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Lecture 7: Optimisation basics and convexity

Goals for today:
• To formulate a general constrained optimisation problem
• To formulate necessary conditions for optimality
• To master the basics of convex sets and convex functions
• To formulate a standard convex optimisation problem
• To characterize a standard quadratic program (QP)

Learning objectives:
• Understand and explain basic properties of the optimisation problem as an ingredient of MPC, in

particular concepts like linear, quadratic and convex optimisation, optimality conditions, and
feasibility



Nikolce Murgovski - SSY281 Model Predictive Control 110 of 210

Lecture 7: Optimisation basics and convexity

Goals for today:
• To formulate a general constrained optimisation problem
• To formulate necessary conditions for optimality
• To master the basics of convex sets and convex functions
• To formulate a standard convex optimisation problem
• To characterize a standard quadratic program (QP)

Learning objectives:
• Understand and explain basic properties of the optimisation problem as an ingredient of MPC, in

particular concepts like linear, quadratic and convex optimisation, optimality conditions, and
feasibility



Nikolce Murgovski - SSY281 Model Predictive Control 111 of 210

Constrained optimisation problem

A basic optimisation problem is formulated as

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

(60)

where

x = {x1, . . . , xn} are the optimisation or decision variables

f : Rn → R is the objective or cost function

gi : Rn → R, i = 1, . . . ,m are inequality constraint functions

hi : Rn → R, i = 1, . . . , p are equality constraint functions.

The optimal solution x∗ has the smallest value of f(·) among all vectors x that belong to dom f (the
domain of f , i.e. the subset of Rn where f is defined) and satisfy the constraints. The optimal value p∗

is always defined,

p∗ = inf{f(x) | gi(x) ≤ 0, i = 1, . . . ,m;hj(x) = 0, j = 1, . . . , p}
p∗ =∞, if problem is infeasible

p∗ = −∞, if problem is unbounded below.
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Examples of functions and their optima

• f(x) = 1/x,dom f = R++(strictly positive reals) : p∗ = 0, no optimal solution
• f(x) = − log x,dom f = R++ : p∗ = −∞
• f(x) = x log x,dom f = R++ : p∗ = −1/e, x∗ = 1/e

• f(x) = x3 − 3x : p∗ = −∞, local optimum at x = 1.
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Feasible directions

Feasible
directions

Figure 11: Feasible directions from the point of intersection of two nonlinear constraints.
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Conditions for local optimality – unconstrained case

• First order necessary condition

x∗ is a stationary point ⇒ ∇f(x∗) = 0. (61)

• Second order sufficient conditions

∇f(x∗) = 0 and ∇2f(x∗) � 0 ⇒ x∗ is a strict local minimum. (62)
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First order necessary conditions – equality constraints

Consider the optimisation problem

minimize f(x)

subject to h(x) = 0.

Assume x∗ is a local minimum and that x∗ is regular. Then there is a unique vector λ∗ such that

∇f(x∗) +∇h(x∗)λ∗ = 0

h(x∗) = 0.

This is a system of non-linear equations having n+ p equations for the n+ p unknowns (x and λ).
The vector λ contains the Lagrange multipliers λi, i = 1, . . . , p.



Nikolce Murgovski - SSY281 Model Predictive Control 116 of 210

First order necessary conditions – the KKT conditions

Consider the optimisation problem

minimize f(x)

subject to g(x) ≤ 0

h(x) = 0.

(63)

Assume x∗ is a local minimum and that x∗ is regular. Then there are unique vectors µ∗ and λ∗ such that

∇f(x∗) +∇g(x∗)µ∗ +∇h(x∗)λ∗ = 0 (64a)

µ∗ ≥ 0 (64b)

g(x∗) ≤ 0, h(x∗) = 0 (64c)

µ∗i gi(x
∗) = 0, i = 1, . . . ,m. (64d)

These conditions are referred to as the KKT (Karush-Kuhn-Tucker) conditions.
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The Lagrangian and complementary slackness

The first condition (64a) can conveniently be expressed as a condition on the Lagrangian L,

∇xL(x∗, µ∗, λ∗) = 0, L(x, µ, λ) = f(x) + µ>g(x) + λ>h(x). (65)

The last of the KKT conditions, µ∗i gi(x
∗) = 0, are called the complementary slackness conditions. The

implication of these is that if gi is inactive at x∗ then µ∗i = 0. Conversely, if gi is active, then either µi > 0
(the constraint is strictly active) or µ∗ = 0 (the constraint is not strictly active, i.e. it is weakly active).
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Intuition of the KKT conditions

• ∇L(x∗, µ∗) = ∇f(x∗) + µ∗∇g(x∗) = 0.
• −∇f(x∗) is analogous to gravitational force

at x∗.
• −µ∗∇g(x∗) is analogous to reactive force

from the constraint.

−∇f(x∗)

−µ∗∇g(x∗)

µ∗ = 0.5

x1

x
2

Figure 12: An illustration of KKT conditions for a system with two variables. The objective function f , depicted by contour lines, pulls
the solution towards the middle, marked by a plus sign. The inequality constraint prevents reaching this solution. Instead, the
optimum, i.e. the point of minimum potential energy, is achieved at the point marked by a filled circle.
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Second order sufficient conditions

Consider the optimisation problem

minimize f(x)

subject to g(x) ≤ 0

h(x) = 0.

(66)

Assume x∗ is regular and that x∗, µ∗, λ∗ satisfy the KKT conditions with all active constraints being
strictly active. Further assume that

d>∇2
xL(x∗, µ∗, λ∗)d > 0, for all d such that d>

[
∇gA ∇h

]
= 0,

where ∇2
xL is the Hessian of the Lagrangian. Then x∗ is a local minimum.
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Convex optimisation problem

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

where the objective function f and constraint functions {gi} are convex, i.e.

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2), 0 ≤ θ ≤ 1

and the functions {hi} are affine (linear).
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Affine sets

• A line through x1 and x2 are all points x,

x = θx1 + (1− θ)x2, θ ∈ R.

x1

x2

θ = 1

θ = 0

Figure 13: An illustration of an affine set in two dimensions.

• An affine set contains the line through any two distinct points in the set, see Figure 13. An
example is the solution set of linear equations {x | Ax = b}.
All affine sets can be described as solutions to a system of linear equations.



Nikolce Murgovski - SSY281 Model Predictive Control 122 of 210

Convex sets

• A line segment between x1 and x2 are all points x,

x = θx1 + (1− θ)x2, 0 ≤ θ ≤ 1.

• A convex set contains the line segments between every two points in the set (see Figure 14), i.e.

x1, x2 ∈ S ⇒ θx1 + (1− θ)x2 ∈ S, 0 ≤ θ ≤ 1.

Figure 14: An example with two convex and one non-convex set.
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Hyperplanes and half-spaces

• A hyperplane is a set of the form {x | a>x = b}.
• A half-space is a set of the form {x | a>x ≤ b}.

Hyperplanes are affine and convex; half-spaces are convex, see Figure 15.

a>
x = b

a

Figure 15: A hyperplane a
>
x = b and a half-space depicted by the shaded region.
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Polyhedra

• A polyhedron is the intersection of a finite number of half-spaces and hyperplanes or, equivalently,
the solution set of a finite number of linear inequalities and equalities (see Figure 16), i.e.

Ax ≤ b
Cx = d.

Polyhedra are convex sets.

Figure 16: An example of a polyhedron, as the intersection of linear inequalities and equalities.
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Convex functions

A function f : Rn → R is convex if dom f is convex and

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)
for all x, y ∈ dom f and 0 ≤ θ ≤ 1. An illustration is provided in Figure 17.

(x, f(x)) (y, f(y))

Figure 17: An example of a convex function.

Furthermore,
• f is concave if −f is convex.
• f is strictly convex if

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y)
for all x, y ∈ dom f and 0 < θ < 1.
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Examples of convex and concave functions

Some examples of convex functions are
• affine: a>x+ b;
• exponential: eax;
• powers: xα, x > 0, for α ≥ 1 or α ≤ 0.

Examples of concave functions are
• affine: a>x+ b;
• logarithm: log x, x > 0;
• powers: xα, x > 0, for 0 ≤ α ≤ 1.
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First and second order conditions

• Differentiable f with convex domain is convex if and only if

f(y) ≥ f(x) +∇f(x)>(y − x) for all x, y ∈ dom f.

An illustration is provided in Figure 18.

f(x) +∇f(x)>(y − x)
f(y)

(x, f(x))

Figure 18: A convex function and its tangent.

• Twice differentiable f with convex domain is convex if and only if

∇2f(x) ≥ 0 for all x ∈ dom f.
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Operations that preserve convexity

• The intersection of convex sets is a convex set.
• If f is affine (f(x) = Ax+ b), then the image of a convex set under f is convex, i.e.

S convex ⇒ f(S) convex.

• If f is affine, then the inverse image of f is convex, i.e.

S convex ⇒ f−1(S) = {x | f(x) ∈ S} convex.

Examples include scaling, translation, projection.
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Operations preserving convexity

• Sub-level sets Sα of a convex function f are convex

Sα = {x ∈ dom f | f(x) ≤ α}.

• Nonnegative weighted sum of convex functions is convex,

f1, . . . , fN convex ⇒
N∑
i=1

αifi convex, for all αi ≥ 0.

• The composition with an affine function is convex,

f convex ⇒ f(Ax+ b) convex.
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Convex optimisation problem

Standard form convex optimisation problem:

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

Ax = b, (affine equality constraints)

where f and {gi} are convex.

Remark
The feasible set of a convex optimisation problem is convex.
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An example of a convex problem

Consider the following optimisation problem:

minimize f(x) = x21 + x22

subject to g1(x) = x1/(1 + x22) ≤ 0

h1(x) = (x1 + x2)
2 = 0.

It is not difficult to see that
• f(x) is convex and the feasible set {(x1, x2) | x1 = −x2 ≤ 0} is convex, but . . .
• the problem is not in the standard form, since g1 is not convex and h1 is not affine.

It is, however, in this case possible to transform the given optimisation problem into an equivalent,
convex formulation:

minimize x21 + x22

subject to x1 ≤ 0

x1 + x2 = 0.
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Optimality conditions for convex problems

Consider the convex optimisation problem

minimize f(x)

subject to g(x) ≤ 0

h(x) = 0

(67)

where f and {gi} are convex and h is affine. Assume x∗ is regular. Then x∗ is globally optimal if and
only if the KKT conditions are fulfilled for some µ∗ ≥ 0, λ∗.
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Examples of convex optimisation problems

• Linear programming (LP):

minimize c>x+ d

subject to Gx ≤ h
Ax = b;

• Quadratic programming (QP):

minimize
1

2
x>Qx+ p>x, Q � 0

subject to Gx ≤ h
Ax = b.

In both cases, the feasible set is a polyhedron.
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QP with inequality constraints only

Consider the QP problem

minimize
1

2
x>Qx+ p>x, Q � 0

subject to Gx ≤ h.

Assuming that G has full row rank, any point x is regular. Then global optimality is equivalent to the
KKT conditions being fulfilled. Denoting the objective by f(x), this can be stated in a simplified way as
follows: the point x∗ is optimal if and only if x∗ is feasible (i.e. Gx∗ ≤ h) and

−∇f(x∗) = −(Qx∗ + p) =
∑
i∈A

µiG
>
i , for some {µi} with µi ≥ 0, (68)

where Gi is the ith row of G and A is the active set.
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Geometric interpretation of a quadratic program with
inequality constraints

−∇f(x∗)

G1

G2

x∗

Figure 19: An illustration of a quadratic program with inequality constraints.
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The Lagrangian

Consider the standard form problem (not necessarily convex)

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

where x ∈ D ⊆ Rn.

The Lagrangian L : Rn × Rm × Rp → R, with domL = D × Rm × Rp, is defined as

L(x, µ, λ) = f(x) +

m∑
i=1

µigi(x) +

p∑
i=1

λihi(x) ≡ f(x) + µ>g(x) + λ>h(x)

where
• µi is Lagrange multiplier associated with the constraint gi(x) ≤ 0;
• λi is Lagrange multiplier associated with the constraint hi(x) = 0.

Note that for µ ≥ 0 and any feasible x, we have L(x, µ, λ) ≤ f(x).
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Lagrange dual function

Lagrange dual function q : Rm × Rp → R,

q(µ, λ) = inf
x∈D
L(x, µ, λ) = inf

x∈D

{
f(x) + µ>g(x) + λ>h(x)

}
.

Properties:
• q is concave but may be −∞ for some µ, λ;
• q(µ, λ) ≤ p∗ if µ ≥ 0 (p∗ is the optimal value of the original problem).
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The dual problem

The Lagrange dual problem

maximize q(µ, λ)

subject to µ ≥ 0

• finds the best lower bound d∗ on the primal optimal solution p∗,
• always is a convex, unconstrained problem,
• has dual feasible µ, λ if µ ≥ 0 and (µ, λ) ∈ dom q,
• always satisfies d∗ ≤ p∗ (weak duality).
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The dual of an LP problem

Consider the standard linear program

minimize c>x

subject to Ax = b, x ≥ 0.

The Lagrangian is given by

L(x, µ, λ) = c>x− µ>x+ λ>(Ax− b) = −b>λ+ (c+A>λ− µ)>x

The Lagrange dual function is then obtained by solving

q(µ, λ) = inf
x
L(x, µ, λ) =

{
−b>λ, A>λ− µ+ c = 0

−∞, otherwise.

It holds:
• q is linear on the affine domain {(µ, λ) | A>λ− µ+ c = 0}, i.e. concave
• lower bound: p∗ ≥ −b>λ if A>λ+ c ≥ 0.

We can make the implicit constraint (µ, λ) ∈ {(µ, λ) | A>λ− µ+ c = 0} explicit when formulating the
dual problem:

maximize − b>λ
subject to A>λ+ c ≥ 0.
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subject to Ax = b, x ≥ 0.

The Lagrangian is given by

L(x, µ, λ) = c>x− µ>x+ λ>(Ax− b) = −b>λ+ (c+A>λ− µ)>x
The Lagrange dual function is then obtained by solving

q(µ, λ) = inf
x
L(x, µ, λ) =

{
−b>λ, A>λ− µ+ c = 0

−∞, otherwise.

It holds:
• q is linear on the affine domain {(µ, λ) | A>λ− µ+ c = 0}, i.e. concave
• lower bound: p∗ ≥ −b>λ if A>λ+ c ≥ 0.

We can make the implicit constraint (µ, λ) ∈ {(µ, λ) | A>λ− µ+ c = 0} explicit when formulating the
dual problem:

maximize − b>λ
subject to A>λ+ c ≥ 0.
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Weak and strong duality

Weak duality: d∗ ≤ p∗
• always holds (even for non-convex problems);
• gives lower bound for the original (primal) problem.

Strong duality: d∗ = p∗

• does not hold in general;
• often holds for convex problems;
• conditions that guarantee this are called constraint qualifications.
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Constraint qualifications

Strong duality holds for a convex problem

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

Ax = b

if any of the following conditions are fulfilled:

1. The gradients of the equality constraints and the active inequality constraints are linearly
independent (LICQ);

2. The problem is strictly feasible, i.e. there exists some x̃ ∈ intD (the interior of D) such that (Slater
CQ)

gi(x̃) < 0, i = 1, . . . ,m; Ax̃ = b.
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Quadratic programming

Consider the quadratic program (assuming P is positive definite, P � 0)

minimize x>Px

subject to Ax ≤ b.

The dual function is

q(µ) = inf
x
(x>Px+ µ>(Ax− b)) = −1

4
µ>AP−1A>µ− b>µ.

Hence, the dual problem is defined as

maximize − 1

4
µ>AP−1A>µ− b>µ

subject to µ ≥ 0.

It follows from Slater’s condition that p∗ = d∗ if Ax̃ < b for some x̃. In fact, for convex quadratic
programs, we always have strong duality, i.e. p∗ = d∗.
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Convex problems with strong duality

Consider the standard convex optimisation problem

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

Ax = b

where f and {gi} are convex.
Assume x∗ is regular. Then the following statements are equivalent:
• x∗ is a global optimum;
• there are µ∗, λ∗ such that the KKT conditions hold.



Nikolce Murgovski - SSY281 Model Predictive Control 210 of 210

References

[1] J.B. Rawlings, D.Q. Mayne, and M.M. Diehl. Model Predictive Control: Theory, Computation, and
Design, 2nd edition. Nob Hill Publishing 2017.
Available online at https://sites.engineering.ucsb.edu/˜jbraw/mpc

[2] G. Goodwin, M.M. Seron, and J.A. De Don·. Constrained Control and Estimation. Springer 2004.
Available online via Chalmers Library.

[3] F Borrelli, A. Bemporad, and M. Morari. Predictive Control for Linear and Hybrid Systems.
Available online at http://www.mpc.berkeley.edu/mpc-course-material

[4] J. Maciejowski. Predictive Control with Constraints. Prentice Hall 2002.

[5] S. Boyd and L. Vandenberghe. Convex optimisation. Cambridge University Press 2004.

[6] Diehl, M. Real-Time Optimization for Large Scale Nonlinear Processes. PhD thesis, University of
Heidelberg, 2001.

https://sites.engineering.ucsb.edu/~jbraw/mpc


Nikolce Murgovski - SSY281 Model Predictive Control 210 of 210


	Optimisation basics and convexity
	Introduction
	Conditions for optimality – the KKT conditions
	Convex optimisation
	Duality*


