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Lecture 8 : Solving QP problems

Goals for today:
• To formulate Newton’s method to solve the KKT conditions in simple cases
• To understand the principles of active set and interior point methods for QP:s

Learning objectives:
• Understand and explain basic properties of the optimisation problem as an ingredient of MPC, in

particular concepts like linear, quadratic and convex optimisation, optimality conditions, and
feasibility
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Newton’s method

In its simplest form, the Newton’s method is used to find the root of the scalar equation r(x) = 0. The
idea is to approximate the function by a straight line at the current “guess” x, and to obtain the next
guess2 x+ = x+ ∆x as the root of the linear approximation

r(x+ ∆x) ≈ r(x) + r′(x)∆x = 0 ⇒ ∆x = −(r′(x))−1r(x). (69)

When x and r(x) are vectors, the Newton step is a direct generalization of this, i.e.

∇r(x)>∆x = −r(x), (70)

which is now a system of linear equations in the unknowns ∆x. The new iterate can be obtained as

x+ = x+ ∆x.

2The notation x
+ is used here for the next iterate, not a time update.
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An illustration of the Newton method

1. r = 1.7360

2. r = −2.7150

3. r = −0.4487

4. r = −0.0234

5. r = −0.0001

6. r = −8.43× 10−10
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Figure 20: An illustration of the Newton method using a full step size. The method converges in about 4–6 steps, with a roughly
quadratic convergence rate.
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Newton’s method with reduced step

Since Newton’s method is based on a linear approximation of r(x), it turns out that it is usually wise in
practice not to perform the full Newton step as given by (70). Instead, while still going in the Newton
direction as prescribed by (70), the new iterate is obtained by using a reduced step size:

x+ = x+ t∆x, t ∈ (0, 1]. (71)
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Failure of Newton method
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Figure 21: Failure of the Newton method to converge when using a full step size.
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Figure 21: Failure of the Newton method to converge when using a full step size.
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Figure 21: Failure of the Newton method to converge when using a full step size.
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Newton method with a reduced step-size
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Figure 22: The Newton method using a reduced step size of 0.8. The method converges in about four steps.
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Figure 22: The Newton method using a reduced step size of 0.8. The method converges in about four steps.
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Figure 22: The Newton method using a reduced step size of 0.8. The method converges in about four steps.
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Figure 22: The Newton method using a reduced step size of 0.8. The method converges in about four steps.
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Figure 22: The Newton method using a reduced step size of 0.8. The method converges in about four steps.
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Failure of Newton method: convergence to a statinary point
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Figure 23: The Newton method converges to a statinary point where derivative is zero. The method loses a search direction and is
not able to solve the problem.
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Newton’s method for equality constrained problems

Let’s now try to apply Newton’s method to the KKT conditions (89), observing that the unknowns are
x, λ. We want to find the zero of the function

r(x, λ) =

[
∇xL(x, λ)
h(x)

]
.

The Newton step (70) becomes[∇2
xL(x, λ) ∇x,λL(x, λ)

∇h(x)> 0

] [
∆x
∆λ

]
= −

[
∇xL(x, λ)
h(x)

]
,

which, by using L(x, λ) = f(x) + λ>h(x), can be simplified into[∇2
xL(x, λ) ∇h(x)

∇h(x)> 0

] [
∆x
∆λ

]
= −

[
∇f(x) +∇h(x)λ

h(x)

]
,

and finally a simple re-organization gives[∇2
xL(x, λ) ∇h(x)

∇h(x)> 0

]
︸ ︷︷ ︸

The KKT matrix

[
∆x
λ+

]
= −

[
∇f(x)
h(x)

]
,

where λ+ = λ+ ∆λ is the new iterate of the dual variable λ.
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Newton’s method for an equality constrained problem

minimize
1

2
x>
[
2 1
1 2

]
x+

[
2 0

]
x

subject to x>x = 1

−1 0 1

−1

0

1
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x
2

Figure 24: An illustration of the Newton method on an equality constrained problem. It can be seen that different initialisations require
different number of steps until convergence.
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Quadratic programming (QP)

minimize f(x) =
1

2
x>Qx+ p>x, Q � 0 (72)

subject to Ax = b, A ∈ Rp×n. (73)

The Lagrangian is

L(x, λ) =
1

2
x>Qx+ p>x+ λ>(Ax− b).

and the Newton’s method gives[
Q A>

A 0

] [
∆x

λ+

]
= −

[
Qx+ p
Ax− b

]
⇔[

Q A>

A 0

] [
x+

λ+

]
=

[
−p
b

]
. (74)
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Solutions to QP special cases

• Unconstrained case

minimize f(x) =
1

2
x>Qx+ p>x, Q � 0

has a solution

Qx∗ + p = 0.

• QP with equality constraint

minimize f(x) =
1

2
x>Qx+ p>x, Q � 0

subject to Ax = b

has a solution[
Q A>

A 0

] [
x∗

λ∗

]
=

[
−p
b

]
.



Nikolce Murgovski - SSY281 Model Predictive Control 154 of 217

Solutions to QP special cases

• Unconstrained case

minimize f(x) =
1

2
x>Qx+ p>x, Q � 0

has a solution

Qx∗ + p = 0.

• QP with equality constraint

minimize f(x) =
1

2
x>Qx+ p>x, Q � 0

subject to Ax = b

has a solution[
Q A>

A 0

] [
x∗

λ∗

]
=

[
−p
b

]
.



Nikolce Murgovski - SSY281 Model Predictive Control 155 of 217

QP with inequality constraints

minimize
1

2
x>Qx+ p>x, Q � 0

subject to Gx ≤ h
Ax = b.

(75)

For easy reference, we repeat the KKT conditions (84a)-(84d) for this special case

Qx∗ + p+G>µ∗ +A>λ∗ = 0 (76)

µ∗ ≥ 0 (77)

Gx∗ − h ≤ 0, Ax∗ − b = 0 (78)

µ∗i (g
>
i x
∗ − hi) = 0, i = 1, . . . ,m. (79)



Nikolce Murgovski - SSY281 Model Predictive Control 156 of 217

Active set method

Assume that a feasible point is known with specific active constraints A. With this A, the system of
equations Q A> G>A

A 0 0
GA 0 0

x+λ+

µ+
A

 =

−pb
hA


can be solved.

Once this is done, there are two possible outcomes:

1. If the new point is feasible with respect to the (previously inactive) inequality constraints, we need
to test if we are at the optimum. This is done by checking the Lagrange multipliers corresponding
to the active set; they should all be nonnegative at the optimum. If this is not the case, the
objective function can be further reduced by e.g. removing the constraint with the most negative
multiplier from the active set, and the procedure is repeated.

2. If the new point is not feasible, then the stepsize is reduced so that the new point becomes (just)
feasible. This happens at the intersection with one of the previously inactive constraints. This is
now added to the active set and the procedure is repeated.
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Active set method

1
µ8 ≤ 0µ1 > 0

Figure 25: Illustration of active set method with two decision varaibles and initialised with two active constraints. The feasible region
is within the octagon, the contour lines indicate the level sets of the cost function, the plus indicates the unconstrained optimum and
the filled circle indicates the optimal solution.
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Figure 25: Illustration of active set method with two decision varaibles and initialised with two active constraints. The feasible region
is within the octagon, the contour lines indicate the level sets of the cost function, the plus indicates the unconstrained optimum and
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Figure 25: Illustration of active set method with two decision varaibles and initialised with two active constraints. The feasible region
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Figure 25: Illustration of active set method with two decision varaibles and initialised with two active constraints. The feasible region
is within the octagon, the contour lines indicate the level sets of the cost function, the plus indicates the unconstrained optimum and
the filled circle indicates the optimal solution.



Nikolce Murgovski - SSY281 Model Predictive Control 158 of 217

Active set method 2

7

Figure 26: Illustration of active set method with two decision varaibles and initialised with two active constraints. The feasible region
is within the octagon, the contour lines indicate the level sets of the cost function, the plus indicates the unconstrained optimum and
the filled circle indicates the optimal solution.
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Figure 26: Illustration of active set method with two decision varaibles and initialised with two active constraints. The feasible region
is within the octagon, the contour lines indicate the level sets of the cost function, the plus indicates the unconstrained optimum and
the filled circle indicates the optimal solution.
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Figure 26: Illustration of active set method with two decision varaibles and initialised with two active constraints. The feasible region
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Figure 26: Illustration of active set method with two decision varaibles and initialised with two active constraints. The feasible region
is within the octagon, the contour lines indicate the level sets of the cost function, the plus indicates the unconstrained optimum and
the filled circle indicates the optimal solution.



Nikolce Murgovski - SSY281 Model Predictive Control 159 of 217

Active set method 3

8

Figure 27: Illustration of active set method with two decision varaibles and initialised with two active constraints. The feasible region
is within the octagon, the contour lines indicate the level sets of the cost function, the plus indicates the unconstrained optimum and
the filled circle indicates the optimal solution.
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Figure 27: Illustration of active set method with two decision varaibles and initialised with two active constraints. The feasible region
is within the octagon, the contour lines indicate the level sets of the cost function, the plus indicates the unconstrained optimum and
the filled circle indicates the optimal solution.
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Figure 27: Illustration of active set method with two decision varaibles and initialised with two active constraints. The feasible region
is within the octagon, the contour lines indicate the level sets of the cost function, the plus indicates the unconstrained optimum and
the filled circle indicates the optimal solution.
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Figure 27: Illustration of active set method with two decision varaibles and initialised with two active constraints. The feasible region
is within the octagon, the contour lines indicate the level sets of the cost function, the plus indicates the unconstrained optimum and
the filled circle indicates the optimal solution.
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Figure 28: Illustration of active set method with two decision varaibles and initialised with one active constraint. The feasible region is
within the octagon, the contour lines indicate the level sets of the cost function, the plus indicates the unconstrained optimum and the
filled circle indicates the optimal solution.
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Figure 28: Illustration of active set method with two decision varaibles and initialised with one active constraint. The feasible region is
within the octagon, the contour lines indicate the level sets of the cost function, the plus indicates the unconstrained optimum and the
filled circle indicates the optimal solution.
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within the octagon, the contour lines indicate the level sets of the cost function, the plus indicates the unconstrained optimum and the
filled circle indicates the optimal solution.



Nikolce Murgovski - SSY281 Model Predictive Control 160 of 217

Active set method 4

1

82

3

4

Figure 28: Illustration of active set method with two decision varaibles and initialised with one active constraint. The feasible region is
within the octagon, the contour lines indicate the level sets of the cost function, the plus indicates the unconstrained optimum and the
filled circle indicates the optimal solution.
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Figure 29: Illustration of active set method with two decision varaibles and initialised with inactive constraints. The feasible region is
within the octagon, the contour lines indicate the level sets of the cost function, the plus indicates the unconstrained optimum and the
filled circle indicates the optimal solution.
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Figure 29: Illustration of active set method with two decision varaibles and initialised with inactive constraints. The feasible region is
within the octagon, the contour lines indicate the level sets of the cost function, the plus indicates the unconstrained optimum and the
filled circle indicates the optimal solution.
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Interior point method: logarithmic barrier formulation

The QP problem

minimize f(x) =
1

2
x>Qx+ p>x

subject to Gx ≤ h
Ax = b

can be approximated by the following problem

minimize fτ (x) = f(x)− τ
m∑
i=1

log(hi − g>i x) (τ > 0)

subject to Ax = b

where g>i is the ith row of G, hi is the ith element of h.

The convex function

φτ (x) = −τ
m∑
i=1

log(hi − g>i x)

is called the logarithmic barrier for the original QP problem.
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Interior point barrier method

minimize f(x) =
x2

2
− 2x

subject to − 1 ≤ x ≤ 1
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Figure 30: Illustration of the interior point barrier method.
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Figure 30: Illustration of the interior point barrier method.
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Figure 30: Illustration of the interior point barrier method.
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Figure 30: Illustration of the interior point barrier method.
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Figure 30: Illustration of the interior point barrier method.
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Figure 30: Illustration of the interior point barrier method.
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KKT conditions for a barrier QP

Qx+ p+ τ

m∑
i=1

1

hi − g>i x
gi +A>λ = 0

Ax− b = 0

which are valid only for interior points, i.e. those x satisfying hi − g>i x > 0,∀i.

By defining µi = τ/(hi − g>i x), the KKT conditions for the barrier method can be rewritten as

Qx+ p+
m∑
i=1

µigi +A>λ = 0

Ax− b = 0

µi(hi − g>i x) = τ

which, together with the conditions hi − g>i x > 0 and µi > 0, can be seen as a version of the original
KKT conditions (76)-(79), where the complementary slackness conditions have been smoothed.
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A primal-dual interior point method
The QP problem

minimize f(x) =
1

2
x>Qx+ p>x

subject to Gx ≤ h

Ax = b

is characterized by the approximated (smoothed) KKT conditions

Qx+ p+G>µ+A>λ = 0

Ax− b = 0

Gx− h+ s = 0

µisi = τ

s > 0, µ > 0.

Applying Newton’s method on the equalities gives the Newton stepQ A> G> 0
A 0 0 0
G 0 0 I
0 0 diag(s) diag(µ)



x+

λ+

µ+

s+

 =

 −p
b
h

diag(s)µ+ τ

 .
Backtracking to secure s > 0 and µ > 0 is simple!



Nikolce Murgovski - SSY281 Model Predictive Control 165 of 217

A primal-dual interior point method
The QP problem

minimize f(x) =
1

2
x>Qx+ p>x

subject to Gx ≤ h

Ax = b

is characterized by the approximated (smoothed) KKT conditions

Qx+ p+G>µ+A>λ = 0

Ax− b = 0

Gx− h+ s = 0

µisi = τ

s > 0, µ > 0.

Applying Newton’s method on the equalities gives the Newton stepQ A> G> 0
A 0 0 0
G 0 0 I
0 0 diag(s) diag(µ)



x+

λ+

µ+

s+

 =

 −p
b
h

diag(s)µ+ τ

 .
Backtracking to secure s > 0 and µ > 0 is simple!



Nikolce Murgovski - SSY281 Model Predictive Control 166 of 217

Newton’s method for an inequality constrained problem

minimize
1

2
x>
[
2 1
1 2

]
x+

[
2 0

]
x

subject to x>x ≤ 1
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1

x1

x
2

Figure 31: An illustration of the Newton method on an inequality constrained problem.
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