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Lecture 10: Stability

Goals for today:
• To understand and be able to use Lyapunov functions to study simple stability problems
• To understand the fundamental ingredients in establishing stability for receding horizon controllers
• To formulate and verify the stability conditions of constrained linear quadratic MPC

Learning objectives:
• Describe basic properties of MPC controllers and analyse algorithmic details on very simple

examples
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Stability definitions

Consider the system

x+ = f(x), f(0) = 0. (89)

Definition (Local stability)
The origin is locally stable for the system (89) if, for any ε > 0, there exists a δ > 0 such that |x(0)| < δ
implies |x(k)| < ε for all k ≥ 0.

Definition (Global attraction)
The origin is globally attractive for the system (89) if x(k)→ 0, k →∞ for any initial x(0).

Definition (Global asymptotic stability)
The origin is globally asymptotically stable for the system (89) if it is locally stable and globally attractive.

Remark
If the origin is attractive only for initial states within a certain set, the definitions can be modified and the
properties then hold with a region of attraction that is not any longer the entire Rn.



Nikolce Murgovski - SSY281 Model Predictive Control 186 of 230

Stability definitions

Consider the system

x+ = f(x), f(0) = 0. (89)

Definition (Local stability)
The origin is locally stable for the system (89) if, for any ε > 0, there exists a δ > 0 such that |x(0)| < δ
implies |x(k)| < ε for all k ≥ 0.

Definition (Global attraction)
The origin is globally attractive for the system (89) if x(k)→ 0, k →∞ for any initial x(0).

Definition (Global asymptotic stability)
The origin is globally asymptotically stable for the system (89) if it is locally stable and globally attractive.

Remark
If the origin is attractive only for initial states within a certain set, the definitions can be modified and the
properties then hold with a region of attraction that is not any longer the entire Rn.



Nikolce Murgovski - SSY281 Model Predictive Control 186 of 230

Stability definitions

Consider the system

x+ = f(x), f(0) = 0. (89)

Definition (Local stability)
The origin is locally stable for the system (89) if, for any ε > 0, there exists a δ > 0 such that |x(0)| < δ
implies |x(k)| < ε for all k ≥ 0.

Definition (Global attraction)
The origin is globally attractive for the system (89) if x(k)→ 0, k →∞ for any initial x(0).

Definition (Global asymptotic stability)
The origin is globally asymptotically stable for the system (89) if it is locally stable and globally attractive.

Remark
If the origin is attractive only for initial states within a certain set, the definitions can be modified and the
properties then hold with a region of attraction that is not any longer the entire Rn.



Nikolce Murgovski - SSY281 Model Predictive Control 186 of 230

Stability definitions

Consider the system

x+ = f(x), f(0) = 0. (89)

Definition (Local stability)
The origin is locally stable for the system (89) if, for any ε > 0, there exists a δ > 0 such that |x(0)| < δ
implies |x(k)| < ε for all k ≥ 0.

Definition (Global attraction)
The origin is globally attractive for the system (89) if x(k)→ 0, k →∞ for any initial x(0).

Definition (Global asymptotic stability)
The origin is globally asymptotically stable for the system (89) if it is locally stable and globally attractive.

Remark
If the origin is attractive only for initial states within a certain set, the definitions can be modified and the
properties then hold with a region of attraction that is not any longer the entire Rn.



Nikolce Murgovski - SSY281 Model Predictive Control 187 of 230

Lyapunov function

Definition (Lyapunov function)

A function V : Rn → R+ is said to be a Lyapunov function for the system (89) if there are functions
αi ∈ K∞, i = 1, 2 and a positive definite function α3 such that for any x ∈ Rn,

V (x) ≥ α1(|x|)
V (x) ≤ α2(|x|)
V (f(x))− V (x) ≤ −α3(|x|).

Remark
A function belongs to K∞ if it is nonnegative, continuous, zero at zero, strictly increasing and
unbounded. A positive definite function is continuous and positive everywhere except at the origin.
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Lyapunov’s theorem

Proposition (Lyapunov’s theorem)

Suppose V (·) is a Lyapunov function for the system

x+ = f(x), f(0) = 0.

Then the origin is globally asymptotically stable.
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Basic MPC equations

Cost function:

VN (x0, u(0 :N − 1)) =

N−1∑
i=0

l(x(i), u(i)) + Vf (x(N)). (90)

Optimal cost-to-go:

V ∗N (x0) = min
u(0:N−1)

{VN (x0, u(0 :N − 1)) | u(0 :N − 1) ∈ UN (x0)}.

Constraints:

x+ = f(x, u), x(0) = x0 (91)

x(k) ∈ X, u(k) ∈ U, for all k ∈ (0, N) (92)

x(N) ∈ Xf ⊆ X. (93)
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Feasible control sequences and initial states:

u(0 :N − 1) ∈ UN (x0) (94)

XN = {x0 ∈ X | UN (x0) 6= ∅}. (95)

Optimal control and state sequences:

u∗(0 :N − 1;x0) = {u∗(0;x0), u∗(1;x0), . . . , u∗(N − 1;x0)}
x∗(0 :N ;x0) = {x∗(0;x0), x∗(1;x0), . . . , x∗(N ;x0)}.

(96)



Nikolce Murgovski - SSY281 Model Predictive Control 191 of 230

Existence of solution

Proposition (Existence of solution)
With the assumptions above, the following holds:

(a) The function VN is continuous on XN × UN .

(b) For each x ∈ XN , the control constraint set UN (x) is closed and bounded.

(c) For each x ∈ XN , a solution to the optimal control problem exists.

Remark
Note that nothing is said about the properties of the value function V ∗N (x) or the control law
κN (x) = u∗(0;x). In fact, these may both be discontinuous. However, if there are no state constraints
(i.e. X = Xf = Rn) or if the system is linear and the constraint sets are all polyhedral, then the value
function is continuous.
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Equivalence between infinite and finite horizon LQ

The infinite horizon LQ problem is based on the criterion in equation (29),

V (x(0), u(0 :∞)) =
∞∑
i=0

(
x>(i)Qx(i) + u>(i)Ru(i)

)
.

If the sum is split into two terms we get

V (x(0), u(0 :∞)) =

N−1∑
i=0

(
x>(i)Qx(i) + u>(i)Ru(i)

)
+
∞∑

i=N

(
x>(i)Qx(i) + u>(i)Ru(i)

)
.

By minimising the finite time horizon criterion

V (x(0), u(0 :N − 1)) =

N−1∑
i=0

(
x>(i)Qx(i) + u>(i)Ru(i)

)
+ x>(N)Px(N),

we will in fact generate exactly the same minimising control sequence u∗(0 :N − 1) as the infinite
horizon formulation leads to.
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Basic stability assumption

We proceed with the following basic assumption:

Assumption (Basic stability assumption)

The terminal set Xf is control invariant and the following inequality holds:

min
u∈U
{Vf (f(x, u)) + l(x, u) | f(x, u) ∈ Xf} ≤ Vf (x), ∀x ∈ Xf .

Remark
Recall that control invariance of Xf means that there exists a u ∈ U such that f(x, u) ∈ Xf , see
Definition 9.4. The implication of this, together with the properties of U, is that the minimum in the
assumption above exists.
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Decay of the value function

Lemma (Value function decrease)

Assume that Assumption 1.3 holds. Then the optimal cost or value function fulfills the following
inequality for all x ∈ XN :

V ∗N (f(x, κN (x))) ≤ V ∗N (x)− l(x, κN (x)).
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Proof of Lemma 16

Let x be any point in XN with V ∗N (x) = VN (x, u∗(0 :N − 1;x)). The corresponding optimal control and
state sequences are as in equation (96):

u∗(0 :N − 1;x) = {u∗(0;x), u∗(1;x), . . . , u∗(N − 1;x)}
x∗(0 :N ;x) = {x∗(0;x), x∗(1;x), . . . , x∗(N ;x)},

where u∗(0;x) = κN (x), x∗(0;x) = x and the successor state is x+ = x∗(1;x) = f(x, κN (x)).

In order
to compare V ∗N (x) with V ∗N (x+), we note that

V ∗N (x+) ≤ VN (x+, ũ(0 :N − 1)) (97)

ũ(0 :N − 1) = {u∗(1;x), . . . , u∗(N − 1;x), u}

and the state sequence resulting from ũ(0 :N − 1) is

x̃ = {x∗(1;x), . . . , x∗(N ;x), f(x∗(N ;x), u)}.
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ũ(0 :N − 1) = {u∗(1;x), . . . , u∗(N − 1;x), u}

and the state sequence resulting from ũ(0 :N − 1) is
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We have

VN (x+, ũ(0 :N − 1)) = V ∗N (x)− l(x, κN (x))− Vf (x
∗(N ;x))

+ l(x∗(N ;x), u) + Vf (f(x
∗(N ;x), u)) ≤ V ∗N (x) − l(x, κN (x))

where the inequality follows from the fact that u can be chosen according to Assumption 1.3.
Combining this result with equation (97) completes the proof.
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MPC stability

Theorem (MPC stability)
Assume that Assumption 1.3 holds and that the stage cost l(·) and the terminal cost Vf (·) satisfy

l(x, u) ≥ α1(|x|) ∀x ∈ XN , u ∈ U
Vf (x) ≤ α2(|x|) ∀x ∈ Xf

with α1, α2 ∈ K∞. Further, assume that Xf contains the origin in its interior. Then the origin is
asymptotically stable with a region of attraction XN for the system x+ = f(x, κN (x)).
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Stability of constrained linear quadratic MPC

The system is now described by the state equation

x+ = Ax+Bu

with (A,B) controllable and the stage cost is

l(x, u) = x>Qx+ u>Ru

with Q,R � 0. As before, the constraint sets X and U are polyhedral, i.e. described by linear
inequalities.

Choose the terminal cost as the value function for the unconstrained LQ problem, i.e.

Vf (x) = V uc
∞ (x) = x>Px,

where P is the solution of the algebraic Riccati equation. The value function satisfies the equation

V uc
∞ (x) = min

u
{x>Qx+ u>Ru+ V uc

∞ (x+)} = x>Qx+ (Kx)>R(Kx) + V uc
∞ (Ax+BKx)

which implies that

Vf ((A+BK)x) + x>Qx+ (Kx)>R(Kx) = Vf (x).
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This means that the chosen Vf satisfies the inequality of Assumption 1.3, if we can ensure that
constraints are not active in Xf . This can indeed be guaranteed if we define Xf ⊆ X to be the largest
set fulfilling the following two conditions:

1. x ∈ Xf ⇒ Kx ∈ U and

2. x ∈ Xf ⇒ (A+BK)ix ∈ Xf for all i ≥ 0.

The set Xf thus defined is control invariant.
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Stability of constrained linear quadratic MPC

Theorem (Stability of constrained linear quadratic MPC)
Consider the linear quadratic MPC with linear constraints applied to the controllable system
x+ = Ax+Bu and with positive definite matrices Q and R. Further assume that the terminal cost Vf is
chosen as the value function of the corresponding unconstrained, infinite horizon LQ controller, and
that the terminal constraint set Xf is chosen as described above. Then the origin is asymptotically
stable with a region of attraction XN for the controlled system x+ = Ax+BκN (x).
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