CHALMERS

UNIVERSITY OF TECHNOLOGY

SSY281 - MODEL PREDICTIVE CONTROL

NIKOLCE MURGOVSKI

Division of Systems and Control Department of Electrical Engineering Chalmers University of Technology Gothenburg, Sweden

2021-01-21

Lecture 2: Review and preliminaries

Goals for today:

- To master different discrete-time state space models used for MPC.
- To understand conditions for setpoint tracking and disturbance rejection.
- To refresh basic concepts used to solve systems of linear equations.
- To refresh and learn a new way to test for controllability and observability.
- To know how to use quadratic forms for stability investigations of linear systems.
- To refresh how to handle LTI systems in Matlab.

Lecture 2: Review and preliminaries

Goals for today:

- To master different discrete-time state space models used for MPC.
- To understand conditions for setpoint tracking and disturbance rejection.
- To refresh basic concepts used to solve systems of linear equations.
- To refresh and learn a new way to test for controllability and observability.
- To know how to use quadratic forms for stability investigations of linear systems.
- To refresh how to handle LTI systems in Matlab.

Learning objectives:

- Understand and explain the basic principles of model predictive control, its pros and cons, and the challenges met in implementation and applications.
- Use software tools for analysis and synthesis of MPC controllers.

Continuous State space model

We will study continues state space models of the form

$$\begin{aligned}
\dot{x}(t) &= A_c x(t) + B_c u(t) \\
y(t) &= C_y x(t) \\
z(t) &= C_z x(t)
\end{aligned} \tag{4}$$

where

```
x=(x_1,\ldots,x_n) is the state vector u=(u_1,\ldots,u_m) is the control input vector y=(y_1,\ldots,y_{p_y}) is the vector of measured outputs z=(z_1,\ldots,z_{p_z}) is the vector of controlled outputs.
```

Continuous State space model

We will study continues state space models of the form

$$\begin{aligned}
\dot{x}(t) &= A_c x(t) + B_c u(t) \\
y(t) &= C_y x(t) \\
z(t) &= C_z x(t)
\end{aligned} \tag{4}$$

where

$$x=(x_1,\ldots,x_n)$$
 is the state vector $u=(u_1,\ldots,u_m)$ is the control input vector $y=(y_1,\ldots,y_{p_y})$ is the vector of **measured outputs** $z=(z_1,\ldots,z_{p_z})$ is the vector of **controlled outputs**.

Often, $z = y = (y_1, \dots, y_p)$, and then we simply write y(t) = Cx(t).

The solution of (4) with initial condition $x(t_0)$ is

$$x(t) = e^{A_c(t-t_0)}x(t_0) + \int_{t_0}^t e^{A_c(t-s)}B_cu(s)ds.$$
(5)

Discrete state space model

The solution of (4) with initial condition $x(t_0)$ is

$$x(t) = e^{A_c(t-t_0)}x(t_0) + \int_{t_0}^t e^{A_c(t-s)}B_cu(s)ds.$$
(5)

Assume that the control signal u is piecewise constant (h is the sampling interval),

$$u(t) = u(kh), \quad kh \le t < (k+1)h.$$

Discrete state space model

The solution of (4) with initial condition $x(t_0)$ is

$$x(t) = e^{A_c(t-t_0)}x(t_0) + \int_{t_0}^t e^{A_c(t-s)}B_cu(s)ds.$$
(5)

Assume that the control signal u is piecewise constant (h is the sampling interval),

$$u(t) = u(kh), \quad kh \le t < (k+1)h.$$

By using this in (5) with t = (k+1)h and $t_0 = kh$, we get the discrete time state equation

$$x(k+1) = e^{A_c h} x(k) + \left(\int_0^h e^{A_c s} B_c ds \right) u(k) = Ax(k) + Bu(k),$$

where, for simplicity of notation, \boldsymbol{h} has been omitted from the time argument.

Discrete state space model

The solution of (4) with initial condition $x(t_0)$ is

$$x(t) = e^{A_c(t-t_0)}x(t_0) + \int_{t_0}^t e^{A_c(t-s)}B_cu(s)ds.$$
(5)

Assume that the control signal u is piecewise constant (h is the sampling interval),

$$u(t) = u(kh), \quad kh \le t < (k+1)h.$$

By using this in (5) with t = (k+1)h and $t_0 = kh$, we get the discrete time state equation

$$x(k+1) = e^{A_c h} x(k) + \left(\int_0^h e^{A_c s} B_c \, ds \right) u(k) = Ax(k) + Bu(k),$$

where, for simplicity of notation, h has been omitted from the time argument. The output equation of (4) is the same (but with t replaced by k). A compact version of the **discrete state-space model** in the case z=y is

$$x^+ = Ax + Bu$$
$$y = Cx.$$

Sampling and computational delay

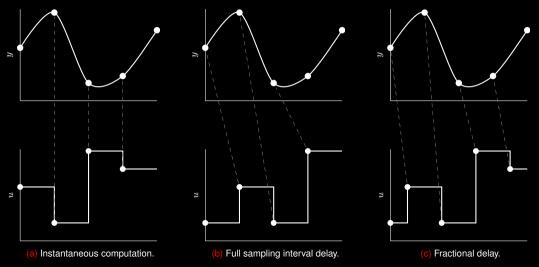


Figure 5: Control action and computational delay.

Allowing for a computational delay au, the control signal is still piecewise constant but now given by

$$u(t) = \begin{cases} u(k-1), & kh \le t < kh + \tau \\ u(k), & kh + \tau \le t < (k+1)h. \end{cases}$$

Allowing for a computational delay au, the control signal is still piecewise constant but now given by

$$u(t) = \begin{cases} u(k-1), & kh \le t < kh + \tau \\ u(k), & kh + \tau \le t < (k+1)h. \end{cases}$$

$$x(k+1) = e^{A_c(h-\tau)}x(kh+\tau) + \int_0^{h-\tau} e^{A_c s} B_c \, ds \cdot u(k)$$

Allowing for a computational delay τ , the control signal is still piecewise constant but now given by

$$u(t) = \begin{cases} u(k-1), & kh \le t < kh + \tau \\ u(k), & kh + \tau \le t < (k+1)h. \end{cases}$$

$$x(k+1) = e^{A_c(h-\tau)}x(kh+\tau) + \int_0^{h-\tau} e^{A_c s} B_c ds \cdot u(k)$$

$$= e^{A_c(h-\tau)} \left(e^{A_c \tau} x(kh) + \int_0^{\tau} e^{A_c s} B_c ds \cdot u(k-1) \right) + \int_0^{h-\tau} e^{A_c s} B_c ds \cdot u(k)$$

Allowing for a computational delay τ , the control signal is still piecewise constant but now given by

$$u(t) = \begin{cases} u(k-1), & kh \le t < kh + \tau \\ u(k), & kh + \tau \le t < (k+1)h. \end{cases}$$

$$x(k+1) = e^{A_c(h-\tau)}x(kh+\tau) + \int_0^{h-\tau} e^{A_c s} B_c \, ds \cdot u(k)$$

$$= e^{A_c(h-\tau)} \left(e^{A_c \tau} x(kh) + \int_0^{\tau} e^{A_c s} B_c \, ds \cdot u(k-1) \right) + \int_0^{h-\tau} e^{A_c s} B_c \, ds \cdot u(k)$$

$$= e^{A_c h} x(kh) + \underbrace{e^{A_c(h-\tau)} \int_0^{\tau} e^{A_c s} B_c \, ds}_{B_1} \cdot u(k-1) + \underbrace{\int_0^{h-\tau} e^{A_c s} B_c \, ds}_{B_2} \cdot u(k)$$

Allowing for a computational delay au, the control signal is still piecewise constant but now given by

$$u(t) = \begin{cases} u(k-1), & kh \le t < kh + \tau \\ u(k), & kh + \tau \le t < (k+1)h. \end{cases}$$

$$x(k+1) = e^{A_c(h-\tau)}x(kh+\tau) + \int_0^{h-\tau} e^{A_c s} B_c ds \cdot u(k)$$

$$= e^{A_c(h-\tau)} \left(e^{A_c \tau} x(kh) + \int_0^{\tau} e^{A_c s} B_c ds \cdot u(k-1) \right) + \int_0^{h-\tau} e^{A_c s} B_c ds \cdot u(k)$$

$$= e^{A_c h} x(kh) + \underbrace{e^{A_c(h-\tau)} \int_0^{\tau} e^{A_c s} B_c ds \cdot u(k-1)}_{B_1} + \underbrace{\int_0^{h-\tau} e^{A_c s} B_c ds \cdot u(k)}_{B_2} \cdot u(k)$$

$$= Ax(k) + B_1 u(k-1) + B_2 u(k).$$

This can be put in a standard form by introducing the augmented state vector

$$\xi(k) = \begin{bmatrix} x(k) \\ u(k-1) \end{bmatrix}.$$

The new state space model becomes

$$\xi(k+1) = \begin{bmatrix} x(k+1) \\ u(k) \end{bmatrix} = \begin{bmatrix} A & B_1 \\ 0 & 0 \end{bmatrix} \xi(k) + \begin{bmatrix} B_2 \\ I \end{bmatrix} u(k).$$

State space model with incremental control

$$x^+ = Ax + Bu$$
$$y = Cx.$$

State space model with incremental control

$$x^+ = Ax + Bu$$

$$y = Cx$$
.

Introduce the incremental control (or control move)

$$\Delta u(k) = u(k) - u(k-1)$$

and the augmented state vector

$$\xi(k) = \begin{bmatrix} x(k) \\ u(k-1) \end{bmatrix}.$$

State space model with incremental control

$$x^+ = Ax + Bu$$

y = Cx.

Introduce the incremental control (or control move)

$$\Delta u(k) = u(k) - u(k-1)$$

and the augmented state vector

$$\xi(k) = \begin{bmatrix} x(k) \\ u(k-1) \end{bmatrix}.$$

This leads to the new model

$$\xi^{+} = \mathcal{A}\xi + \mathcal{B}\Delta u$$
$$y = \mathcal{C}\xi$$

with

$$\mathcal{A} = \begin{bmatrix} A & B \\ 0 & I \end{bmatrix} \quad \mathcal{B} = \begin{bmatrix} B \\ I \end{bmatrix} \quad \mathcal{C} = \begin{bmatrix} C & 0 \end{bmatrix}.$$

Setpoint tracking

Consider the system

$$x^{+} = Ax + Bu$$

$$y = Cx.$$
(6)

(7)

Setpoint tracking

Consider the system

$$x^{+} = Ax + Bu \tag{6}$$

$$y = Cx$$
.

A steady state (x_s, u_s) of the system satisfies the equation

$$\begin{bmatrix} I - A & -B \end{bmatrix} \begin{bmatrix} x_s \\ u_s \end{bmatrix} = 0.$$

Setpoint tracking

Consider the system

$$x^{+} = Ax + Bu \tag{6}$$

$$y = Cx. (7$$

A steady state (x_s, u_s) of the system satisfies the equation

$$\begin{bmatrix} I - A & -B \end{bmatrix} \begin{bmatrix} x_s \\ u_s \end{bmatrix} = 0.$$

The task to bring the system output y to a desired, constant setpoint y_{sp} is termed **setpoint tracking**. At steady state, this requires $Cx_s = y_{sp}$ and the condition for setpoint tracking becomes

$$\begin{bmatrix} I - A & -B \\ C & 0 \end{bmatrix} \begin{bmatrix} x_s \\ u_s \end{bmatrix} = \begin{bmatrix} 0 \\ y_{sp} \end{bmatrix}. \tag{8}$$

This is a system of n + p equations with n + m unknowns.

Regulation problem for deviation variables

Assume that equation (8) holds. Then the deviation variables

$$\delta x(k) = x(k) - x_s$$
$$\delta u(k) = u(k) - u_s$$

satisfy the following dynamics

$$\delta x(k+1) = Ax(k) + Bu(k) - x_s = Ax(k) + Bu(k) - (Ax_s + Bu_s) = A\delta x(k) + B\delta u(k) \delta y(k) = y(k) - y_{sp} = Cx(k) - Cx_s = C\delta x(k).$$

Thus, the deviation variables satisfy the same state equation as the original variables.

Systems of linear equations

For any $m \times n$ matrix $A \in \mathbb{R}^{m \times n}$ we have,

Rank of A: $\operatorname{rank}(A) = \operatorname{rank}(A^{\top}) = r$.

Range of A: $\mathcal{R}(A) = \{Ax \mid x \in \mathbb{R}^n\} \quad \dim \mathcal{R}(A) = r.$

Nullspace of A: $\mathcal{N}(A) = \{x \mid Ax = 0\}$ $\dim \mathcal{N}(A) = n - r$.

Orthogonal subspaces: $\mathcal{R}(A^{\top}) \perp \mathcal{N}(A) \quad \mathcal{R}(A) \perp \mathcal{N}(A^{\top}).$

Systems of linear equations

For any $m \times n$ matrix $A \in \mathbb{R}^{m \times n}$ we have,

Rank of
$$A$$
: $\operatorname{rank}(A) = \operatorname{rank}(A^{\top}) = r$.

Range of
$$A$$
: $\mathcal{R}(A) = \{Ax \mid x \in \mathbb{R}^n\} \quad \dim \mathcal{R}(A) = r.$

Nullspace of
$$A$$
: $\mathcal{N}(A) = \{x \mid Ax = 0\}$ $\dim \mathcal{N}(A) = n - r$.

Orthogonal subspaces:
$$\mathcal{R}(A^{\top}) \perp \mathcal{N}(A) \quad \mathcal{R}(A) \perp \mathcal{N}(A^{\top}).$$

For the system of linear equations

$$Ax = b, \quad A \in \mathbb{R}^{m \times n}$$

we have:

- There exists a solution x for every b if and only if r=m, i.e. $\mathcal{R}(A)=\mathbb{R}^m$.
- The solution is unique if and only if r = n, i.e. $\mathcal{N}(A) = \{0\}$.

Solution to overdetermined linear system

Consider the *overdetermined* system of linear equations

$$Ax = b, \quad A \in \mathbb{R}^{m \times n}$$

with m > n. Assume that A has maximal rank r = n. Then the solution to the minimization problem

$$\min_{x \in \mathbb{R}^n} |Ax - b|$$

is given by

$$x^* = A^{\dagger}b$$

where the $\emph{pseudo-inverse}~A^{\dagger}$ is defined by

$$A^{\dagger} = (A^{\top}A)^{-1}A^{\top}.$$

Solution to overdetermined linear system

Consider the overdetermined system of linear equations

$$Ax = b$$
. $A \in \mathbb{R}^{m \times n}$

with m > n. Assume that A has maximal rank r = n. Then the solution to the minimization problem

$$\min_{x \in \mathbb{R}^n} |Ax - b|$$

is given by

$$x^* = A^{\dagger}b$$

where the *pseudo-inverse* A^{\dagger} is defined by

$$A^{\dagger} = (A^{\top}A)^{-1}A^{\top}.$$

Remark

 $Ax^* = AA^{\dagger}b$ is the orthogonal projection of b onto $\mathcal{R}(A)$, i.e. x^* is mapped to the vector in $\mathcal{R}(A)$ that is closest to b. In Matlab notation, $x^* = A \setminus b$.

Solutions to undetermined linear system

Consider, e.g., the undetermined system of linear equations

$$Ax = b, \quad A \in \mathbb{R}^{m \times n}$$

with m < n. Assume that A has maximal rank r = m. Since the system has many solutions, a common choice is to pick a representative solution, e.g., the one which minimises the least-norm

$$\min_{x \in \mathbb{R}^n, \ Ax = b} x^\top x. \tag{9}$$

Solutions to undetermined linear system

Consider, e.g., the undetermined system of linear equations

$$Ax = b, \quad A \in \mathbb{R}^{m \times n}$$

with m < n. Assume that A has maximal rank r = m. Since the system has many solutions, a common choice is to pick a representative solution, e.g. the one which minimises the least-norm

$$\min_{x \in \mathbb{R}^n, \ Ax = b} x^\top x. \tag{9}$$

Proposition

The solution to (9), where A is a full row rank, is

$$x^* = A^{\top} (AA^{\top})^{-1} b.$$

Solutions to undetermined linear system

Consider, e.g., the undetermined system of linear equations

$$Ax = b$$
, $A \in \mathbb{R}^{m \times n}$

with m < n. Assume that A has maximal rank r = m. Since the system has many solutions, a common choice is to pick a representative solution, e.g., the one which minimises the least-norm

$$\min_{x \in \mathbb{R}^n, \ Ax = b} x^\top x. \tag{9}$$

Proposition

The solution to (9), where A is a full row rank, is

$$x^* = A^{\top} (AA^{\top})^{-1} b.$$

Remark

The matrix $A^{\top}(AA^{\top})^{-1}$ is also known as right pseudo-inverse.

Observability

Definition (Observability)

A linear, discrete time system

$$x' = Ax$$

y = Cx

is observable if for some N, any x(0) can be determined from $\{y(0),y(1),\dots,y(N-1)\}$.

Lemma (Observability)

The system is observable if and only if any of the following, equivalent, conditions hold:

- The matrix $\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$ has full rank n.
- ullet The matrix $egin{bmatrix} \lambda I-A \ C \end{bmatrix}$ has rank n for all $\lambda \in \mathbb{C}$.

Lemma (Observability)

The system is observable if and only if any of the following, equivalent, conditions hold:

- The matrix $egin{bmatrix} C \ CA \ dots \ CA^{n-1} \end{bmatrix}$ has full rank n.
- ullet The matrix $egin{bmatrix} \lambda I-A \ C \end{bmatrix}$ has rank n for all $\lambda \in \mathbb{C}.$

Remarl

A weaker condition is detectability, which requires that any unobservable modes are strictly stable.

Controllability

Definition (Controllability

A linear, discrete time system

$$x^+ = Ax + Bu$$

is controllable if it is possible to steer the system from any state x_0 to any state x_f in finite time.

Controllability

Definition (Controllability)

A linear, discrete time system

$$x^+ = Ax + Bu$$

is controllable if it is possible to steer the system from any state x_0 to any state x_ℓ in finite time.

Lemma (Controllability)

The system is controllable if and only if any of the following, equivalent conditions hold:

- The matrix $\begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$ has full rank n.
- The matrix $\begin{bmatrix} \lambda I A & B \end{bmatrix}$ has rank n for all $\lambda \in \mathbb{C}$.

Controllability

Definition (Controllability)

A linear, discrete time system

$$x^+ = Ax + Bu$$

is controllable if it is possible to steer the system from any state x_0 to any state x_ℓ in finite time.

Lemma (Controllability)

The system is controllable if and only if any of the following, equivalent conditions hold:

- The matrix $\begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$ has full rank n.
- The matrix $\begin{bmatrix} \lambda I A & B \end{bmatrix}$ has rank n for all $\lambda \in \mathbb{C}$.

Remark

A weaker condition is **stabilisability** which requires that any uncontrollable modes are strictly stable.

Constant disturbance modelling

A constant disturbance d of dimension n_d can be modelled by the state equation

$$d^+ = d.$$

Constant disturbance modelling

A constant disturbance d of dimension n_d can be modelled by the state equation

$$d^+ = d$$
.

Augmenting the state model (6) with this disturbance gives the model

$$\begin{bmatrix} x \\ d \end{bmatrix}^{+} = \begin{bmatrix} A & B_d \\ 0 & I \end{bmatrix} \begin{bmatrix} x \\ d \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} C & C_d \end{bmatrix} \begin{bmatrix} x \\ d \end{bmatrix}$$
(10)

where the disturbance affects both state and output equations through the matrices B_d and C_d .

Proposition (Detectability of the augmented system)

The augmented system (10) is detectable if and only if the original system is detectable and the following condition holds:

$$\operatorname{rank}\left(\begin{bmatrix} I - A & -B_d \\ C & C_d \end{bmatrix}\right) = n + n_d \tag{11}$$

Proposition (Detectability of the augmented system)

The augmented system (10) is detectable if and only if the original system is detectable and the following condition holds:

$$\operatorname{rank}\left(\begin{bmatrix} I - A & -B_d \\ C & C_d \end{bmatrix}\right) = n + n_d \tag{11}$$

Remark

In order for the rank condition to be satisfied, we must have

$$n_d < p$$

i.e. we must have at least as many measured outputs as the dimension of the disturbance vector.

Quadratic forms

A quadratic form is given by the expression

$$x^{\mathsf{T}} S x = |x|_S^2$$

with $x \in \mathbb{R}^n$ and S a real, *symmetric* matrix. The matrix S is *positive definite* $(S \succ 0)$ if and only if

$$x^{\top}Sx > 0$$
, \forall nonzero $x \in \mathbb{R}^n$

and the matrix S is positive semidefinite ($S \succeq 0$) if and only if

$$x^{\top} S x \ge 0, \quad \forall x \in \mathbb{R}^n.$$

(12)

Stability

Definition (Stability)

The linear, discrete time system

$$x^+ = Ax$$

is asymptotically stable (solutions converge to the origin) if and only if the magnitudes of the eigenvalues of A are strictly less than 1 (A is stable).

Stability

Definition (Stability)

The linear, discrete time system

$$x^{+} = Ax \tag{12}$$

is asymptotically stable (solutions converge to the origin) if and only if the magnitudes of the eigenvalues of A are strictly less than 1 (A is stable).

The evolution of the state trajectory can be studied via the quadratic form

$$V(x) = x^{\top} S x = |x|_{S}^{2}, \quad S \succeq 0$$

which can be interpreted as a generalization of the Euclidean norm |x| (squared). Evaluated along solutions to (12), V changes according to

$$V(x^+) - V(x) = -x^\top (S - A^\top SA)x \equiv -x^\top Qx.$$

Hence, the matrix Q determines whether V will decay or not.

(13)

Lemma (Stability)

For a stable system, the following conditions are equivalent:

- (a) The matrix A is stable.
- (b) For each $Q\succ 0$ there is a unique solution $S\succ 0$ of the discrete Lyapunov equation

$$S - A^{\top} S A = Q.$$

LTI systems in Matlab

Example: Paper machine headbox – Ex 2.4 in [4].

```
Ac = [-1.93 \ 0]
      0.394 - 0.426 0
                          0:
      0 0 -0.63
      0.82 -0.784 0.413 -0.426 1;
Bc = [1.274 1.274;
      1.34 -0.65;
            0 1;
Cc = [0]
Dc = zeros(3.2):
csvs = ss(Ac, Bc, Cc, Dc); %create state space model
set (csvs, 'InputName', {'Stock flowrate'; 'WW flowrate'},...
aet (csvs);
```

```
eig(Ac);
Ts=2:
dsys=c2d(csys, Ts);
eig(dsys.A);
exp(eig(Ac)*Ts);
rank(ctrb(dsys));
rank(ctrb(dsys.A, dsys.B(:,1)));
rank(ctrb(dsys.A,dsys.B(:,2)));
rank (obsv (dsvs))
rank (obsv(dsys.A, dsys.C(1,:)));
rank(obsv(dsys.A, dsys.C(2,:)));
rank(obsv(dsys.A,dsys.C(3,:)));
step(dsys);
```

References

- [1] J.B. Rawlings, D.Q. Mayne, and M.M. Diehl. Model Predictive Control: Theory, Computation, and Design, 2nd edition. Nob Hill Publishing 2017.
 Available online at https://sites.engineering.ucsb.edu/~ibraw/mpc
- [2] G. Goodwin, M.M. Seron, and J.A. De Don. Constrained Control and Estimation. Springer 2004. Available online via Chalmers Library.
- [3] F Borrelli, A. Bemporad, and M. Morari. Predictive Control for Linear and Hybrid Systems. Available online at http://www.mpc.berkeley.edu/mpc-course-material
- [4] J. Maciejowski. Predictive Control with Constraints. Prentice Hall 2002.
- [5] S. Boyd and L. Vandenberghe. *Convex optimisation*. Cambridge University Press 2004
- [6] Diehl, M. Real-Time Optimization for Large Scale Nonlinear Processes. PhD thesis, University of Heidelberg, 2001.

CHALMERS UNIVERSITY OF TECHNOLOGY