SSY281 PSS 6 - MPT Part 2: MPC and Minimum-Time Control

Rémi Lacombe

March 5^{th} 2021

Design a MPC with the MPT toolbox, cf file MPC_controller.m.

How should should X_f and V_f be chosen? One option is:

Theorem 10.10 (Stability of constrained linear quadratic MPC). Consider the linear quadratic MPC with linear constraints applied to the controllable system $x^+ = Ax + Bu$ and with positive definite matrices Q and R. Further assume that the terminal cost V_f is chosen as the value function of the corresponding unconstrained, infinite horizon LQ controller, and that the terminal constraint set X_f is chosen as described above. Then the origin is asymptotically stable with a region of attraction X_N for the controlled system $x^+ = Ax + B\kappa_N(x)$.

where \mathbb{X}_f is the LQR invariant set (i.e. (i) no \mathbb{X} or \mathbb{U} constraints are active (ii) control invariant for the infinite horizon LQ control law).

But other choices of \mathbb{X}_f are possible too: \mathcal{C}_{∞} , $\{0\}$, ...

PSS 6 - Explicit MPC

Reminder:

▶ Remember the batch approach from chapter 3 of the LN? (page 25)

$$\boldsymbol{x} = \Omega \boldsymbol{x}(0) + \Gamma \boldsymbol{u}.$$

- ▶ Take some x (or x(0)) in the feasible set.
- ▶ The LQ MPC can be written as (page 92):

$$\min_{u} \quad V_N(x, u) = \frac{1}{2} (u^\top \tilde{R} u + x^\top \tilde{Q} x) + u^\top S x$$

subject to $Fu \leq Gx + h$

which is a parametric optimization problem with parameter x.

• At the optimal solution u^* , some constraints are active and some are inactive (cf chapter on Optimization in LN).

PSS 6 - Explicit MPC

Key idea: The active set at the optimal solution for x remains the same in a neighborhood of x.

Figure: Critical regions of the feasible set.

- ▶ Linear feedback in each region R_i since active set is fixed.
- ▶ Off-line phase: compute feedback law in each R_i .
- ▶ On-line phase: find current R_i and apply relevant feedback.

PSS 6 - Minimum-Time Control

Algorithm from the book: F Borrelli, A. Bemporad, and M. Morari. *Predictive Control for Linear and Hybrid Systems* (Chapter 11, section 5).

Needed for Assignment 8.

▶ Minimum time control problem:

$$J_{0}^{*}(x(0)) = \min_{U_{0},N} N$$

subj. to $x_{k+1} = Ax_{k} + Bu_{k}, \ k = 0, \dots, N-1$
 $x_{k} \in \mathcal{X}, \ u_{k} \in \mathcal{U}, \ k = 0, \dots, N-1$
 $x_{N} \in \mathcal{X}_{f}$
 $x_{0} = x(0),$

- ▶ Say we want an explicit control law to solve it.
- ▶ Go for 1 N-horizon EMPC, or N 1-horizon EMPC?

PSS 6 - Minimum-Time Control

▶ N 1-horizon EMPC of the form:

$$\min_{\substack{u_0\\u_0}} c(x_0, u_0)$$
subj. to $x_1 = Ax_0 + Bu_0$
 $x_0 \in \mathcal{X}, \ u_0 \in \mathcal{U}$
 $x_1 \in \mathcal{K}_{j-1}(\mathcal{X}_f),$

By definition, feasible set of each subproblem is K_j(X_f).
Remember:

PSS 6 - Minimum-Time Control

Algorithm 1: Minimum-time control algorithm.

- 1 Input: x_0
- 2 Off-line: solve each subproblem j, starting from \mathbb{X}_f .
- $x = x_0$
- 4 On-line:
- 5 while $x \notin X_f$ do
- 6 Find <u>smallest</u> controller j s.t. $x \in \mathcal{K}_j(\mathbb{X}_f)$.
- 7 Find controller region $R_{j,i}$ s.t. $x \in R_{j,i}$.
- 8 Apply the corresponding control feedback, i.e. $x = (A + BK_{j,i})x.$

9 end

MPT function tips:

- ▶ *envelope*: Translate a collection of sets (e.g. a EMPC partition..) into a set object.
- ▶ *contains*: Check if a point in a given set.
- ▶ evaluate: Get command from an EMPC controller.