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Lecture 5: Setpoints, disturbances and observers

Goals for today:
• To understand how the state model is used for open loop prediction
• To formulate the DMC scheme with a constant output disturbance
• To interpret the DMC scheme in terms of state observers
• To formulate an MPC controller including setpoints and steady state targets
• To state conditions for offset-free control

Learning objectives:
• Correctly state, in mathematical form, MPC formulations based on descriptions of control problems

expressed in application terms
• Describe and construct MPC controllers based on a linear model, quadratic costs and linear

constraints
• Describe basic properties of MPC controllers and analyse algorithmic details on very simple

examples
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Repeat what was used for the batch approach

Let k denote current time and denote by x̂(k + i|k) the estimate of the state x(k + i), given information
available at time k. By iterating the system equations we get

x̂(k + 1|k) = Ax̂(k|k) +Bu(k)

x̂(k + 2|k) = Ax̂(k + 1|k) +Bu(k + 1) = A2x̂(k|k) +ABu(k) +Bu(k + 1)

...

x̂(k +N |k) = AN x̂(k|k) +AN−1Bu(k) +AN−2Bu(k + 1) + . . .+Bu(k +N − 1).
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State predictions

The state model

x(k + 1) = Ax(k) +Bu(k)

gives the state predictions
x̂(k + 1|k)
x̂(k + 2|k)

...
x̂(k +N |k)

 =


A
A2

...
AN

 x̂(k|k) +


B 0 · · · 0
AB B . . . 0

...
...

. . .
...

AN−1B AN−2B · · · B




u(k|k)
u(k + 1|k)

...
u(k +N − 1|k)

 . (42)
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Output predictions

The state model

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)

gives the output predictions
ŷ(k + 1|k)
ŷ(k + 2|k)

...
ŷ(k +N |k)

 =


CA
CA2

...
CAN

 x̂(k|k) +


CB 0 · · · 0
CAB CB . . . 0

...
...

. . .
...

CAN−1B CAN−2B · · · CB




u(k|k)
u(k + 1|k)

...
u(k +N − 1|k)

 . (43)
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Output predictions using control moves


ŷ(k + 1|k)
ŷ(k + 2|k)

...
ŷ(k +N |k)

 =


CA

CA2

...
CAN

 x̂(k|k) +


CB 0 · · · 0
CAB CB . . . 0

...
...

. . .
...

CAN−1B CAN−2B · · · CB



I
...
...
I

u(k − 1)

︸ ︷︷ ︸
free response

+



CB 0 · · · 0
CAB + CB CB . . . 0

...
...

. . .
...

N−1∑
i=0

CAiB

N−2∑
i=0

CAiB · · · CB




∆u(k|k)
∆u(k + 1|k)

...
∆u(k +N − 1|k)

 (44)

or

y(k) = yf (k) + Θ∆u(k). (45)
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Example: The DMC scheme

Assume that a plant is open loop stable, and that we choose the simplest observer available, namely a
pure simulation of a model of the plant. The observer is thus described by the equation1

x̂(k|k) = Ax̂(k − 1|k − 1) +Bu(k − 1),

where we assume perfect knowledge of the system matrices A and B. Since A is stable,

x̂(k|k)− x(k)→ 0, k →∞,

i.e. the state will asymptotically be estimated perfectly. To stress the fact that predicted outputs are
based on a model of the plant, equation (45) is rewritten as

yM(k) = yf (k) + Θ∆u(k), (46)

where superscriptM stands for ‘model’.

1The notation x̂(k|k) may seem a bit odd here, since the estimate is not using any information at time k, but since this is a
consequence of the deliberate choice of not using the measured output, we stick to the general notation anyway.
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Consequences from using a simple observer

1. Note that with the estimator used, the free response yf depends only on previous control inputs. If
there are no (active) constraints, the control action is computed from yf and possibly a reference
trajectory. Hence, the computed control signal does not depend on previous outputs, i.e. there is
no feedback!

2. Because of the absence of feedback, we get problems with disturbances. Assume that there is a
constant load disturbance d, so that the vector of plant outputs yP is given by

yP(k) = yf (k) + Θ∆u(k) + d · 1, (47)

where 1 is a vector of 1’s. In steady-state, the control signal will be determined so that the model
output equals the reference, i.e.

yP(k) = yM(k) + d · 1 = r(k) + d · 1,

where we have used the notation r for the vector of reference values introduced in Example 1.2.
The conclusion is that there will be a steady-state error.
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Removing steady-state error by the DMC scheme

Start by changing the model to

y(k) = Cx(k) + d̂,

where d̂ is the (unknown) constant disturbance. Now, estimate this disturbance simply by computing

d̂(k|k) = y(k)− Cx̂(k|k) = y(k)− C (Ax̂(k − 1|k − 1) +Bu(k − 1))

d̂(k + i|k) = d̂(k|k), i = 1, 2, . . .

This will instead of (46) result in

yM(k) = yf (k) + Θ∆u(k) + d̂(k|k) · 1.

The consequence is that in steady state (and if d̂→ d) we will now have yP = yM = r. Note that the
modification done has now introduced feedback into the controller!
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State observer

Given a system model

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k),

with observer update

x̂(k + 1|k) = Ax̂(k|k − 1) +Bu(k) + L(y(k)− Cx̂(k|k − 1))

and error dynamics

x̃(k) = x̂(k)− x(k)

x̃(k + 1) = (A− LC)x̃(k).
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Example: The DMC scheme, cont’d

The assumption that the plant is affected by a constant load disturbance d can be expressed as an
extension of the original model,

x(k + 1) = Ax(k) +Bu(k)

d(k + 1) = d(k)

y(k) = Cx(k) + d(k).

By introducing the augmented state

ξ(k) =

[
x(k)
d(k)

]
we get the new model

ξ(k + 1) = Aξ(k) + Bu(k)

y(k) = Cξ(k)

with

A =

[
A 0
0 I

]
B =

[
B
0

]
C =

[
C I

]
.
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By defining the observer gain as L =

[
Lx

Ld

]
, a standard observer for the extended model is given by

ξ̂(k + 1) = Aξ̂(k) + Bu(k) + L(y(k)− Cξ̂(k))

=

([
A 0
0 I

]
−
[
Lx

Ld

] [
C I

])
ξ̂(k) +

[
B
0

]
u(k) +

[
Lx

Ld

]
y(k).

The observer dynamics is determined by the first big matrix in the last expression. With the simple
choice Lx = 0 and Ld = I, we get the observer error dynamics given by[

A 0
0 I

]
−
[
Lx

Ld

] [
C I

]
=

[
A 0
−C 0

]
.

The eigenvalues of this matrix are given by the matrix A, which was assumed to be stable, and the rest
of the eigenvalues are located in the origin, a choice that is usually referred to as deadbeat dynamics.
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MPC overall structure

xs
−

RHC
δx δu +

us

+
Plant

u y

Observer
x̂

+

Figure 9: MPC overall structure with a receding horizon controller (RHC) working on deviation variables.
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Steady-state target problem (p = m)

If the system is square (p = m):

1. Define desired setpoints for the outputs, ysp.

2. Solve the following system of linear equations to find the steady-state targets[
I −A −B
C 0

] [
xs
us

]
=

[
Bdd̂

ysp − Cdd̂

]
. (48)
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Main computational tasks to be carried out by the MPC

1. Update the state estimate (including load disturbance).

2. Compute an updated steady state target, e.g. by solving equation (48).

3. Compute the next control action by solving a constrained optimisation problem.
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MPC block diagram

ysp Target
selector

xs −
RHC

δx δu +

us

+
Plant

u y

Observer
x̂

+

d̂

Figure 10: MPC block diagram with a receding horizon controller (RHC) working on deviation variables.
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Steady-state target problem (p > m)

If there are more outputs than inputs (p > m):

1. Define desired setpoints for the outputs, ysp.

2. Solve the following optimisation problem to find the best steady-state targets:

min
xs,us

(
|Cxs − ysp|2Q

)
, Q � 0

subject to

[
I −A −B

] [xs
us

]
= 0

Eus ≤ e
FCxs ≤ f.
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Steady-state target problem (pz < m)

If there are more inputs than controlled outputs (pz < m):

1. Define setpoints for controlled outputs, zsp, and desired values for the control input, usp, and
non-controlled outputs ysp.

2. Solve the following optimisation problem to find feasible steady-state targets:

min
xs,us

(
|us − usp|2Rs

+ |Cyxs − ysp|2Qs

)
, Rs � 0

subject to[
I −A −B
Cz 0

] [
xs
us

]
=

[
0
zsp

]
Eus ≤ e
FCzxs ≤ f.
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Steady-state target problem with disturbance

Optimisation problem to find feasible steady-state target:

min
xs,us

(
|us − usp|2Rs

+ |Cxs + Cdd̂− ysp|2Qs

)
, Rs � 0

subject to[
I −A −B
HC 0

] [
xs
us

]
=

[
Bdd̂

zsp −HCdd̂

]
Eus ≤ e
FHCxs ≤ f − FHCdd̂.
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Off-set free control

Proposition (Off-set free control)
Assume that the steady-state target problem is feasible and that an MPC with the following augmented
model is used:[

x
d

]+
=

[
A Bd

0 I

] [
x
d

]
+

[
B
0

]
u

y =
[
C Cd

] [x
d

]
.

(49)

Further assume that Cz = HC, nd = p and that Bd, Cd are chosen such that

rank

[
I −A −Bd

C Cd

]
= n+ p. (50)

Assume that the closed-loop converges to a steady-state with constraints inactive. Then there is zero
off-set in the controlled outputs, i.e.

zs = zsp.
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