

Server Push and WebSocket in JSFServer Push and WebSocket in JSF

DAT076/DIT126 Web Applications

Adam Waldenberg

The beginningThe beginning

The original World Wide Web was designed for static content

● A client requests a resource from the server via HTTP

● The server builds a response and sends it back

● Somewhere along the way the need for dynamic updates arose

PollingPolling

In the beginning sites used the refresh meta tag

<meta http-equiv="refresh" content="5” />

● Client requests the resource

● Server builds it and responds

● Extremely inefficient – creating
massive amounts of traffic

Polling continuedPolling continued

Polling can also be achieved with JavaScript

● Same problems as with meta
refreshing – generates way too
much traffic and reloads the
whole page

● Can we still use polling but
somehow improve performance?

setTimeout(function() {
 document.location.reload();
}, 5000);

Polling continuedPolling continued

Originally introduced by Microsoft in 1999 (Explorer 5), we can use
AJAX to improve performance

● Massively reduces traffic as we
only have to updated part of the
page

● Will still cause unnecessary page
requests and traffic!

● Can we improve upon it?

setInterval(function() {
 $('#mydiv').load(url);
}, 5000);

Long pollingLong polling

An alternative method is to rely on delayed server responses -
commonly known as long polling

● Server holds the connection open
by delaying the response

● The response is sent as soon as
it is available

● This works quite well, so what’s
the downside?

Long polling continuedLong polling continued

Compared to web sockets, long polling still stresses bandwidth,
memory and CPU consumption of the server

Server Sent EventsServer Sent Events

First HTML5-standardized implementation for notifications and
dynamic updates

● The client regitsers as an event
listener via the EventSource API

● Server sends an event packet
when new data is available

● One way communication

● Limited connectivity

WebSocketWebSocket

Finalized in 2011, the WebSocket protocol is also part of the
HTML5 standard

● Got usable and widely adopted at
the end of 2013.

● It took just over 20 years, but we
can finally do proper dynamic
page updates

● Two-way communication with
great connectivity

WebSocket and JavaEEWebSocket and JavaEE

The Atmosphere Framework – Push functionality for the enterprise

● The most popular asynchronous application
development framework for enterprise Java.

● Provides everything required to build massive
scalable and real time applications

● Fully configurable and clusterable

● Essential before Java Server Faces 2.3

● Falls back from WebSocket on failure

Pushing from Java Server FacesPushing from Java Server Faces

Full support for WebSocket since Java Server Faces 2.3 (Java EE
8) and Servlet 3.1 (Java EE 7)

● Based on the implementation of o:socket from
OmniFaces.

● JSF component frameworks no longer have to
rely on custom implementations or Atmosphere

● Extremely easy to use

Pushing from JSF continuedPushing from JSF continued

Preparing the view

● We use the standard JSF component f:websocket to define the
behaviour of the websocket channel

● Attribute: channel, Name of the websocket channel

● Attribute: scope, Can define either “application”, “session” or “view”

● Attribute: user, Used to target a specific user

● Attributes: onopen / onclose / onmessage, allows us to call JavaScript
functions during each event

● Can be combined with an f:ajax tag

Pushing from JSF continuedPushing from JSF continued

Preparing the server

● Using CDI inside a bean or a EJB service we can @Push
@Inject a PushContext instance on the server-side

● With pushContext.send(Object), we can send messages to the
clients listening on a specific channel

● With pushContext.send(Object, ...users), we can target users on
that channel

First example:First example:
A simple message boardA simple message board

What do we need?What do we need?

What do we need to make a simple message board in JSF with
WebSocket support?

● Just plain JSF without any component framework is enough for a
simple demonstration

● We need a model where the submitted messages can be stored

● A display of all the submitted messages

● A button and an input field for submitting new messages

On the serverOn the server

Let’s define our server side

@Named @ViewScoped public class
MsgBackingBean implements Serializable {
 @EJB private MessageService msgService;
 @Inject @Push private PushContext incoming;

 @Getter @Setter
 private String enteredMessage;

 public List<String> getMessages() {
 return msgService.messages;
 }

 public void onSendMessage() {
 MsgService.add(enteredMessage);
 incoming.send(“new-message”);
 }
}

@Data @Singleton
public class MessageService {
 private List<String> messages;

 @PostConstruct
 private void init() {
 messages = new ArrayList<>();
 }

 public void add(String message) {
 messages.add(message);
 }
}

Some considerationsSome considerations

● Why are we using a @ViewScoped bean ?

● Why is the service seperated into an EJB? What benefits will that
give us?

● Why does @PostConstruct even exist and why do we need it?

On the clientOn the client

Let’s define our server side

<html xmlns="http://www.w3.org/1999/xhtml" xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core">
 <h:head>
 <title>Message board</title>
 </h:head>
 <h:body>
 <h:form>
 <h:inputText value="#{msgBackingBean.enteredMessage}"/>
 <h:commandButton action="#{msgBackingBean.onSendMessage}"/>
 <f:websocket channel="incoming">
 <f:ajax event="new-message" process=”@form” render="@form"/>
 </f:websocket>
 <ui:repeat value="#{msgBackingBean.messages}" var="msg">
 <h:outputText value="#{msg}" />
 </ui:repeat>
 </h:form>
 </h:body>
</html>

One more thing to considerOne more thing to consider

● What do the render and process attributes on the ajax tag
actually do ?

Second example:Second example:
A chat serviceA chat service

Let’s get a little more fancy!Let’s get a little more fancy!

We can demonstrate JSF and get a little more fancy by using some
external component libraries

● PrimeFaces

● PrimeFaces Extensions

● The rest is vanilla JSF and Java EE!

Lets do something we can run and discuss during the lecture!

Our designOur design

view
ChatBackingBean

index.xhtml

controller
ChatControllerBean

model
Chat

Message
UserBean

Visit the application while we code!Visit the application while we code!

You can view the running instance of the application on

http://88.131.213.111:8080

