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Lecture 9 : Feasibility

Goals for today:
• To understand the issue of recursive feasibility and how to obtain it
• To understand the role of constraint management and back-up strategies

Learning objectives:
• Understand and explain the basic principles of model predictive control, its pros and cons, and the

challenges met in implementation and applications
• Describe basic properties of MPC controllers and analyse algorithmic details on very simple

examples
• Understand and explain basic properties of the optimisation problem as an ingredient of MPC, in

particular concepts like linear, quadratic and convex optimisation, optimality conditions, and
feasibility
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Recursive (persistent) feasibility – definition

Definition (Invariant set)

The set S is positively invariant for the autonomous system x+ = fa(x) if

x(0) ∈ S ⇒ x(k) ∈ S, ∀k ∈ N+.

Definition (Recursive (persistent) feasibility)
The receding horizon controller is recursively (persistently) feasible if the feasible set XN is positively
invariant for the closed-loop system x+ = f(x, κN (x)), i.e.

x(0) ∈ XN ⇒ x(k + 1) = f(x(k), κN (x(k))) ∈ XN , ∀k ∈ N+.

The implication of these definitions is that if the RHC is recursively feasible, then it is guaranteed that
the optimisation problem to be solved at every time instant is feasible, provided the initial state is
feasible.
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Example: feasibility vs. recursive feasibility

Consider the system

x(k + 1) =

[
1 2
0 1

]
x(k) +

[
0
1

]
u(k)

y(k) =
[
1 0

]
x(k)

with constraints x1(k) ∈ [0, 10], u(k) ∈ [−1, 1], ∀k. We will study the finite-time optimal control problem
with

N = 2, x(0) =

[
10
0

]
, Q = Pf =

[
1 0
0 0

]
, R = 1.
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Example: feasibility vs. recursive feasibility
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Figure 32: Evolutional of states and control actions. The controller is feasible over the first 3 samples and MPC predicts that the 1st
state will reach zero at the 4th sample. However, after evaluating the controller at the 3rd sample, it is clear that even the highest
control action, depicted by the dashed line, is not able to keep the 1st state above zero.
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Example: feasibility vs. recursive feasibility
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Figure 33: Evolutional of states and control actions. For a prediction horizon of N = 3 the controller is recursively feasible for the
given initial state.
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Illustration of recursive feasibility

u(1;x)

. . .

u(N − 1;x)

{u(0;x), u(1;x), . . . , u(N − 1;x)} ∈ UN (x)

u

0 1 2 3 N − 2 N − 1 N N + 1

. . .

{x(0;x), x(1;x), . . . , x(N ;x)} ∈ X

x(N ;x) ∈ Xf
x+ = f(x, u(0;x)) = x(1;x)

x

Figure 34: Illustration of recursive feasibility. After shifting the horizon and applying a control sequence constructed from the tail of
the previous sequence and a new feasible control u, recursive feasibility requires that the new state sequence is also feasible.
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Condition for recursive feasibility

Definition (Control invariant set)

A set C ⊆ X is a control invariant set of the system x+ = f(x, u) if

x ∈ C ⇒ ∃u ∈ U such that x+ = f(x, u) ∈ C.

The maximal control invariant set contained in X is denoted C∞ and contains all control invariant sets in
X.

Theorem (Sufficient condition for recursive feasibility)
The receding horizon controller based on the finite horizon optimal control problem (37)-(40) is
recursively feasible if the terminal constraint set Xf is control invariant.
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Computation of the maximal control invariant set

The following recursion can be used to find C∞:

Ω0 = X
Ωi+1 = Pre (Ωi) ∩ Ωi.

(83)

Here, Pre (S) is the set of states that can be driven into the target set S in one time step:

Pre (S) = {x ∈ X | ∃u ∈ U such that x+ = f(x, u) ∈ S}. (84)

The recursion (83), which generates a sequence of decreasing sets, may or may not terminate; if it
does, Ωi+1 = Ωi for some i, the determinedness index of C∞, which is in this case finitely determined.
Figure 35 illustrates the different sets we have defined.
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Illustration of a maximal control invariant set

0
C C∞ Ωi+1 Ωi X

Figure 35: Construction of a maximal control invariant set C∞ in X. C is an arbitrary control invariant set.
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Continuation of the previous example: maximal control
invariant set

0 2 4 6 8 10

−4

−2

0

2

4 X

x1

x
2

Figure 36: Maximal control invariant set reached with 3 recursions of Pre (Ωi) ∩ Ωi.
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Figure 36: Maximal control invariant set reached with 3 recursions of Pre (Ωi) ∩ Ωi.
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Figure 36: Maximal control invariant set reached with 3 recursions of Pre (Ωi) ∩ Ωi.
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Continuation of the previous example: feasible trajectories
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Figure 37: Comparison between the infeasible trajectories, depicted by dashed lines, and recursively feasible trajectories, solid lines,
obtained when the target set is the maximal control invariant set.
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i-step controllable set

Definition (i-step controllable set Ki(S))
The i-step controllable set Ki(S) is defined as the set of initial states that can be driven to the target set
S in i steps, while satisfying state and control constraints at all times.

From the definition, it follows that the feasible set XN can alternatively be defined as

XN = KN (Xf ).

If it is assumed that Xf is control invariant—which was shown above to guarantee persistent
feasibility—then it is clear that the set sequence {Ki(Xf )} is monotone in the sense

Xf = K0(Xf ) ⊆ . . . ⊆ Ki(Xf ) ⊆ Ki+1(Xf ) ⊆ . . . ⊆ KN (Xf ) ⊆ K∞(Xf ) ⊆ X, (85)

where K∞(Xf ) is the maximal controllable set with target set Xf , defined by

K∞(Xf ) =
⋃
i

Ki(Xf ).
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Illustration of an i-step controllable set

0 Xf
Ki(Xf )

KN (Xf )
K∞(Xf )

X

Figure 38: Construction of the maximal controllable set K∞(Xf ).
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Continuation of the previous example: i-step controllable
set
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Figure 39: i-step controllable set for a target set Xf = 0. For a horizon N ≥ 3 the system initialised at
[
10 0

]> is persistently
feasible.
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i-step controllable set with a larger target set
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Figure 40: i-step controllable set for a larger target set Xf = {x|0 ≤ x ≤ 1}.
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i-step controllable set with a larger target set

0 2 4 6 8 10

−2

0

2

K1

Xf

x1

x
2

Figure 40: i-step controllable set for a larger target set Xf = {x|0 ≤ x ≤ 1}.
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Figure 40: i-step controllable set for a larger target set Xf = {x|0 ≤ x ≤ 1}.
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Constraint management

• Soft constraints can be introduced:

min
u

VN (u) + ro‖ε‖ (86)

subject to Fu +Gx ≤ e+ ε (87)

ε ≥ 0. (88)

• Reduce window in which constraints are enforced.
• Prioritise constraints→ mixed-integer quadratic program.
• Don’t forget time limitations – control output must be delivered!
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Feasibility – summary

• It may be impossible, for some initial states, to solve the RHC optimisation problem while
respecting constraints on states and/or outputs. The problem is in these cases infeasible.

• In the nominal case, without disturbances and with a perfect model, recursive feasibility may be
ensured by choosing the terminal constraint set Xf to be control invariant.
• In practice, infeasibility may still occur, possibly caused by too strict performance requirements, a

large disturbance, model uncertainty, or by an unstable system.
• Ad hoc solutions are for example to keep the control as is (from the previous sampling instant), or

to switch to a backup controller.
• A more systematic approach is to relax the constraints in some way; this is often referred to as

constraint management.
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• In the nominal case, without disturbances and with a perfect model, recursive feasibility may be

ensured by choosing the terminal constraint set Xf to be control invariant.
• In practice, infeasibility may still occur, possibly caused by too strict performance requirements, a

large disturbance, model uncertainty, or by an unstable system.
• Ad hoc solutions are for example to keep the control as is (from the previous sampling instant), or

to switch to a backup controller.
• A more systematic approach is to relax the constraints in some way; this is often referred to as

constraint management.
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