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Lecture 4: Constrained receding horizon control

Goals for today:
• To understand the principles behind and to formulate a constrained receding horizon controller

(RHC).
• To formulate an MPC based on linear models and quadratic criteria.

Learning objectives:
• Describe and construct MPC controllers based on linear model, quadratic costs and linear

constraints.
• Describe basic properties of MPC controllers and analyse algorithmic details on simple examples.
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Infinite horizon optimal control

With the cost function defined as

V∞(x0, u(0 :∞)) =

∞∑
i=0

l(x(i), u(i)),

with l(·, ·) ≥ 0 and l(0, 0) = 0, the infinite horizon optimal control problem is

min
u(0:∞)

V∞(x0, u(0 :∞)) (28)

subject to x+ = f(x, u), x(0) = x0 (29)

x(k) ∈ X, u(k) ∈ U, for all k ∈ (0,∞). (30)
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Finite horizon optimal control

With the cost function defined as

VN (x0, u(0 :N − 1)) = Vf (x(N)) +

N−1∑
i=0

l(x(i), u(i)),

with the final cost Vf (·) ≥ 0 and Vf (0) = 0, the finite horizon optimal control problem is

min
u(0:N−1)

VN (x0, u(0 :N − 1)) (31)

subject to x+ = f(x, u), x(0) = x0 (32)

x(k) ∈ X, u(k) ∈ U, for all k ∈ (0, N − 1) (33)

x(N) ∈ Xf ⊆ X. (34)

Note that we have added a terminal constraint x(N) ∈ Xf !
It is assumed that U, X, and Xf all contain the origin.
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Solution to the finite time optimisation problem

Optimal cost-to-go:

V ∗N (x0) = min
u(0:N−1)

{VN (x0, u(0 :N − 1)) | u(0 :N − 1) ∈ UN (x0)}.

Optimal control and state sequences:

u∗(0 :N − 1;x0) = {u∗(0;x0), u∗(1;x0), . . . , u∗(N − 1;x0)}
x∗(0 :N ;x0) = {x∗(0;x0), x∗(1;x0), . . . , x∗(N ;x0)}.
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Receding horizon control

1. At sampling instant k, when we have access to the state x(k) = x (assumed to be within the
feasible set), solve the optimisation problem

V ∗N (x) = min
u(0:N−1)

{VN (x, u(0 :N − 1)) | u(0 :N − 1) ∈ UN (x)}

for the optimal control sequence

u∗(0 :N − 1;x) = {u∗(0;x), u∗(1;x), . . . , u∗(N − 1;x)}.

2. Apply the first control input

u(k) = u∗(0;x).

3. Let k := k + 1 and go to 1.
Note that the receding horizon controller described this way implicitly defines a feedback control law for
all x belonging to the feasible set

u(x) = κN (x) ≡ u∗(0;x), x ∈ XN .
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Linear quadratic MPC

The system model is linear,

x+ = Ax+Bu,

and the criterion is quadratic as described in Section 3.1. Constraints on control signals due to actuator
saturation take the form

umin ≤ u(k) ≤ umax, for all k ≥ 0 (35)

and similar constraints on the states due to e.g. safety or quality concerns may be

xmin ≤ x(k) ≤ xmax, for all k ≥ 0. (36)
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Sometimes, it is relevant to be able to put constraints also on the rate of change of control inputs,

∆umin ≤ u(k)− u(k − 1) ≤ ∆umax, for all k ≥ 0. (37)

Such constraints can easily be put in a form that generalizes the inequalities (35) and (36) by
introducing a new state vector

ξ(k) =

[
x(k)

u(k − 1)

]
for which the augmented system model becomes

ξ+ = Aξ + B∆u

with appropriately defined matrices (see Section 2). The constraint (37) can then be stated as[
0 −I
0 I

]
ξ(k) +

[
I
−I

]
u(k) ≤

[
∆umax

−∆umin

]
.

The conclusion is that all the linear constraints described can be written in the compact form

Fu +Gx ≤ h (38)

with u, x defined in (20), for some matrices F , G and some vector h, all of appropriate dimensions.
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Linear quadratic MPC: summary

1. At sampling instant k, when we have access to the state x(k) = x, solve the optimisation problem

V ∗N (x) = min
u(0:N−1)

{VN (x, u(0 :N − 1)) | u(0 :N − 1) ∈ UN (x)},

VN (x, u(0 :N − 1)) = x>(N)Pfx(N) +

N−1∑
i=0

(
x>(i)Qx(i) + u>(i)Ru(i)

)
; x(0) = x

for the optimal control sequence

u∗(0 :N − 1;x) = {u∗(0;x), u∗(1;x), . . . , u∗(N − 1;x)}.

2. Apply the first control input

u(k) = u∗(0;x).

3. Let k := k + 1 and go to 1.
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Linear quadratic MPC with vector notation: condensed form

1. At sampling instant k, when we have access to the state x(k) = x, solve the optimisation problem

minimize
u

VN (x,u) = x>Qx+ (Ωx(0) + Γu)>Q̄(Ωx(0) + Γu) + u>R̄u

subject to Fu +G(Ωx(0) + Γu) ≤ h.

2. Apply the first control input u(k) = u(0).

3. Let k := k + 1 and go to 1.
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Example: LQ MPC for an integrator

Consider a simple integrator system

x+ = x+ u

for which we want to design an LQ based MPC with Q = R = Pf = 1, N = 2 and a control constraint

u ∈ U = [−1, 1].

Using the state equation and the notation x(0) = x as above, we get the following expressions for the
state variables involved in the optimisation:

x(0) = x x(1) = x+ u(0) x(2) = x+ u(0) + u(1).

The cost function to minimize with respect to u = [u(0) u(1)]>, satisfying the control constraint, is

VN (x,u) = x2 + (x+ u(0))2 + (x+ u(0) + u(1))2 + u(0)2 + u(1)2

= u>Hu + 2[2x x]u + 3x2 ≡ u>Hu + 2c(x)>u + d(x)

with

H =

[
3 1
1 2

]
c(x) =

[
2x
x

]
d(x) = 3x2.
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Completing the squares, we can finally rewrite the cost function as

VN (x,u) = (u− a(x))>H (u− a(x)) + d(x)− a(x)>Ha(x)

where

a(x) = −H−1c(x) = Kx, K =

[
−3/5
−1/5

]
.

It is clear from the expression for VN (x,u) that u = a(x) is the global minimizer, and as long as this
solution respects the constraints, it is also the solution of the constrained optimisation problem.
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Figure 8: LQ MPC for the integrator system. Here, a(x) is the unconstrained minimizer, and the red lines depict level curves for
VN (x,u).
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The conclusion from these arguments is that the receding horizon controller, which is determined from
the first component of the minimizing control sequence, i.e. u(0), is given by

u(x) = κN (x) = u∗(0;x) =

{
−3/5 · x 0 ≤ x ≤ 5/3

−1 x ≥ 5/3.

It is then easy to verify that the same arguments hold for negative x, and the resulting control law is
indeed symmetric:

u(x) = κN (x) = u∗(0;x) =


1 x ≤ −5/3

−3/5 · x −5/3 ≤ x ≤ 5/3

−1 x ≥ 5/3.
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Linear quadratic MPC: uncondensed (lifted) formulation

1. At sampling instant k, when we have access to the state x(k) = x, solve the optimisation problem

V ∗N (x) = min
u(0:N−1),x(0:N)

{VN (x, u(0 :N − 1), x(0 :N))},

VN (x, u(0 :N − 1), x(0 :N)) = x>(N)Pfx(N) +

N−1∑
i=0

(
x>(i)Qx(i) + u>(i)Ru(i)

)
, x(0) = x

for the optimal control and state sequences

u∗(0 :N − 1;x) = {u∗(0;x), u∗(1;x), . . . , u∗(N − 1;x)}
x∗(0 :N ;x) = {x∗(0;x), x∗(1;x), . . . , x∗(N ;x)}

and subject to

x(k + 1) = Ax(k) +Bu(k), x(0) = x (39)

x(k) ∈ X u(k) ∈ U for all k ∈ (0, N − 1) (40)

x(N) ∈ Xf ⊆ X. (41)

2. Apply the first control input u(k) = u∗(0;x).
3. Let k := k + 1 and go to 1.



Nikolce Murgovski - SSY281 Model Predictive Control 71 of 192

Linear quadratic MPC: uncondensed (lifted) formulation

1. At sampling instant k, when we have access to the state x(k) = x, solve the optimisation problem

V ∗N (x) = min
u(0:N−1),x(0:N)

{VN (x, u(0 :N − 1), x(0 :N))},

VN (x, u(0 :N − 1), x(0 :N)) = x>(N)Pfx(N) +

N−1∑
i=0

(
x>(i)Qx(i) + u>(i)Ru(i)

)
, x(0) = x

for the optimal control and state sequences

u∗(0 :N − 1;x) = {u∗(0;x), u∗(1;x), . . . , u∗(N − 1;x)}
x∗(0 :N ;x) = {x∗(0;x), x∗(1;x), . . . , x∗(N ;x)}

and subject to

x(k + 1) = Ax(k) +Bu(k), x(0) = x (39)

x(k) ∈ X u(k) ∈ U for all k ∈ (0, N − 1) (40)

x(N) ∈ Xf ⊆ X. (41)

2. Apply the first control input u(k) = u∗(0;x).

3. Let k := k + 1 and go to 1.



Nikolce Murgovski - SSY281 Model Predictive Control 71 of 192

Linear quadratic MPC: uncondensed (lifted) formulation

1. At sampling instant k, when we have access to the state x(k) = x, solve the optimisation problem

V ∗N (x) = min
u(0:N−1),x(0:N)

{VN (x, u(0 :N − 1), x(0 :N))},

VN (x, u(0 :N − 1), x(0 :N)) = x>(N)Pfx(N) +

N−1∑
i=0

(
x>(i)Qx(i) + u>(i)Ru(i)

)
, x(0) = x

for the optimal control and state sequences

u∗(0 :N − 1;x) = {u∗(0;x), u∗(1;x), . . . , u∗(N − 1;x)}
x∗(0 :N ;x) = {x∗(0;x), x∗(1;x), . . . , x∗(N ;x)}

and subject to

x(k + 1) = Ax(k) +Bu(k), x(0) = x (39)

x(k) ∈ X u(k) ∈ U for all k ∈ (0, N − 1) (40)

x(N) ∈ Xf ⊆ X. (41)

2. Apply the first control input u(k) = u∗(0;x).
3. Let k := k + 1 and go to 1.



Nikolce Murgovski - SSY281 Model Predictive Control 72 of 192

Linear quadratic MPC: uncondensed vector formulation

1. At sampling instant k, when we have access to the state x(k) = x, solve the optimisation problem

minimize
u,x

VN (x,u,x) = x>Qx+ x>Q̄x + u>R̄u

subject to x+ = Ax+Bu

Fu +Gx ≤ h.

2. Apply the first control input u(k) = u(0).

3. Let k := k + 1 and go to 1.
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