

Facelets & Web servicesFacelets & Web services

DAT076/DIT126 Web Applications

Adam Waldenberg

Facelets in shortFacelets in short

Lightweight page declaration language used to build Java
Server Faces views using HTML style templates and

component trees

● XHTML

● Support for comprehensive templating

● Composite components

● Original version developed back in 2005 by Jacob Hookom as a response to
the default JSP-based view declaration method

● If used correctly, it saves you huge amounts of time and simplifies your view
definitions

Facelets templatingFacelets templating

Facelets offers us a number of methods to facilitate
templating

● <ui:composition> Defines a composition which essentially is the section
that defines the templating input

● <ui:decorate> Like a composition, but does not disregard content
outside of the tag

● <ui:insert> Used to define a templateable section

● <ui:define> Used to define content to be inserted into a templateable
section

Facelets templating continuedFacelets templating continued

Time for an example template

● What is happening here?
● How do we utilize it?

<html xmlns="http://www.w3.org/1999/xhtml" xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:f="http://xmlns.jcp.org/jsf/core">

<h:head>
<title>Example</title>

</h:head>
<h:body>

<section>
<div class="container">

<ui:insert name="content" />
 </div>
</section>

</h:body>
</html>

http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core

Facelets templating continuedFacelets templating continued

This is how the consuming page would look

● We can define as many templating definitions as we need

● Everything outside the composition is ignored in the resulting page

<html xmlns="http://www.w3.org/1999/xhtml" xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:f="http://xmlns.jcp.org/jsf/core">

<ui:composition>
<ui:define name=”content”>

<p>
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua.

</p>
</ui:define>

</ui:composition>
</html>

http://www.w3.org/1999/xhtml
http://xmlns.jcp.org/jsf/core

Facelets templating exampleFacelets templating example

Let’s take an example to see how templating works!

Facelets composite componentsFacelets composite components

A mechanism for declaring custom components based on a
collection of other components

● Can utilize external component frameworks

● Compared to a normal JSF component, there is no need for a Java file
defining how the component is rendered

● Allows for the definition of a custom attributes

● Combined with JSTL it allows for the inclusion of programmatic logic,
allowing us to define very rich components without the need of any Java
code

Composite componentsComposite components

Facelets offers us a number of methods to facilitate
composite components. These are the most commonly used

● <cc:interface> Defines the prototype and usage contract of the element
● <cc:attribute> Defines an attribute. Can later be accessed via

expression language and `#{cc.attrs.attributeName}`
<cc:implementation> Defines the composite component and what it renders

● <cc:facet> Similar to <define> in facelet compositions allowing you
to template composite components

● <cc:renderFacet> Companion to the above tag – similar to <insert>
● <cc:insertChildren> Inserts all the passed children of the component here.

Used under the implementation section

Configuring for composite componentsConfiguring for composite components

We need to give
javax.faces.WEBAPP_RESOURCES_DIRECTORY a path to
WEB-INF/ in order to make the composite components

inaccessible from the outside

● Added to your web.xml

<context-param>
<param-name>javax.faces.WEBAPP_RESOURCES_DIRECTORY</param-name>
<param-value>WEB-INF/resources</param-value>

</context-param>

Composite components continuedComposite components continued

Defining a composite component is easy

● Defines a replacement commandButton that sets an image by default

● The interface section defines the prototype

<ui:composition
 Xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:cc="http://java.sun.com/jsf/composite">
 <cc:interface>

<cc:attribute name="value"/>
</cc:interface>

 <cc:implementation>
 <h:commandButton image=”...” value="#{cc.attrs.value}"/>
 </cc:implementation>
</ui:composition>

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

Composite components naming schemeComposite components naming scheme

Facelets will look for your locally defined component
libraries in your resources directory

● The path where it looks is defined as;
[javax.faces.webapp.FacesServlet]/<library>/<componentName>.xhtml

● To use it, you simply reference it in your XML file

● Once defined, they are used like any other JSF component

● Will define the namespace
http://xmlns.jcp.org/jsf/composite/

<library> and define the component
<componentName> under it

Facelets templating exampleFacelets templating example

Let’s take another example to see how composite
components actually work!

What are web sevices?What are web sevices?

 A collection of open protocols
and standards used for

exchanging data between
applications or systems

● Is available over the Internet or private
(intranet) networks

● Uses a standardized messaging system (protocol)

● Is not tied to any one operating system or programming language

● Is discoverable via a simple find mechanism

What are web sevices?, continuedWhat are web sevices?, continued

A communication layer between
clients, frontends and the backend

● Even if Java Server Faces is used, many sites
still expose a web service to allow external
devices to access and communicate with the
backend

● A web service is an API – but an API is not
necessarily a web service

● Many standards exist; SOAP, REST, RPC and
probably a few more. REST being the most
common

Client

Database

Web service

Server

Client

RESTful web servicesRESTful web services

“By using a stateless protocol and standard operations, RESTful systems
aim for fast performance, reliability, and the ability to grow by reusing
components that can be managed and updated without affecting the

system as a whole, even while it is running”

● Defined back in 2000 by Roy Fielding

● Very simple, which is why it has become so popular

● Accessed via a base URL, such as http://api.example.com/collection

● Utilizes standard HTTP methods (GET, POST, PUT, PATCH and DELETE)

● Defines media types that the web service can consume or produce as a
response to a request

REST - A product registerREST - A product register

Here is an example of a product register implemented via a
REST API

● /products GET Fetches a list of all products

● /products POST Creates a new product

● /products/id GET Returns any product with <id>

● /products/id PUT Replace the product with <id>

● /products/id DELETE Delete the product with <id>

● /productgroups/id GET Return product group with <id>

● /products/id PATCH Update an existing product <id>

Web services in EEWeb services in EE

Java / Jakarta EE offers an extensive tool set for developing
web services and connecting them to the backend

● JAX-B API for serializing and de-serializing XML back and forth between
Java classes and XML

● JSON-B The above equivalent for JSON (new with EE8)

● JSON-P API to programmatically construct JSON strings, used before
EE8 and should not really be used with newly developed
applications

● JAX-RS Annotation-driven API to define methods, paths and other
properties that define a REST web service

Some JSON-B annotationsSome JSON-B annotations

JSON-B has a number of annotation that allow you to control
the behavior of serialization and de-serialization

● @JsonbProperty(“name”) Change the name of one particular property

● @JsonbPropertyOrder(...) Change the order of properties in the generated
JSON

● @JsonbTransient Used to ignore properties

● @JsonbNillable,

@JsonbProperty(nillable=true) Allows null fields to be serialized

● @JsonbCreator Used to customize the constructor

Some JAX-RS annotationsSome JAX-RS annotations

With JAX-RS you define the location of your web service, the
path locations, endpoints, parameters and the behavior of

each endpoint
● @Path(“name”) Identifies the URI path. It can be specified on class or

method

● @PathParam(“name”) Represents a parameter of the URI path

● @HTTP_METHOD Can be @POST, @PUT, @DELETE, @GET etc

● @Consumes(“mime”...)

@Produces(“mime”...) Specifies the mime type that a particular endpoint or
path consumes or produces

More JAX-RS annotationsMore JAX-RS annotations

● @FormParam Represents a parameter coming from the request form

● @QueryParam Represents a parameter coming from the query part of
the URL

● @CookieParam Represents a parameter coming from the specified
cookie

● @HeaderParam Represents a parameter coming from the reqest header

● These parameter types are more useful than they seem and allows the web
service to store data hidden from view. They can even be used for things like
security tokens

A simple REST web service in EEA simple REST web service in EE

A very simple web service serving a list of products

● Automatically unserializes the list of products and creates a JSON response!

● All the bells and whistles of EJB’s and CDI can be used directly in the web
service definition

@Path("shop")
public class ShopResource {

@EJB
private Shop shop;

@GET
public List<Product> list() {

return shop.getProducts();
}

}

An example with path parametersAn example with path parameters

● Notice the correlation between the defined parameters in @Path and
@PathParam

@Path("shop")
public class ShopResource {

@EJB
private Shop shop;

@GET
@Path("{from}/{to}")
public List<Product> range(@PathParam(“from”) int from

 @PathParam(“to”) int to) {
return shop.getProducts().subList(from, to);

}
}

Setting up for web servicesSetting up for web services

Before web services work we need to make sure the JAX-RS
servlet is running and serving the web service

● This starts the JAX-RS servlet and tells it to serve all our resources under
<application-context>/ws/

● Note! With prior versions of EE we had to edit the web.xml file and add the
JAX-RS servlet manually – since JavaEE 8, this is no longer needed!

@ApplicationPath("ws")
public class JAXRSConfiguration extends Application {

/* Intentionally left blank */
}

Web services exampleWeb services example

Let’s take a look at an example of a simple web service
implemented with JAX-RS!

