

Deeper into Java Server Faces & Deeper into Java Server Faces &
ValidationValidation

DAT076/DIT126 Web Applications

Adam Waldenberg

JSF Life cycleJSF Life cycle

● Whenever a request occurs, Java Server Faces does a
number of things to handle the request

● Create and populates the view

● Fill in the state of the components

● Validate all input that was requested for validation

● Call all the backing values

● Call any invoked events

● Render the view!

JSF Life cycleJSF Life cycle

The JSF lifecycle consists of six separate phases

JSF Life cycle – Restore ViewJSF Life cycle – Restore View

Step 1:

Build the view and wire
event handlers and

validators to UI
components

● Begins as soon as a link or button is clicked and JSF receives a request

● Tries to identify the view and connects all logic to each component

● Save everything in FacesContext

Restore View side effectsRestore View side effects

The way JSF works can cause a very annoying (but pretty
harmless) exception

● The <o:enableRestorableView> tag of OmniFaces can work around this

● Instructs the view handler to recreate the entire view whenever the view has
been expired

javax.faces.application.ViewExpiredException: View could
not be restored

https://stackoverflow.com/questions/3642919/javax-faces-application-viewexpiredexception-view-could-not-be-restored
https://stackoverflow.com/questions/3642919/javax-faces-application-viewexpiredexception-view-could-not-be-restored

JSF Life cycle – Apply RequestJSF Life cycle – Apply Request

Step 2:

Apply values to
components in the view

● For example apply text fields and selections to the components in the view

● With immediate=true you can fire action events (which are otherwise
fired in the Invoke Application phase) at the end of this phase, in order to skip
validation.

● Upon failures we then jump to the Render Response phase

JSF Life cycle – Process ValidationsJSF Life cycle – Process Validations

Step 3:

Execute conversion plus
JSF and Bean Validation

on the component
properties

● Validators only happen if rendered=true is set on a component

● Conversions happen before validators are called

● Upon failures we then jump to the Render Response phase

JSF Life cycle – Update Model ValuesJSF Life cycle – Update Model Values

Step 4:

Update the view model
and beans with the value

set on the component
properties

● If we reach this phase it means user input is syntactically and logically correct

● Calls the setter of every component property and updates the model

JSF Life cycle – Invoke ApplicationJSF Life cycle – Invoke Application

Step 5:

Call all the registered
event listeners

● Action listeners get fired first, with an option to modify the response

● Next, actions with the business logic get called and determine the location of
the next page

● Use the action listener to prepare for the action call (a component can have
an arbitrary amount of listeners)

JSF Life cycle – Render ResponseJSF Life cycle – Render Response

Step 6:

Render the response

● Store the state of the view before rendering the response

● Render the response back the client

Using the JSF Life cycleUsing the JSF Life cycle

JSF offers methods to allow you to plug into the different
phases of the life cycle

<f:event type=”eventType” listener=”#{bean.onEvent}” />

● postAddToView Runs right after the component is added to view during the restore
view phase or render response phase

● preValidate Runs right before the component is to be validated

● postValidate Runs right after the component has been validated

● preRenderView Runs right before the view is rendered (render response phase)

● preRenderComponent Runs right before the component is rendered (render
response phase)

Using the JSF Life cycle continuedUsing the JSF Life cycle continued

There is also an alternate method to allow you to listen to
all the different phases directly

<f:view beforePhase=”#{bean.onEvent}”/>
<f:view afterPhase=”#{bean.onEvent}”/>

@Data
@Named
@ViewScoped
public class Bean implements Serializable {
 public void onEvent(PhaseEvent event) {
 if (event.getPhaseId() == PhaseId.RENDER_RESPONSE) {
 /* Do something… */
 }
 }
}

Using life cycle eventsUsing life cycle events

An example of an event re-shuffling the component tree prior
to the rendering phase of a component

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:h="http://java.sun.com/jsf/html"
 xmlns:p="http://primefaces.org/ui" xmlns:f="http://java.sun.com/jsf/core">
 <h:head><title>Shuffle test</title></h:head>
 <h:body>
 <h:panelGroup>
 <p:panel header="First"/>
 <p:panel header="Second"/>
 <p:panel header="Third"/>
 <p:panel header="Fourth"/>
 <f:event listener="#{shuffleBackingBean.onShuffle}"

 type="preRenderComponent" />
 </h:panelGroup>
 </h:body>
</html>

Using life cycle eventsUsing life cycle events

The implementation of the shuffle event

@Named
@ViewScoped
public class ShuffleBackingBean implements Serializable {
 public void onShuffle(ComponentSystemEvent event) {

 final List<UIComponent> components = new
 ArrayList<>(event.getComponent().getChildren());

 Collections.shuffle(components);
 event.getComponent().getChildren().clear();
 event.getComponent().getChildren().addAll(components);
 }
}

Using life cycle eventsUsing life cycle events

Let’s test it and look at this life cycle event in action!

Validating dataValidating data

EE and JSF primarily focuses on server-side validation

● While there are JSF tags for validation such as <f:validateLength> and
<f:validateRegex> etc, bean validation is the recommended method

● Bean validation offers a rich set of validators by default with many external
libraries providing many useful validators. Implementing your own validator is
also very easy

● javaee.github.io/javaee-spec/javadocs/javax/validation/constraints/pac
kage-frame.html
for an exhaustive list of the validators in EE8

● Examples: @Assert, @Digits, @Email, @Future, @Min, @Max, @Pattern

https://javaee.github.io/javaee-spec/javadocs/javax/validation/constraints/package-frame.html
https://javaee.github.io/javaee-spec/javadocs/javax/validation/constraints/package-frame.html

What about client side validation?What about client side validation?

Use a component framework that natively supports client-
side validation

● In PrimeFaces you can set validateClient="true" on command
components to enable client-side validation

● PrimeFaces even handles the standard bean validators and make them
work client-side!

● The API can be extended with custom validators;
primefaces.github.io/primefaces/8_0/#/core/clientsidevalidation

● There is also a component <p:clientValidator> that allows you to add
dynamic on-page validation

https://primefaces.github.io/primefaces/8_0/#/core/clientsidevalidation

PrimeFaces examplesPrimeFaces examples

<p:inputText id="integer" value="#{validationBean.integer}">
<p:clientValidator event="keyup"/>

</p:inputText>

<h:form>
 <p:messages />
 <p:inputText required="true" />
 <p:inputTextarea required="true" />
 <p:commandButton value="Save" validateClient="true" ajax="false" />
</h:form>

● Bean validatiors become client-side!

● Notice how we are able to fire validation events in real time despite the
connection to the server-side

HTML5 exampleHTML5 example

Preferred way when using HTML5 validation is to use the
previously mentioned pass-through library

<label for="startDate" >Trip Start:</label>
<h:inputText pt:type="date" id="startDate"
 value="#{...tripStartDate}" >

<f:convertDateTime pattern="YYYY-MM-dd" />
</h:inputText>

<h:inputText id="number" pt:type="number"
 pt:min="1" pt:max="10" value="..."/>

Programatic validation and attributesProgramatic validation and attributes

You can also nest f:passThroughAttribute inside a
component

<h:inputText value="#{html5Bean.text}" required="true">
<f:passThroughAttributes value="#{html5Bean.attrs}"/>

</h:inputText>

@PostConstruct
public void init() {

attrs = new HashMap<String, String>();
 attrs.put("type", "range");
 attrs.put("min", "1");
 attrs.put("max", "10");
 attrs.put("step", "2");
}

Using validationUsing validation

Let’s take a look at some validation examples!

Navigation in Java Server FacesNavigation in Java Server Faces

In JSF, the action callback decides the navigation outcome
and to which location redirection occurs

● Navigation in JSF is either implicit or rule-based

● Both methods have their advantage and disadvantage

public String onPressed() {
if (condition) {

/* do stuff */
return “success”;

}
return “error”:

}

<h:commandButton action=”#{myControllerBean.onPressed}”/>

Defining navigation rulesDefining navigation rules

Navigation rules are defined in the faces-config.xml file of
your application

● Notice how these navigation rules plug into the outcomes from the action
event in the last example

<navigation-rule>
<from-view-id>page1.xhtml</from-view-id>
<navigation-case>

 <from-outcome>success</from-outcome>
<to-view-id>/page2.xhtml</to-view-id>

</navigation-case>
<navigation-case>

 <from-outcome>error</from-outcome>
<to-view-id>/error.xhtml</to-view-id>

</navigation-case>
</navigation-rule>

Sending and reading query parametersSending and reading query parameters

Several approaches are available. JSF makes it very easy and
OmniFaces improves it further

● You can bind the a query parameter to a backing bean value – allowing you
access to it in your controller layer

● OmniFaces makes it ridiculously easy and even removes the binding from
the XHTML page

<f:metadata>
 <f:viewParam name="parameterOne" value="#{bean.parameterOne}"/>
</f:metadata>

@Inject @Param
private String foo;

More on parametersMore on parameters

With OmniFaces we also have easy support for path
parameters and hash parameters

● This would inject the string “john.smith” into the name variable on page load

● This would place the string “baz” into the backing property foo

@Inject @Param(pathIndex=0)
private String name;

<f:metadata>
 <o:hashParam name="foo" value="#{bean.foo}" />
 <o:hashParam name="bar" value="#{bean.bar}" default="kaz" />
</f:metadata>

http://example.com/mypage/john.smith

http://example.com/page.xhtml#foo=baz

http://example.com/mypage/john.smith

Listening on hash URL changesListening on hash URL changes

OmniFaces also allows us to dynamically listen to hash-
changes in the URL

● Could be in reaction to pressing a link

● Could also be in rection to the user manually entering a new hash link

● Fires the event HashChangeEvent which can be observer using CDI in the
followin way;

public void onHashChange(@Observes HashChangeEvent event) {
 String oldHashString = event.getOldValue();
 String newHashString = event.getNewValue();
 // ...
}

Using cookiesUsing cookies

Using cookies in JSF was not very seamless in the past, but
OmniFaces makes it very simple

● The cookie name is taken from the variable

● Can be overridden with @Cookie(name=”foo”)

● It really is that easy!

@Inject @Cookie
private String foo;

Some upcoming featuresSome upcoming features

Yours truly has been working on @JSParam for OmniFaces
which allows for simple injection of JavaScript expressions

● Pull request here: github.com/omnifaces/omnifaces/pull/506

@JSParam("window.screen.width")
private String screenWidth;

@Data
@JsonIgnoreProperties(ignoreUnknown = true)
public static class Navigator {
 @JsonProperty private String vendor;
 @JsonProperty private String userAgent;
 @JsonProperty private String language;
}

@JSParam("navigator")
private Navigator navigator;

https://github.com/omnifaces/omnifaces/pull/506

Basic web.xml settings needed for JSFBasic web.xml settings needed for JSF

A couple of settings need to be done in your web deployment
descriptor (web.xml)

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>
<servlet-mapping>

<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.xhtml</url-pattern>

</servlet-mapping>
<welcome-file-list>

<welcome-file>index.xhtml</welcome-file>
</welcome-file-list>

