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Lecture 14: Beyond linear MPC

Goals for today:
• To understand some of the ideas used to extend MPC to the nonlinear case
• To understand what is meant by robust MPC

Learning objectives:
• Understand and explain the basic principles of model predictive control, its pros and cons, and the

challenges met in implementation and applications
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Linear time-invariant MPC

At every time instant k, solve the constrained optimisation problem

minimize
δuk,δxk

N−1∑
i=0

1

2

[
δxk(i)
δuk(i)

]>
W

[
δxk(i)
δuk(i)

]
(117a)

subject to δxk(0) = x̂(k)− xrk(0) (117b)

δxk(i+ 1) = Aδxk(i) +B δuk(i); i = 0, . . . , N−1 (117c)

F δuk(i) +Gδxk(i) ≤ h; i = 0, . . . , N−1. (117d)

The solution is written as

(δuk, δxk) = QPMPC(x̂(k),urk,x
r
k). (117e)
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Linear time-varying MPC

At every time instant k, solve the constrained optimisation problem

minimize
δuk,δxk

N−1∑
i=0

1

2

[
δxk(i)
δuk(i)

]>
Wk,i

[
δxk(i)
δuk(i)

]
(118a)

subject to δxk(0) = x̂(k)− xrk(0) (118b)

δxk(i+ 1) = Ak,i δxk(i) +Bk,i δuk(i) + rk(i); i = 0, . . . , N−1 (118c)

Fk,i δuk(i) +Gk,i δxk(i) ≤ hk,i; i = 0, . . . , N−1. (118d)

The solution is written as

(δuk, δxk) = QPMPC(x̂(k),urk,x
r
k). (118e)

The control output is given by

u(k) = urk(0) + δuk(0). (118f)



Nikolce Murgovski - SSY281 Model Predictive Control 239 of 245

Linear time-varying MPC

At every time instant k, solve the constrained optimisation problem

minimize
δuk,δxk

N−1∑
i=0

1

2

[
δxk(i)
δuk(i)

]>
Wk,i

[
δxk(i)
δuk(i)

]
(118a)

subject to δxk(0) = x̂(k)− xrk(0) (118b)

δxk(i+ 1) = Ak,i δxk(i) +Bk,i δuk(i) + rk(i); i = 0, . . . , N−1 (118c)

Fk,i δuk(i) +Gk,i δxk(i) ≤ hk,i; i = 0, . . . , N−1. (118d)

The solution is written as

(δuk, δxk) = QPMPC(x̂(k),urk,x
r
k). (118e)

The control output is given by

u(k) = urk(0) + δuk(0). (118f)



Nikolce Murgovski - SSY281 Model Predictive Control 240 of 245

Nonlinear MPC

At every time instant k, solve the constrained optimisation problem

minimize
uk,xk

N−1∑
i=0

1

2

[
xk(i)− xrk(i)
uk(i)− urk(i)

]>
Wk,i

[
xk(i)− xrk(i)
uk(i)− urk(i)

]
(119a)

subject to xk(0) = x̂(k) (119b)

xk(i+ 1) = f(xk(i), uk(i)); i = 0, . . . , N−1 (119c)

h(xk(i), uk(i)) ≤ 0; i = 0, . . . , N−1. (119d)

The solution is written as

(uk,xk) = NLP(x̂(k),urk,x
r
k). (119e)

The control output is given by

u(k) = uk(0). (119f)
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SQP for NMPC

At every time instant k, the SQP optimisation variables (uk,xk) are initialized as

(uk,xk) = (uguess
k ,xguess

k ). (120a)

Then the following QP is solved repeatedly at the current SQP iterate (uk,xk) for the Newton
correction (∆uk,∆xk), which gives the next iterate by taking a (reduced) Newton step
(uk,xk)← (uk,xk) + t(∆uk,∆xk):

minimize
∆uk,∆xk

N−1∑
i=0

1

2

[
∆xk(i)
∆uk(i)

]>
Hk,i

[
∆xk(i)
∆uk(i)

]
+ J>k,i

[
∆xk(i)
∆uk(i)

]
(120b)

subject to ∆xk(0) = x̂(k)− xk(0) (120c)

∆xk(i+ 1) = Ak,i ∆xk(i) +Bk,i ∆uk(i) + rk(i); (120d)

Fk,i ∆uk(i) +Gk,i ∆xk(i) + hk,i ≤ 0; i = 0, . . . , N−1. (120e)

The solution of the SQP is written as

(uk,xk) = SQP(x̂(k),uguess
k ,xguess

k , urk, x
r
k). (120f)

The control output is given by

u(k) = uk(0). (120g)
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Comparison between linear and nonlinear MPC

Consider the following simple problem

minimize
uk,xk

N∑
i=0

‖xk(i)‖2 + 20

N−1∑
i=0

‖uk(i)‖2 (121a)

subject to xk(0) = x̂(k) (121b)

xk(i+ 1) = 0.9xk(i) +

[
sin(

[
0 1

]
xk(i))

uk(i) + uk(i)3

]
, i = 0, . . . , N−1 (121c)

|uk(i)| ≤ 0.5, i = 0, . . . , N−1. (121d)
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Figure 46: Comparison between receding horizon control solution from SQP after full convergence, SQP after one step and linear
MPC.
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Real-time iteration (RTI) scheme
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Figure 47: Real-time iteration scheme (RTI). The circles indicate predictions made by the MPC update. The crosses indicate the
shifted predictions as an initial guess in RTI.
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Figure 47: Real-time iteration scheme (RTI). The circles indicate predictions made by the MPC update. The crosses indicate the
shifted predictions as an initial guess in RTI.
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Figure 47: Real-time iteration scheme (RTI). The circles indicate predictions made by the MPC update. The crosses indicate the
shifted predictions as an initial guess in RTI.
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Figure 47: Real-time iteration scheme (RTI). The circles indicate predictions made by the MPC update. The crosses indicate the
shifted predictions as an initial guess in RTI.
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Figure 47: Real-time iteration scheme (RTI). The circles indicate predictions made by the MPC update. The crosses indicate the
shifted predictions as an initial guess in RTI.
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Figure 47: Real-time iteration scheme (RTI). The circles indicate predictions made by the MPC update. The crosses indicate the
shifted predictions as an initial guess in RTI.



Nikolce Murgovski - SSY281 Model Predictive Control 244 of 245

Real-time iteration (RTI) scheme

0 2 4 6 8 10 12 14 16 18 20

0

2

4

x
1

Prediction SQP solution
RTI guess RTI solution

0 2 4 6 8 10 12 14 16 18 20

0

2

4
x
2

0 2 4 6 8 10 12 14 16 18 20

−0.4

−0.2
0

0.2

0.4

k

u

Figure 47: Real-time iteration scheme (RTI). The circles indicate predictions made by the MPC update. The crosses indicate the
shifted predictions as an initial guess in RTI.
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Figure 47: Real-time iteration scheme (RTI). The circles indicate predictions made by the MPC update. The crosses indicate the
shifted predictions as an initial guess in RTI.
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Figure 47: Real-time iteration scheme (RTI). The circles indicate predictions made by the MPC update. The crosses indicate the
shifted predictions as an initial guess in RTI.
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Real-time iteration in the presence of disturbances
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Figure 48: Real-time iteration scheme (RTI) in the presence of disturbances. The circles indicate predictions made by the MPC
update. The crosses indicate the shifted predictions as an initial guess in RTI. The solid line shows the optimal solution for the
disturbed state.
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