
SSY281 - MODEL PREDICTIVE CONTROL

NIKOLCE MURGOVSKI

Division of Systems and Control
Department of Electrical Engineering
Chalmers University of Technology
Gothenburg, Sweden

2021-01-25



Nikolce Murgovski - SSY281 Model Predictive Control 43 of 180

Lecture 3: Unconstrained receding horizon control

Goals for today:
• To master the formulation of linear quadratic control (LQ)
• To understand how dynamic programming can be used to solve the LQ problem
• To formulate and solve the finite-time LQ problem using the “batch approach”
• To formulate an unconstrained receding horizon control based on LQ

Learning objectives:
• Correctly state, in mathematical form, MPC formulations based on descriptions of control problems

expressed in application terms
• Describe and construct MPC controllers based on a linear model, quadratic costs and linear

constraints
• Describe basic properties of MPC controllers and analyse algorithmic details on very simple

examples
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The LQ problem

System:

S : x+ = Ax+Bu. (14)

Optimisation problem:

P : min
u(0:N−1)

VN (x(0), u(0 :N − 1))

where the minimization is with respect to the sequence of control inputs

u(0 :N − 1) = {u(0), u(1), . . . , u(N − 1)}

and subject to the system model (14).

The objective or criterion or cost function VN is given by

VN (x(0), u(0 :N − 1)) = x>(N)Pfx(N) +

N−1∑
i=0

(x>(i)Qx(i) + u>(i)Ru(i))

= lf (x(N)) +

N−1∑
i=0

l(x(i), u(i)). (15)
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Batch solution

Repeated use of the system equation (14) gives
x(1)
x(2)

...
x(N)

 =


A
A2

...
AN

x(0) +


B 0 · · · 0

AB B
. . . 0

...
...

. . .
...

AN−1B AN−2B · · · B




u(0)
u(1)

...
u(N − 1)

 (16)

or, with a more compact notation,

x = Ωx(0) + Γu. (17)

The LQ criterion (15) can now be written

VN (x(0),u) = x>(0)Qx(0) + x>Q̄x + u>R̄u

= x>(0)Qx(0) + (Ωx(0) + Γu)>Q̄(Ωx(0) + Γu) + u>R̄u

= u>(Γ>Q̄Γ + R̄)u + 2x>(0)Ω>Q̄Γu + x>(0)(Q+ Ω>Q̄Ω)x(0)

(18)

where Q̄ = diag(Q, . . . , Q, Pf ) and R̄ = diag(R, . . . , R).
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Since VN (x(0),u) is quadratic in u, we can solve for the optimal control vector (either by differentiation
or by completing the squares):

u∗ = −(Γ>Q̄Γ + R̄)−1Γ>Q̄Ωx(0)

and the optimal cost-to-go, or value function, is

V ∗N (x(0),u) = x>(0)
(
Q+ Ω>Q̄Ω− Ω>Q̄Γ(Γ>Q̄Γ + R̄)−1Γ>Q̄Ω

)
x(0).

Note that u∗ is linear in x(0) and V ∗N is quadratic in x(0)!
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Dynamic programming solution
Let us inspect the cost function VN in the same way by spelling out the stage costs:

VN = l(x(0), u(0)) + . . .+

u(N−2)︷ ︸︸ ︷
l(x(N − 2), u(N − 2)) +

u(N−1)︷ ︸︸ ︷
l(x(N − 1), u(N − 1)) + lf (x(N)) . (19)

In the expression above, an important property of the problem has been indicated: each control input
affects only a corresponding tail of the sum; the later the control input is, the shorter the tail. Starting at
the very end, only the last two terms of (19) depend on the last control input u(N − 1);

we can therefore
rewrite the minimization problem as

min
u(0:N−1)

VN (x(0), u(0 :N − 1)) =

min
u(0:N−2)

{
VN−1(x(0), u(0 :N − 2)) + min

u(N−1)
[l(x(N − 1), u(N − 1)) + lf (x(N))]

}
.

This allows us to start unfolding the solution to the LQ problem by applying backwards dynamic
programming.
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The last two terms of (19) are quadratic in u(N − 1). We can rewrite this expression into one quadratic
form by using the system model (14) and by completing the squares as follows:

l(x(N − 1), u(N − 1)) + lf (x(N))

= x>(N − 1)Qx(N − 1) + u>(N − 1)Ru(N − 1)

+ (Ax(N − 1) +Bu(N − 1))>Pf (Ax(N − 1) +Bu(N − 1))

= x>(Q+A>PfA)x+ u>(R+B>PfB)u+ 2x>A>PfBu

= (u+ (R+B>PfB)−1B>PfAx)>(R+B>PfB)(u+ (R+B>PfB)−1B>PfAx)

+ x>(Q+A>PfA−A>PfB(R+B>PfB)−1B>PfA)x

where we have dropped the time arguments for x(N − 1) and u(N − 1) in the second step, and the last
step has been obtained by completing the squares. The latter makes it possible to simply read off the
minimizing control

u∗(N − 1) = u∗(N − 1;x) = −(R+B>PfB)−1B>PfA︸ ︷︷ ︸
K(N−1)

x ≡ K(N − 1)x

and the resulting optimal cost-to-go from state x at time N − 1 to the final time N is

V ∗N−1→N (x) = x> (Q+A>PfA−A>PfB(R+B>PfB)−1B>PfA)︸ ︷︷ ︸
P (N−1)

x ≡ x>P (N − 1)x. (20)
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Using the result above, namely that the minimum value of the last two terms in (19) is given as an
explicit function of x(N − 1) in (20), we now proceed to include one more term from (19), namely the
one depending on u(N − 2):

l(x(N − 2), u(N − 2)) + V ∗N−1→N (x(N − 1))

= x>(N − 2)Qx(N − 2) + u>(N − 2)Ru(N − 2)

+ (Ax(N − 2) +Bu(N − 2))>P (N − 1)(Ax(N − 2) +Bu(N − 2)).

By carrying out calculations, completely analogous to the ones in step 1 (Pf is replaced by P (N − 1)),
we get the optimal control

u∗(N − 2) = u∗(N − 2;x) = −(R+B>P (N − 1)B)−1B>P (N − 1)Ax = K(N − 2)x,

where x is now short for x(N − 2), and the optimal cost-to-go from state x at time N − 2 to the final
time N is

V ∗N−2→N (x) = x>P (N − 2)x, (21)

and P (N − 2) is given by the Riccati equation

P (N − 2) = Q+A>P (N − 1)A−A>P (N − 1)B(R+B>P (N − 1)B)−1B>P (N − 1)A.
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DP solution to the LQ problem

The sequence of optimal control laws (control policy) is computed as:

u∗(k;x) = K(k)x(k), k = 0, . . . , N − 1

K(k) = −(R+B>P (k + 1)B)−1B>P (k + 1)A

where the Riccati equation is

P (k − 1) = Q+A>P (k)A−A>P (k)B(R+B>P (k)B)−1B>P (k)A, P (N) = Pf (22)

or equivalently

P (k − 1) = Q+A>P (k)A+A>P (k)BK(k − 1), P (N) = Pf . (23)

The optimal cost-to-go (from time k to time N ) is

V ∗k→N (x) = x>(k)P (k)x(k).
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Example: batch solution of a simple integrator system

Consider the simple integrator system

x+ = x+ u.

We will study the finite-time optimal control problem with x0 = 1, N = 3 and Q = R = Pf = 1. Using
the batch approach, the optimal control sequence can be found as

u∗ = −

4 2 1
2 3 1
1 1 2

−1 3
2
1

x0 = −

0.615
0.231
0.077

x0
x∗ =

[
1 0.385 0.154 0.077

]>
.
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DP solution to the integrator system

We may also solve the problem with DP. The solution can be obtained as u∗(k) = K(k)x(k), where the
optimal control gain can be found via backward recursion,

K(0 : 2) = (−0.615,−0.6,−0.5) .

The optimal control sequence can now be obtained by simulating the system forward in time,

u∗ =

 −0.615 · 1
−0.6 · 0.385
−0.5 · 0.154

 = −

0.615
0.231
0.077


x∗ =

[
1 0.385 0.154 0.077

]>
.

Clearly, and as expected, the solutions by the batch and DP approach are identical.
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Batch vs. DP solution under additive process disturbance

x+ = x+ u+ w.

0 1 2 3

−2

0

2

k

x
k

w = 0

w = −1

w = 1

(a) Open loop control.

0 1 2 3

−2

0

2

k

x
k

w = 0

w = −1

w = 1

(b) Closed-loop, feedback control.

Figure 6: Receding horizon control of an uncertain system with an additive process disturbance w.
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Example: optimality does not guarantee stability

Consider the system

x+ = Ax+Bu =

[
4/3 −2/3
1 0

]
x+

[
1
0

]
u

y = Cx =
[
−2/3 1

]
x

and design an LQ controller for Q = Pf = C>C + δI with δ = 0.001 and R = 0.001. The time horizon is
N = 5. To compute the solution, the Riccati equation (22) is iterated 4 times with P (5) = Pf , and the
controller gain is obtained as

K(0) = −(R+B>P (1)B)−1B>P (1)A =
[
−0.026 0.665

]
.

The eigenvalues of the closed-loop matrix A+BK(0) are {1.307, 0.001}, i.e. the closed-loop system is
unstable.
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Infinite horizon LQ control

The system

S : x+ = Ax+Bu (24)

with optimisation criterion

V∞(x(0), u(0 :∞)) =

∞∑
i=0

(x>(i)Qx(i) + u>(i)Ru(i)) (25)

and with pair (A,B) controllable, and Q,R � 0, is an infinite horizon LQ control problem whose solution
gives a stable closed-loop system

x+ = Ax+BKx

with a time invariant feedback gain K, given by

K = −(B>PB +R)−1B>PA (26)

P = Q+A>PA−A>PB(B>PB +R)−1B>PA. (27)

The latter equation is called the algebraic Riccati equation. The optimal cost is given by

V ∗∞(x(0)) = x>(0)Px(0).
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Example: optimality does not guarantee stability, cont’d

Consider again the LQ design for the system in the previous example. If the time horizon is increased
and chosen as N = 7, i.e. the Riccati equation is iterated two more times, then the eigenvalues of the
closed-loop matrix become {0.989, 0.001}, i.e. the closed-loop system is now just stable. Continuing to
iterate the Riccati equation, the solution converges to the solution of the algebraic Riccati equation,
giving the infinite horizon closed-loop eigenvalues

eig(A+BK) = {0.664, 0.001}

i.e. the closed-loop system is stable as predicted.
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Example: unstable and stable optimal control

0 1 2 3 4 5 6 7 8

2

4

6

8

k

x

x1(k), horizon of N = 5

x2(k), horizon of N = 5

x1(k), infinite horizon
x2(k), infinite horizon

Figure 7: State evolution from the two optimal controllers, one with horizon of N = 5 and the other with an infinite horizon.
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