A,dsys.C(1,:)));
rank(obsv(dsys.A,dsys.C(2,:)));
rank(obsv(dsys.A,dsys.C(3,:)));

% Step response
step(dsys);
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