CHALMERS UNIVERSITY OF TECHNOLOGY SSY281 - MODEL PREDICTIVE CONTROL

NIKOLCE MURGOVSKI

Division of Systems and Control Department of Electrical Engineering Chalmers University of Technology Gothenburg, Sweden

2021-02-19

Lecture 10: Stability

Goals for today:

- To understand and be able to use Lyapunov functions to study simple stability problems
- To understand the fundamental ingredients in establishing stability for receding horizon controllers
- To formulate and verify the stability conditions of constrained linear quadratic MPC

Lecture 10: Stability

Goals for today:

- To understand and be able to use Lyapunov functions to study simple stability problems
- To understand the fundamental ingredients in establishing stability for receding horizon controllers
- To formulate and verify the stability conditions of constrained linear quadratic MPC

Learning objectives:

 Describe basic properties of MPC controllers and analyse algorithmic details on very simple examples

Consider the system

$$x^+ = f(x), \quad f(0) = 0.$$

(89)

Definition (Local stability)

The origin is *locally stable* for the system (89) if, for any $\epsilon > 0$, there exists a $\delta > 0$ such that $|x(0)| < \delta$ implies $|x(k)| < \epsilon$ for all $k \ge 0$.

Consider the system

$$x^+ = f(x), \quad f(0) = 0.$$

(89)

Definition (Local stability)

The origin is *locally stable* for the system (89) if, for any $\epsilon > 0$, there exists a $\delta > 0$ such that $|x(0)| < \delta$ implies $|x(k)| < \epsilon$ for all $k \ge 0$.

Definition (Global attraction)

The origin is *globally attractive* for the system (89) if $x(k) \rightarrow 0, k \rightarrow \infty$ for any initial x(0).

Consider the system

$$x^+ = f(x), \quad f(0) = 0.$$

(89)

Definition (Local stability)

The origin is *locally stable* for the system (89) if, for any $\epsilon > 0$, there exists a $\delta > 0$ such that $|x(0)| < \delta$ implies $|x(k)| < \epsilon$ for all $k \ge 0$.

Definition (Global attraction)

The origin is *globally attractive* for the system (89) if $x(k) \rightarrow 0, k \rightarrow \infty$ for any initial x(0).

Definition (Global asymptotic stability)

The origin is *globally asymptotically stable* for the system (89) if it is locally stable and globally attractive.

Consider the system

$$x^+ = f(x), \quad f(0) = 0.$$

(89)

Definition (Local stability)

The origin is *locally stable* for the system (89) if, for any $\epsilon > 0$, there exists a $\delta > 0$ such that $|x(0)| < \delta$ implies $|x(k)| < \epsilon$ for all $k \ge 0$.

Definition (Global attraction)

The origin is *globally attractive* for the system (89) if $x(k) \rightarrow 0, k \rightarrow \infty$ for any initial x(0).

Definition (Global asymptotic stability)

The origin is *globally asymptotically stable* for the system (89) if it is locally stable and globally attractive.

Remark

If the origin is attractive only for initial states within a certain set, the definitions can be modified and the properties then hold with a region of attraction that is not any longer the entire \mathbb{R}^n .

Lyapunov function

Definition (Lyapunov function)

A function $V : \mathbb{R}^n \to \mathbb{R}_+$ is said to be a Lyapunov function for the system (89) if there are functions $\alpha_i \in \mathcal{K}_{\infty}, i = 1, 2$ and a positive definite function α_3 such that for any $x \in \mathbb{R}^n$,

$$\begin{split} V(x) &\geq \alpha_1(|x|) \\ V(x) &\leq \alpha_2(|x|) \\ V(f(x)) - V(x) &\leq -\alpha_3(|x|). \end{split}$$

Remark

A function belongs to \mathcal{K}_{∞} if it is nonnegative, continuous, zero at zero, strictly increasing and unbounded. A positive definite function is continuous and positive everywhere except at the origin.

Lyapunov's theorem

Proposition (Lyapunov's theorem)

Suppose $V(\cdot)$ is a Lyapunov function for the system

 $x^+ = f(x), \quad f(0) = 0.$

Then the origin is globally asymptotically stable.

Basic MPC equations

Cost function:

$$V_N(x_0, u(0:N-1)) = \sum_{i=0}^{N-1} l(x(i), u(i)) + V_f(x(N)).$$
(90)

Optimal cost-to-go:

$$V_N^*(x_0) = \min_{u(0:N-1)} \{ V_N(x_0, u(0:N-1)) \mid u(0:N-1) \in \mathcal{U}_N(x_0) \}.$$

Constraints:

$$x^+ = f(x, u), \quad x(0) = x_0$$
 (91)

$$x(k) \in \mathbb{X}, \quad u(k) \in \mathbb{U}, \quad \text{for all } k \in (0, N)$$
(92)

$$x(N) \in \mathbb{X}_f \subseteq \mathbb{X}.$$
(93)

Feasible control sequences and initial states:

$$u(0:N-1) \in \mathcal{U}_N(x_0) \tag{94}$$
$$\mathcal{X}_N = \{x_0 \in \mathbb{X} \mid \mathcal{U}_N(x_0) \neq \emptyset\}. \tag{95}$$

Optimal control and state sequences:

$$u^{*}(0:N-1;x_{0}) = \{u^{*}(0;x_{0}), u^{*}(1;x_{0}), \dots, u^{*}(N-1;x_{0})\}$$

$$x^{*}(0:N;x_{0}) = \{x^{*}(0;x_{0}), x^{*}(1;x_{0}), \dots, x^{*}(N;x_{0})\}.$$
(96)

Existence of solution

Proposition (Existence of solution)

With the assumptions above, the following holds:

- (a) The function V_N is continuous on $\mathcal{X}_N \times \mathcal{U}_N$.
- **(b)** For each $x \in \mathcal{X}_N$, the control constraint set $\mathcal{U}_N(x)$ is closed and bounded.

(c) For each $x \in \mathcal{X}_N$, a solution to the optimal control problem exists.

Existence of solution

Proposition (Existence of solution)

With the assumptions above, the following holds:

- (a) The function V_N is continuous on $\mathcal{X}_N \times \mathcal{U}_N$.
- (b) For each $x \in \mathcal{X}_N$, the control constraint set $\mathcal{U}_N(x)$ is closed and bounded.

(c) For each $x \in \mathcal{X}_N$, a solution to the optimal control problem exists.

Remark

Note that nothing is said about the properties of the value function $V_N^*(x)$ or the control law $\kappa_N(x) = u^*(0; x)$. In fact, these may both be discontinuous. However, if there are no state constraints (i.e. $\mathbb{X} = \mathbb{X}_f = \mathbb{R}^n$) or if the system is linear and the constraint sets are all polyhedral, then the value function is continuous.

Equivalence between infinite and finite horizon LQ

The infinite horizon LQ problem is based on the criterion in equation (29),

$$V(x(0), u(0:\infty)) = \sum_{i=0}^{\infty} \left(x^{\top}(i)Qx(i) + u^{\top}(i)Ru(i) \right).$$

If the sum is split into two terms we get

$$V(x(0), u(0:\infty)) = \sum_{i=0}^{N-1} \left(x^{\top}(i)Qx(i) + u^{\top}(i)Ru(i) \right) + \sum_{i=N}^{\infty} \left(x^{\top}(i)Qx(i) + u^{\top}(i)Ru(i) \right).$$

Equivalence between infinite and finite horizon LQ

The infinite horizon LQ problem is based on the criterion in equation (29),

$$V(x(0), u(0:\infty)) = \sum_{i=0}^{\infty} \left(x^{\top}(i)Qx(i) + u^{\top}(i)Ru(i) \right).$$

If the sum is split into two terms we get

$$V(x(0), u(0:\infty)) = \sum_{i=0}^{N-1} \left(x^{\top}(i)Qx(i) + u^{\top}(i)Ru(i) \right) + \sum_{i=N}^{\infty} \left(x^{\top}(i)Qx(i) + u^{\top}(i)Ru(i) \right).$$

By minimising the finite time horizon criterion

$$V(x(0), u(0:N-1)) = \sum_{i=0}^{N-1} \left(x^{\top}(i)Qx(i) + u^{\top}(i)Ru(i) \right) + x^{\top}(N)Px(N),$$

we will in fact generate exactly the same minimising control sequence $u^*(0: N-1)$ as the infinite horizon formulation leads to.

Basic stability assumption

We proceed with the following basic assumption:

Assumption (Basic stability assumption)

The terminal set X_f is control invariant and the following inequality holds:

 $\min_{u \in \mathbb{U}} \left\{ V_f(f(x,u)) + \overline{l(x,u)} \mid f(x,u) \in \mathbb{X}_f \right\} \le V_f(x), \quad \forall x \in \mathbb{X}_f.$

Basic stability assumption

We proceed with the following basic assumption:

Assumption (Basic stability assumption)

The terminal set X_f is control invariant and the following inequality holds:

 $\min_{u \in \mathbb{U}} \overline{\{V_f(f(x,u)) + l(x,u) \mid f(x,u) \in \mathbb{X}_f\}} \le V_f(x), \quad \forall x \in \mathbb{X}_f.$

Remark

Recall that control invariance of X_f means that there exists a $u \in U$ such that $f(x, u) \in X_f$, see Definition 9.4. The implication of this, together with the properties of U, is that the minimum in the assumption above exists.

Decay of the value function

Lemma (Value function decrease)

Assume that Assumption 1.3 holds. Then the optimal cost or value function fulfills the following inequality for all $x \in \mathcal{X}_N$:

 $V_N^*(f(x,\kappa_N(x))) \le V_N^*(x) - l(x,\kappa_N(x)).$

Proof of Lemma 16

Let *x* be any point in \mathcal{X}_N with $V_N^*(x) = V_N(x, u^*(0:N-1;x))$. The corresponding optimal control and state sequences are as in equation (96):

$$u^*(0:N-1;x) = \{u^*(0;x), u^*(1;x), \dots, u^*(N-1;x)\}$$
$$x^*(0:N;x) = \{x^*(0;x), x^*(1;x), \dots, x^*(N;x)\},$$

where $u^*(0;x) = \kappa_N(x)$, $x^*(0;x) = x$ and the successor state is $x^+ = x^*(1;x) = f(x,\kappa_N(x))$.

Proof of Lemma 16

Let *x* be any point in \mathcal{X}_N with $V_N^*(x) = V_N(x, u^*(0: N-1; x))$. The corresponding optimal control and state sequences are as in equation (96):

$$u^*(0:N-1;x) = \{u^*(0;x), u^*(1;x), \dots, u^*(N-1;x)\}$$
$$x^*(0:N;x) = \{x^*(0;x), x^*(1;x), \dots, x^*(N;x)\},$$

where $u^*(0;x) = \kappa_N(x)$, $x^*(0;x) = x$ and the successor state is $x^+ = x^*(1;x) = f(x,\kappa_N(x))$. In order to compare $V_N^*(x)$ with $V_N^*(x^+)$, we note that

$$V_N^*(x^+) \le V_N(x^+, \tilde{u}(0:N-1))$$
(97)

$$\tilde{u}(0:N-1) = \{u^*(1;x), \dots, u^*(N-1;x), u\}$$

and the state sequence resulting from $\tilde{u}(0:N-1)$ is

$$\tilde{x} = \{x^*(1;x), \dots, x^*(N;x), f(x^*(N;x),u)\}.$$

We have

$$V_N(x^+, \tilde{u}(0:N-1)) = V_N^*(x) - l(x, \kappa_N(x)) - V_f(x^*(N;x)) + l(x^*(N;x), u) + V_f(f(x^*(N;x), u)) \le V_N^*(x) - l(x, \kappa_N(x))$$

where the inequality follows from the fact that u can be chosen according to Assumption 1.3. Combining this result with equation (97) completes the proof.

MPC stability

Theorem (MPC stability)

Assume that Assumption 1.3 holds and that the stage cost $l(\cdot)$ and the terminal cost $V_f(\cdot)$ satisfy

 $egin{aligned} l(x,u) &\geq lpha_1(|x|) \quad orall x \in \mathcal{X}_N, u \in \mathbb{U} \ V_f(x) &\leq lpha_2(|x|) \quad orall x \in \mathbb{X}_f \end{aligned}$

with $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$. Further, assume that \mathbb{X}_f contains the origin in its interior. Then the origin is asymptotically stable with a region of attraction \mathcal{X}_N for the system $x^+ = f(x, \kappa_N(x))$.

Stability of constrained linear quadratic MPC

The system is now described by the state equation

 $x^+ = Ax + Bu$

with (A, B) controllable and the stage cost is

 $l(x,u) = x^{\top}Qx + u^{\top}Ru$

with $Q, R \succ 0$. As before, the constraint sets X and U are polyhedral, i.e. described by linear inequalities.

Stability of constrained linear quadratic MPC

The system is now described by the state equation

$$x^+ = Ax + Bu$$

with (A, B) controllable and the stage cost is

$$l(x,u) = x^{\top}Qx + u^{\top}Ru$$

with $Q, R \succ 0$. As before, the constraint sets X and U are polyhedral, i.e. described by linear inequalities.

Choose the terminal cost as the value function for the unconstrained LQ problem, i.e.

$$V_f(x) = V_{\infty}^{\mathsf{uc}}(x) = x^{\top} P x,$$

where P is the solution of the algebraic Riccati equation. The value function satisfies the equation

$$V^{\mathrm{uc}}_{\infty}(x) = \min_{u} \{ \boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x} + \boldsymbol{u}^{\top} \boldsymbol{R} \boldsymbol{u} + V^{\mathrm{uc}}_{\infty}(\boldsymbol{x}^{+}) \} = \boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x} + (\boldsymbol{K} \boldsymbol{x})^{\top} \boldsymbol{R}(\boldsymbol{K} \boldsymbol{x}) + V^{\mathrm{uc}}_{\infty}(\boldsymbol{A} \boldsymbol{x} + \boldsymbol{B} \boldsymbol{K} \boldsymbol{x})$$

which implies that

 $V_f((A + BK)x) + x^{\top}Qx + (Kx)^{\top}R(Kx) = V_f(x).$

This means that the chosen V_f satisfies the inequality of Assumption 1.3, *if* we can ensure that constraints are not active in X_f . This can indeed be guaranteed if we define $X_f \subseteq X$ to be the largest set fulfilling the following two conditions:

1. $x \in \mathbb{X}_f \Rightarrow Kx \in \mathbb{U}$ and

2. $x \in \mathbb{X}_f \Rightarrow (A + BK)^i x \in \mathbb{X}_f$ for all $i \ge 0$.

The set X_f thus defined is control invariant.

Stability of constrained linear quadratic MPC

Theorem (Stability of constrained linear quadratic MPC)

Consider the linear quadratic MPC with linear constraints applied to the controllable system $x^+ = Ax + Bu$ and with positive definite matrices Q and R. Further assume that the terminal cost V_f is chosen as the value function of the corresponding unconstrained, infinite horizon LQ controller, and that the terminal constraint set X_f is chosen as described above. Then the origin is asymptotically stable with a region of attraction \mathcal{X}_N for the controlled system $x^+ = Ax + B\kappa_N(x)$.

References

- J.B. Rawlings, D.Q. Mayne, and M.M. Diehl. *Model Predictive Control: Theory, Computation, and Design, 2nd edition.* Nob Hill Publishing 2017. Available online at https://sites.engineering.ucsb.edu/~jbraw/mpc
- [2] G. Goodwin, M.M. Seron, and J.A. De Don. *Constrained Control and Estimation.* Springer 2004. Available online via Chalmers Library.
- [3] F Borrelli, A. Bemporad, and M. Morari. *Predictive Control for Linear and Hybrid Systems*. Available online at http://www.mpc.berkeley.edu/mpc-course-material
- [4] J. Maciejowski. Predictive Control with Constraints. Prentice Hall 2002.
- [5] S. Boyd and L. Vandenberghe. *Convex optimisation*. Cambridge University Press 2004.
- [6] Diehl, M. *Real-Time Optimization for Large Scale Nonlinear Processes.* PhD thesis, University of Heidelberg, 2001.

CHALMERS