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Lecture 3: Unconstrained receding horizon control

Goals for today:
• To master the formulation of linear quadratic control (LQ)
• To understand how dynamic programming can be used to solve the LQ problem
• To formulate and solve the finite-time LQ problem using the “batch approach”
• To formulate an unconstrained receding horizon control based on LQ

Learning objectives:
• Correctly state, in mathematical form, MPC formulations based on descriptions of control problems

expressed in application terms
• Describe and construct MPC controllers based on a linear model, quadratic costs and linear

constraints
• Describe basic properties of MPC controllers and analyse algorithmic details on very simple

examples
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The LQ problem

System:

S : x+ = Ax+Bu. (14)

Optimisation problem:

P : min
u(0:N−1)

VN (x(0), u(0 :N − 1))

where the minimization is with respect to the sequence of control inputs

u(0 :N − 1) = {u(0), u(1), . . . , u(N − 1)}

and subject to the system model (14).

The objective or criterion or cost function VN is given by

VN (x(0), u(0 :N − 1)) = x>(N)Pfx(N) +

N−1∑
i=0

(x>(i)Qx(i) + u>(i)Ru(i))

= lf (x(N)) +

N−1∑
i=0

l(x(i), u(i)). (15)



Nikolce Murgovski - SSY281 Model Predictive Control 44 of 180

The LQ problem

System:

S : x+ = Ax+Bu. (14)

Optimisation problem:

P : min
u(0:N−1)

VN (x(0), u(0 :N − 1))

where the minimization is with respect to the sequence of control inputs

u(0 :N − 1) = {u(0), u(1), . . . , u(N − 1)}

and subject to the system model (14).
The objective or criterion or cost function VN is given by

VN (x(0), u(0 :N − 1)) = x>(N)Pfx(N) +

N−1∑
i=0

(x>(i)Qx(i) + u>(i)Ru(i))

= lf (x(N)) +

N−1∑
i=0

l(x(i), u(i)). (15)



Nikolce Murgovski - SSY281 Model Predictive Control 45 of 180

Batch solution

Repeated use of the system equation (14) gives
x(1)
x(2)

...
x(N)

 =


A
A2

...
AN

x(0) +


B 0 · · · 0

AB B
. . . 0

...
...

. . .
...

AN−1B AN−2B · · · B




u(0)
u(1)

...
u(N − 1)

 (16)

or, with a more compact notation,

x = Ωx(0) + Γu. (17)

The LQ criterion (15) can now be written

VN (x(0),u) = x>(0)Qx(0) + x>Q̄x + u>R̄u

= x>(0)Qx(0) + (Ωx(0) + Γu)>Q̄(Ωx(0) + Γu) + u>R̄u

= u>(Γ>Q̄Γ + R̄)u + 2x>(0)Ω>Q̄Γu + x>(0)(Q+ Ω>Q̄Ω)x(0)

(18)

where Q̄ = diag(Q, . . . , Q, Pf ) and R̄ = diag(R, . . . , R).
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Since VN (x(0),u) is quadratic in u, we can solve for the optimal control vector (either by differentiation
or by completing the squares):

u∗ = −(Γ>Q̄Γ + R̄)−1Γ>Q̄Ωx(0)

and the optimal cost-to-go, or value function, is

V ∗N (x(0),u) = x>(0)
(
Q+ Ω>Q̄Ω− Ω>Q̄Γ(Γ>Q̄Γ + R̄)−1Γ>Q̄Ω

)
x(0).

Note that u∗ is linear in x(0) and V ∗N is quadratic in x(0)!
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Dynamic programming solution
Let us inspect the cost function VN in the same way by spelling out the stage costs:

VN = l(x(0), u(0)) + . . .+

u(N−2)︷ ︸︸ ︷
l(x(N − 2), u(N − 2)) +

u(N−1)︷ ︸︸ ︷
l(x(N − 1), u(N − 1)) + lf (x(N)) . (19)

In the expression above, an important property of the problem has been indicated: each control input
affects only a corresponding tail of the sum; the later the control input is, the shorter the tail. Starting at
the very end, only the last two terms of (19) depend on the last control input u(N − 1);

we can therefore
rewrite the minimization problem as

min
u(0:N−1)

VN (x(0), u(0 :N − 1)) =

min
u(0:N−2)

{
VN−1(x(0), u(0 :N − 2)) + min

u(N−1)
[l(x(N − 1), u(N − 1)) + lf (x(N))]

}
.

This allows us to start unfolding the solution to the LQ problem by applying backwards dynamic
programming.
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The last two terms of (19) are quadratic in u(N − 1). We can rewrite this expression into one quadratic
form by using the system model (14) and by completing the squares as follows:

l(x(N − 1), u(N − 1)) + lf (x(N))

= x>(N − 1)Qx(N − 1) + u>(N − 1)Ru(N − 1)

+ (Ax(N − 1) +Bu(N − 1))>Pf (Ax(N − 1) +Bu(N − 1))

= x>(Q+A>PfA)x+ u>(R+B>PfB)u+ 2x>A>PfBu

= (u+ (R+B>PfB)−1B>PfAx)>(R+B>PfB)(u+ (R+B>PfB)−1B>PfAx)

+ x>(Q+A>PfA−A>PfB(R+B>PfB)−1B>PfA)x

where we have dropped the time arguments for x(N − 1) and u(N − 1) in the second step, and the last
step has been obtained by completing the squares. The latter makes it possible to simply read off the
minimizing control

u∗(N − 1) = u∗(N − 1;x) = −(R+B>PfB)−1B>PfA︸ ︷︷ ︸
K(N−1)

x ≡ K(N − 1)x

and the resulting optimal cost-to-go from state x at time N − 1 to the final time N is

V ∗N−1→N (x) = x> (Q+A>PfA−A>PfB(R+B>PfB)−1B>PfA)︸ ︷︷ ︸
P (N−1)

x ≡ x>P (N − 1)x. (20)
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Using the result above, namely that the minimum value of the last two terms in (19) is given as an
explicit function of x(N − 1) in (20), we now proceed to include one more term from (19), namely the
one depending on u(N − 2):

l(x(N − 2), u(N − 2)) + V ∗N−1→N (x(N − 1))

= x>(N − 2)Qx(N − 2) + u>(N − 2)Ru(N − 2)

+ (Ax(N − 2) +Bu(N − 2))>P (N − 1)(Ax(N − 2) +Bu(N − 2)).

By carrying out calculations, completely analogous to the ones in step 1 (Pf is replaced by P (N − 1)),
we get the optimal control

u∗(N − 2) = u∗(N − 2;x) = −(R+B>P (N − 1)B)−1B>P (N − 1)Ax = K(N − 2)x,

where x is now short for x(N − 2), and the optimal cost-to-go from state x at time N − 2 to the final
time N is

V ∗N−2→N (x) = x>P (N − 2)x, (21)

and P (N − 2) is given by the Riccati equation

P (N − 2) = Q+A>P (N − 1)A−A>P (N − 1)B(R+B>P (N − 1)B)−1B>P (N − 1)A.



Nikolce Murgovski - SSY281 Model Predictive Control 49 of 180

Using the result above, namely that the minimum value of the last two terms in (19) is given as an
explicit function of x(N − 1) in (20), we now proceed to include one more term from (19), namely the
one depending on u(N − 2):

l(x(N − 2), u(N − 2)) + V ∗N−1→N (x(N − 1))

= x>(N − 2)Qx(N − 2) + u>(N − 2)Ru(N − 2)

+ (Ax(N − 2) +Bu(N − 2))>P (N − 1)(Ax(N − 2) +Bu(N − 2)).

By carrying out calculations, completely analogous to the ones in step 1 (Pf is replaced by P (N − 1)),
we get the optimal control

u∗(N − 2) = u∗(N − 2;x) = −(R+B>P (N − 1)B)−1B>P (N − 1)Ax = K(N − 2)x,

where x is now short for x(N − 2), and the optimal cost-to-go from state x at time N − 2 to the final
time N is

V ∗N−2→N (x) = x>P (N − 2)x, (21)

and P (N − 2) is given by the Riccati equation

P (N − 2) = Q+A>P (N − 1)A−A>P (N − 1)B(R+B>P (N − 1)B)−1B>P (N − 1)A.



Nikolce Murgovski - SSY281 Model Predictive Control 49 of 180

Using the result above, namely that the minimum value of the last two terms in (19) is given as an
explicit function of x(N − 1) in (20), we now proceed to include one more term from (19), namely the
one depending on u(N − 2):

l(x(N − 2), u(N − 2)) + V ∗N−1→N (x(N − 1))

= x>(N − 2)Qx(N − 2) + u>(N − 2)Ru(N − 2)

+ (Ax(N − 2) +Bu(N − 2))>P (N − 1)(Ax(N − 2) +Bu(N − 2)).

By carrying out calculations, completely analogous to the ones in step 1 (Pf is replaced by P (N − 1)),
we get the optimal control

u∗(N − 2) = u∗(N − 2;x) = −(R+B>P (N − 1)B)−1B>P (N − 1)Ax = K(N − 2)x,

where x is now short for x(N − 2)

, and the optimal cost-to-go from state x at time N − 2 to the final
time N is

V ∗N−2→N (x) = x>P (N − 2)x, (21)

and P (N − 2) is given by the Riccati equation

P (N − 2) = Q+A>P (N − 1)A−A>P (N − 1)B(R+B>P (N − 1)B)−1B>P (N − 1)A.



Nikolce Murgovski - SSY281 Model Predictive Control 49 of 180

Using the result above, namely that the minimum value of the last two terms in (19) is given as an
explicit function of x(N − 1) in (20), we now proceed to include one more term from (19), namely the
one depending on u(N − 2):

l(x(N − 2), u(N − 2)) + V ∗N−1→N (x(N − 1))

= x>(N − 2)Qx(N − 2) + u>(N − 2)Ru(N − 2)

+ (Ax(N − 2) +Bu(N − 2))>P (N − 1)(Ax(N − 2) +Bu(N − 2)).

By carrying out calculations, completely analogous to the ones in step 1 (Pf is replaced by P (N − 1)),
we get the optimal control

u∗(N − 2) = u∗(N − 2;x) = −(R+B>P (N − 1)B)−1B>P (N − 1)Ax = K(N − 2)x,

where x is now short for x(N − 2), and the optimal cost-to-go from state x at time N − 2 to the final
time N is

V ∗N−2→N (x) = x>P (N − 2)x, (21)

and P (N − 2) is given by the Riccati equation

P (N − 2) = Q+A>P (N − 1)A−A>P (N − 1)B(R+B>P (N − 1)B)−1B>P (N − 1)A.
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DP solution to the LQ problem

The sequence of optimal control laws (control policy) is computed as:

u∗(k;x) = K(k)x(k), k = 0, . . . , N − 1

K(k) = −(R+B>P (k + 1)B)−1B>P (k + 1)A

where the Riccati equation is

P (k − 1) = Q+A>P (k)A−A>P (k)B(R+B>P (k)B)−1B>P (k)A, P (N) = Pf (22)

or equivalently

P (k − 1) = Q+A>P (k)A+A>P (k)BK(k − 1), P (N) = Pf . (23)

The optimal cost-to-go (from time k to time N ) is

V ∗k→N (x) = x>(k)P (k)x(k).
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Example: batch solution of a simple integrator system

Consider the simple integrator system

x+ = x+ u.

We will study the finite-time optimal control problem with x0 = 1, N = 3 and Q = R = Pf = 1. Using
the batch approach, the optimal control sequence can be found as

u∗ = −

4 2 1
2 3 1
1 1 2

−1 3
2
1

x0 = −

0.615
0.231
0.077

x0
x∗ =

[
1 0.385 0.154 0.077

]>
.
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DP solution to the integrator system

We may also solve the problem with DP. The solution can be obtained as u∗(k) = K(k)x(k), where the
optimal control gain can be found via backward recursion,

K(0 : 2) = (−0.615,−0.6,−0.5) .

The optimal control sequence can now be obtained by simulating the system forward in time,

u∗ =

 −0.615 · 1
−0.6 · 0.385
−0.5 · 0.154

 = −

0.615
0.231
0.077


x∗ =

[
1 0.385 0.154 0.077

]>
.

Clearly, and as expected, the solutions by the batch and DP approach are identical.
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Batch vs. DP solution under additive process disturbance

x+ = x+ u+ w.

0 1 2 3

−2

0

2

k

x
k

w = 0

w = −1

w = 1

(a) Open loop control.
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−2

0

2

k

x
k

w = 0

w = −1

w = 1

(b) Closed-loop, feedback control.

Figure 6: Receding horizon control of an uncertain system with an additive process disturbance w.
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Example: optimality does not guarantee stability

Consider the system

x+ = Ax+Bu =

[
4/3 −2/3
1 0

]
x+

[
1
0

]
u

y = Cx =
[
−2/3 1

]
x

and design an LQ controller for Q = Pf = C>C + δI with δ = 0.001 and R = 0.001. The time horizon is
N = 5. To compute the solution, the Riccati equation (22) is iterated 4 times with P (5) = Pf , and the
controller gain is obtained as

K(0) = −(R+B>P (1)B)−1B>P (1)A =
[
−0.026 0.665

]
.

The eigenvalues of the closed-loop matrix A+BK(0) are {1.307, 0.001}, i.e. the closed-loop system is
unstable.
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Infinite horizon LQ control

The system

S : x+ = Ax+Bu (24)

with optimisation criterion

V∞(x(0), u(0 :∞)) =

∞∑
i=0

(x>(i)Qx(i) + u>(i)Ru(i)) (25)

and with pair (A,B) controllable, and Q,R � 0, is an infinite horizon LQ control problem whose solution
gives a stable closed-loop system

x+ = Ax+BKx

with a time invariant feedback gain K, given by

K = −(B>PB +R)−1B>PA (26)

P = Q+A>PA−A>PB(B>PB +R)−1B>PA. (27)

The latter equation is called the algebraic Riccati equation. The optimal cost is given by

V ∗∞(x(0)) = x>(0)Px(0).
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Example: optimality does not guarantee stability, cont’d

Consider again the LQ design for the system in the previous example. If the time horizon is increased
and chosen as N = 7, i.e. the Riccati equation is iterated two more times, then the eigenvalues of the
closed-loop matrix become {0.989, 0.001}, i.e. the closed-loop system is now just stable. Continuing to
iterate the Riccati equation, the solution converges to the solution of the algebraic Riccati equation,
giving the infinite horizon closed-loop eigenvalues

eig(A+BK) = {0.664, 0.001}

i.e. the closed-loop system is stable as predicted.
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Example: unstable and stable optimal control

0 1 2 3 4 5 6 7 8

2

4

6

8

k

x

x1(k), horizon of N = 5

x2(k), horizon of N = 5

x1(k), infinite horizon
x2(k), infinite horizon

Figure 7: State evolution from the two optimal controllers, one with horizon of N = 5 and the other with an infinite horizon.
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