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Lecture 12: Explicit control laws for constrained, linear
systems
Goals for today:
• To understand how the concept of parametric programming can be applied to RHC
• To understand the principles behind so called explicit MPC

Learning objectives:
• Describe and construct MPC controllers based on a linear model, quadratic costs and linear

constraints
• Describe basic properties of MPC controllers and analyse algorithmic details on very simple

examples
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Parametric programming

So called parametric programming deals with optimisation problems taking the form

V ∗(x) = min
u
{V (x, u) | u ∈ U(x)}, (98)

where x is the parameter of the problem. Whereas the solution to a conventional optimisation problem
is a point (or possibly a set), the solution to this parametric programming problem is actually a function
u∗(x) (which in the general case could be set valued).

The parametric constraint u ∈ U(x) can also be expressed as (x, u) ∈ Z, where Z is a subset of
(x, u)-space,

U(x) = {u | (x, u) ∈ Z}. (99)

The domain of the function V ∗(x) in (98) is the set X , defined by

X = {x | ∃u such that (x, u) ∈ Z} = {x | U(x) 6= ∅}. (100)
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Example: Parametric quadratic programming

Consider the parametric quadratic program min
u
{V (x, u) | (x, u) ∈ Z} with

V (x, u) =
1

2

(
(x− u)2 + u2)

Z = {(x, u) | u ≥ 1, u+ x/2 ≥ 2, u+ x ≥ 2}.

From ∇uV (x, u) = −x+ 2u, it is clear that the unconstrained minimum is given by

u∗uc = x/2,

but this solution does not fulfil the constraints for x < 2. Since ∇uV (x, u) > 0 for all u > u∗uc, the
constrained optimal solution u∗(x) will lie on the boundary of Z.
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Figure 42: An illustration of the unconstrained, u∗
uc, and the constrained parametric solution, u∗

(x), to the quadratic program.
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Figure 42: An illustration of the unconstrained, u∗
uc, and the constrained parametric solution, u∗

(x), to the quadratic program.
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Constrained LQ control

Recall that the receding horizon controller is based on the finite-time optimisation problem

V ∗N (x) = min
u(0:N−1)

{VN (x, u(0 :N − 1)) | u(0 :N − 1) ∈ UN (x)}, (101)

where the objective is given by

VN (x, u(0 :N − 1)) = x>(N)Pfx(N) +

N−1∑
i=0

(
x>(i)Qx(i) + u>(i)Ru(i)

)
, x(0) = x. (102)

In this formulation, the optimisation variables are the sequence of controls u(0 :N − 1) or, equivalently,
the vector u = vec (u(0), . . . , u(N − 1)) as in (20). The states x(i) in (102) can be thought of as
short-hand notation for the expressions

x(i) = Aix+ Γiu, (103)

where Γi is the ith row of the matrix Γ, see (19).
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With the formulation above, all the constraints are encoded in the form of the set of allowed control
sequences u(0 :N − 1) ∈ UN (x), which depends on the initial state x.

Taking a closer look at this set, we see that it is actually determined by the following constraints:

1. the control constraint set U;

2. the state constraint set X;

3. the terminal state constraint set Xf .

Condition (1) implies that u is constrained by a polyhedral set. Conditions (2) and (3) constitute
polyhedral constraints on {x(i)}, which can be translated to affine constraints expressed in terms of
(x,u) by using the state expressions (103). The conclusion is that the implicit constraint set UN can be
expressed as an explicit, polyhedral set

Z = {(x,u) | Fu ≤ Gx+ h} (104)

for some matrices F,G and vector h.
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Hence, the MPC optimisation problem can now be stated as

min
u

VN (x,u) =
1

2
(u>R̃u + x>Q̃x) + u>Sx

subject to Fu ≤ Gx+ h
(105)

for suitable definitions of the matrices R̃, Q̃, and S, cf. (21). In the sequel, it will be assumed that the
matrix

Q =

[
Q̃ S>

S R̃

]
is positive definite, implying that both R̃ and Q̃ are positive definite.
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Solution of the parametric program

Let’s first note that the parametric optimisation problem (105) can also be stated as

V ∗(x) = min
u
{V (x,u) | u ∈ U(x)} (106)

where

U(x) = {u | (x,u) ∈ Z} = {u | Fu ≤ Gx+ h} (107)

Z = {(x,u) | Fu ≤ Gx+ h} (108)

and we have dropped the subscript N .

The domain of V ∗ is

X = {x | ∃u such that (x,u) ∈ Z} = {x | U 6= ∅}.

Since R̃ has been assumed positive definite, the solution u∗(x) is unique and its domain is X .
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Main ideas to exploit the structure of the problem

1. Pick an arbitrary state vector x, for which the optimal solution is u∗(x). Find a representation of
this solution by using the fact that it is also the optimal solution of an equality constrained problem
(with the subset of active inequality constraints being included as equality constraints and the
remaining ones discarded).

2. Show that the same equality constrained problem, and its solution, is also valid for initial states
close to x. In fact, there exists a polyhedron R∗x in Rn, containing x, such that, for each w ∈ R∗x,
u∗(w) is the solution of the optimisation problem with the same set of equality constraints. On the
set R∗x, u∗(w) is affine in w and V ∗(w) is quadratic in w.

3. Show that there are finitely many polyhedral regions {R∗x} covering the set of feasible states X .
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Step 1

The conditions of optimality are that u is feasible and that

−∇uV (x) = −(R̃u + Sx) =
∑
i∈A

µiF
>
i , for some {µi} with µi ≥ 0 (109)

where Fi is the ith row of F and A is the active set of constraints.

The latter condition can equivalently
be expressed as a set of linear inequalities (see [1]), so that the optimality conditions can be written as
a set of linear inequalities:

Fu ≤ Gx+ h

−L∗x(R̃u + Sx) ≤ 0
(110)

where L∗x is a matrix defined by the active constraints corresponding to u∗(x).
The solution u∗(x) can also be found as the solution to an equality constrained problem with only the
active constraints. Denoting the subset of active constraints corresponding to x by F ∗xu = G∗xx+ h∗x,
we thus have

u∗(x) = arg min
u
{V (x,u) | F ∗xu = G∗xx+ h∗x}.
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Step 2

At least for points w close to x, it sounds plausible that the optimal solution u∗(w) would have the same
set of active constraints as x. If so, then u∗(w) would actually be the solution of an equality constrained
problem with the same set of equality constraints. We have not yet shown that this is the case, but let’s
define these solutions anyhow,

u∗x(w) = arg min
u
{V (w,u) | F ∗xu = G∗xw + h∗x}. (111)

Here, the subscript x indicates that the solution is obtained by using the active constraints
corresponding to the state x.

Now, the solution of a QP with linear constraints can be computed explicitly, see (97). The result is that
u∗x(w) is affine in w and that V ∗x (w) is quadratic in w:

u∗x(w) = Kxw + kx (112)

V ∗x (w) =
1

2
w>Qxw + r>x w + sx. (113)
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By inserting the expression for u∗x(w) in equation (110) and replacing x with w, we obtain a set of
inequalities for w:

F (Kxw + kx) ≤ Gw + h

−L∗x(R̃(Kxw + kx) + Sw) ≤ 0.
(114)

This set of inequalities defines a polyhedron R∗x for w. The conclusion is that for any w ∈ R∗x, the
previously computed solution u∗x(w) satisfies the optimality conditions for the original problem. Hence,

u∗(w) = u∗x(w) = Kxw + kx, ∀w ∈ R∗x. (115)

It follows that the value function is quadratic in R∗x.
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Step 3

• The set R∗x is characterized by the set of active constraints, and there is a finite set of subsets of
active constraints, telling us that there are finitely many polyhedral regions R∗x.

• Any arbitrary feasible x ∈ X belongs to a region R∗x.
• We can conclude that the feasible set X is partitioned by a collection of non-overlapping polyhedra
∪{R∗x} | x ∈ X .
• Corresponding to this partition, the optimal solution to the parametric program (105) is piecewise

affine with a value function that is piecewise quadratic.
• Moreover, as shown in [1], the value function V ∗(x) and the minimizer u∗(x) are continuous in
x ∈ X .
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Example: LQ MPC for an integrator, cont’d

x+ = x+ u

with a control constraint

u ∈ U = [−1, 1]

and with Q = R = Pf = 1, N = 2.

For this example, we concluded that the receding horizon control
law could be given in closed-form as

u(x) =


1 x ≤ −5/3

−3/5 · x −5/3 ≤ x ≤ 5/3

−1 x ≥ 5/3.

We can thus verify that the control law is piecewise affine, as predicted, and that the partition of the
state space is given by three intervals, two of which are semi-infinite.
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LQ MPC for an integrator, cont’d
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(a) Optimal feedback policy.
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(b) Optimal value function.

Figure 43: Optimal explicit control law and value function. The colours indicate different control partitions.
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Example: High inertia system, cont’d

x(k + 1) =

[
1 2
0 1

]
x(k) +

[
0
1

]
u(k), y(k) =

[
1 0

]
x(k), x(0) =

[
10
0

]
, Q =

[
1 0
0 0

]
,

R = 1, Pf = P∞, x1(k) ∈ [0, 10], u(k) ∈ [−1, 1], ∀k, N = 2, Xf = C∞.

0 2 4 6 8 10

−2

0

2

x1

x
2

Feedback trajectory

(a) Control partitions.
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(b) Optimal feedback policy.
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(c) Optimal value function.

Figure 44: Optimal explicit control law. The colours indicate different control partitions.



Nikolce Murgovski - SSY281 Model Predictive Control 226 of 245

Explicit MPC strategy

1. Find a partition {Rxi} of X .

2. Calculate the optimal, affine control law on each of the regions Rxi and store the result, i.e.
controller parameters. This and the previous step can be done off-line.

3. During on-line operation, run the controller by

• for the measured state x, identify the region to which x belongs;
• look up the controller parameters for the found region;
• compute the next control signal.
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Explicit MPC example

x1

x
2

Figure 45: An illustration of a partitioned state-space for a system with 2 states and prediction horizon of 10 samples. There are 267
control partitions with a possibly different affine control law.
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