

HTML, CSS & JavaScriptHTML, CSS & JavaScript

DAT076/DIT126 Web Applications

Adam Waldenberg

HyperText Markup Language (HTML)HyperText Markup Language (HTML)

A language for writing documents that contain links to other
documents

● A HTML document consists of a tree structure of elements – often referred to
as the document tree. Elements can be ancestors, descendants, parents,
children and siblings in relation to each other

● Based on the Standard Generalized Markup Language (SGML)

● Different variations and versions exist, but the one you should use today is
HTML5

● HTML 5.2 recommendation (www.w3.org/TR/html52)

https://www.w3.org/TR/html52/

Early HTML time-lineEarly HTML time-line

Many versions and variations

● 1991 Tim Berners-Lee invents HTML

● 1993 Dave Raggett drafts HTML+

● 1994 Formation of the HTML Working Group and W3C (World Wide Web
Consortium)

After W3C and HTMLWGAfter W3C and HTMLWG

● 1995 HTMLWG defines HTML 2.0 (tools.ietf.org/html/rfc1866)

● 1997 W3C HTML 3.2 (www.w3.org/TR/2018/SPSD-html32-20180315)

● 1999 W3C HTML 4.01 (www.w3.org/TR/html401)

● 2000 W3C XHTML 1.0 (https://www.w3.org/TR/xhtml1/)

● 2004 Formation of WHATWG (Web Hypertext Application Technology
Working Group)

https://tools.ietf.org/html/rfc1866
https://www.w3.org/TR/2018/SPSD-html32-20180315/
https://www.w3.org/TR/html401/

HTML5 versionsHTML5 versions

● 2008 WHATWG HTML5 First Public Draft

● 2014 W3C HTML5

● 2016 W3C HTML 5.1

● 2017 W3C HTML5.1 2nd Edition

● 2017 W3C HTML5.2 (www.w3.org/TR/html52)

● 2018 W3C HTML5.3 Working Draft

https://www.w3.org/TR/html52/

HTML elementsHTML elements

● Formed by an opening tag and an optional closing tag

● Each element formed with a closing tag also has an optional content
portion

● The content portion can hold an arbitrary number of child-elements

● Each element can have an arbitrary number of attributes

Examples:
Text to be put in bold

,

HTML attributesHTML attributes

Attributes are optional and modify the resulting behavior or
appearance of the element or the resulting document data

● Different elements accept different attributes

● Attributes are only valid in the opening tag

● HTML5 adds the ability to define custom attributes by applying the data-
prefix to the attribute name

Extensible HyperText Markup Language (XHTML)Extensible HyperText Markup Language (XHTML)

In enterprise development and JSF in particular we use
XHTML instead of ordinary HTML

● Based on XML, in essence resulting in a strict version of HTML

● Support for name spaces, including custom name spaces

● Case sensitive

● Attributes must be within quotes

● Tags can’t be left unclosed

Document structureDocument structure

<!DOCTYPE html>
<HTML>

<HEAD>
 ...

</HEAD>
<BODY>
...
</BODY>

</HTML>

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<html>

<head>
 ...

</head>
<body>
...
</body>

</html>

What’s the difference?

Document head elementsDocument head elements

These are some of the more important elements used in the
head section of HTML documents

● Page title definition:
<title>Chalmers University of Technology</title>

● Meta tags that can give hints about properties of the document:
<meta charset=”UTF-8”>
<meta name=”phrase” content=”Hellow World!”>

● Elements to include page resources:
<link rel=”stylesheet” href=”main.css”>
<script type="text/javascript" src="file.js"></script>

Document body elementsDocument body elements

These are some of the more important elements used in the
body section of HTML documents

● Paragraphs:
<p>Hello World!</p>

● Headers:
<h1>Important</h1> <h2>Less important</h2> … <h6>...</h6>

● Styling:
Emphasized text
Bold text

More document body elementsMore document body elements

● Unordered bullet point list:
FirstSecond

● Ordered (numbered) list:
FirstSecond

● Images and video:
, <video>

● Plus many, many more - in total there are approximately 110 different
definable elements in HTML5

Dividers and semantic tagsDividers and semantic tags

● A <div> tag divides the page up into sections

● For specialized sections there are semantic tags:
<header>, <nav>, <section>, <article> to name
a few

● Sometimes you will see used as a
section divider. This is not the correct use.

Image from www.bitdegree.org

http://www.bitdegree.org/

The anchor tagThe anchor tag

Example.com

● Creates a clickable link that will make the browser fetch and render the
document in the specified target

● Can also be a placeholder for a link. However, so can any HTML element
when combined with JavaScript and an onclick event.

● Can define anchor points with the name attribute

Exploring the anchor tagExploring the anchor tag

● Can hold an absolute URL:
https://www.chalmers.se/en/about-chalmers/Pages/default.aspx
/en/about-chalmers/Pages/default.aspx

● Can hold a relative URL:
default.aspx
../default.aspx

● Never include the hostname or IP address for local links within your own site
in your href attributes. You should only specify it when you need to link to
external sites

https://www.chalmers.se/en/about-chalmers/Pages/default.aspx

A HTML body exampleA HTML body example

<body>

<div id="content">
<h1>Headinghere</h1>
<p>Hello Wold!</p>
<p>Lorem ipsum</p>

</div>
<div id="nav">

item 1
item 2
item 3

</div>

</body>

This is the layout of the document tree of
this particular HTML document

A HTML body example : AncestorsA HTML body example : Ancestors

<body>

<div id="content">
<h1>Headinghere</h1>
<p>Hello Wold!</p>
<p>Lorem ipsum</p>

</div>
<div id="nav">

item 1
item 2
item 3

</div>

</body>

An ancestor refers to any element that is
connected, no matter how many levels

higher up in the document tree

A HTML body example : DescendantsA HTML body example : Descendants

 <body>
<div id="content">

<h1>Headinghere</h1>
<p>Hello Wold!</p>
<p>Lorem ipsum</p>

</div>
<div id="nav">

item 1
item 2
item 3

</div>

</body>

A descendant refers to any element that is
connected but lower down the document
tree - no matter how many levels lower

A HTML body example : Parents & ChildrenA HTML body example : Parents & Children

 <body>
<div id="content">

<h1>Headinghere</h1>
<p>Hello Wold!</p>
<p>Lorem ipsum</p>

</div>
<div id="nav">

item 1
item 2
item 3

</div>

</body>

Elements that are directly related to each
other on the previous and next level

A HTML body example : SiblingsA HTML body example : Siblings

 <body>
<div id="content">

<h1>Headinghere</h1>
<p>Hello Wold!</p>
<p>Lorem ipsum</p>

</div>
<div id="nav">

item 1
item 2
item 3

</div>

</body>

● A sibling is an element that shares the
same parent with another element

Is there a good reference page?Is there a good reference page?

Yes there is! WHATWG has a living standard document that
they update continuously

● If you need to look something up, you can visit:
html.spec.whatwg.org

● There is also a PDF version available for download:
html.spec.whatwg.org/print.pdf

https://html.spec.whatwg.org/
https://html.spec.whatwg.org/print.pdf

Let’s do some examples!Let’s do some examples!

jsitor.com

https://jsitor.com/

Cascading Style Sheets (CSS)Cascading Style Sheets (CSS)

● A series of rules to modify the appearance of the generated document – later
rules override earlier rules, unless they are a less exact match.

● Rules are also merged with each other if the properties inside do not collide

● Defined and released by W3C in 1996

● Prior practice to CSS was to design sites by relying heavily on tables and the
now deprecated background, bgcolor and bordercolor attributes

● Browsers managed to achieve proper compatibility around the shift of the
millennium

CSS syntaxCSS syntax

The syntax of a CSS rule looks like this

selector {
property1: value1 value2 … value3;
property2: value;
…
property3: value;

}

● A selector controls which element(s) the rule will be applied to. Selectors can
be combined using combinators, examples include >, ~, +

● Selector can consist of an element type with an optional class, id or attribute

● Selectors can also consist of only a class, id or attribute definition

CSS rules explainedCSS rules explained

CSS rules, properties and the selector syntax can be hard to
explain – the best way is to learn by example

So lets do a few, shall we!

CSS rules explained continuedCSS rules explained continued

p {
font-size: 20pt;
…

}

Changes the font size in all paragraph texts in the whole document

CSS rules explained continuedCSS rules explained continued

div.box {
background-color: gray;
…

}

Changes the background color of all div’s in the document that
have the class `box` applied to them

CSS rules explained continuedCSS rules explained continued

div > h1 {
color: gray;
…

}

Changes the text color of all h1 headers in the document that are
direct children of a div

The child combinator `>` selects a child element

CSS rules explained continuedCSS rules explained continued

article, div > h2, p {
background-color: green;
…

}

Changes the background color to green on all articles, all h2
headers that are children of a div and all paragraphs

The combinator `,` allows to select multiple CSS rules for the same
set of CSS properties

CSS rules explained continuedCSS rules explained continued

p:last-child {
font-weight : 800;
…

}

Changes the font weight of all paragraphs that are the last child of
their parent

last-child is refered to as a CSS psuedo class and there are a
number of these available for use that select elements based on

different criteria

CSS selector syntax referenceCSS selector syntax reference

There are so many ways to write the selectors it’s impossible
to cover all of it

● For a somewhat exhaustive list, please refer to:
www.w3.org/TR/selectors-3/#selectors

https://www.w3.org/TR/selectors-3/#selectors

CSS margins and paddingCSS margins and padding

● CSS rules can pad and put margins

around elements in the document via
the following properties:

padding
padding-[top/left/righ/bottom]
margin
margin:-[top/left/right/bottom]

● The values given to these properties
can be specified in different units:

%, px, pt, em

CSS Media queriesCSS Media queries

 @media all and (min-width: 601px) {
div.example {

font-size: 80px;
}

}

@media all and (max-width: 600px) {
div.example {

font-size: 30px;
}

}

● What is happening here?

● Media queries are used for responsive
web design

● Generally very hard to get right and
very error prone

● The solution is to use a CSS
framework such as Bootstrap which
solves this for us and offers a
responsive grid system that we can
use

The Bootstrap grid systemThe Bootstrap grid system

● The Bootstrap grid system is controlled by
applying classes to elements

● There are classes for extra small, small,
medium and large devices

● There are “12 units” in width in the Bootstrap
grid system

● The only way to really understand it is to
play with it and use it. In Assignment 2 you
get a chance to get acquainted with the grid
system

The Bootstrap grid system continuedThe Bootstrap grid system continued

● A more sophisticated example

● Each device type has a different unit width
defined, resulting in slightly different layouts
on the different devices or resolutions

● PrimeFaces which is a component
framework you are recommended to use in
your project if you choose to use JSF has a
grid system that works similarly

JavaScriptJavaScript

● Not related to Java (the creator was a
naughty boy)

● First version written in 1995 and
created in 10 days

● Originally completely interpreted, but
modern variants use JIT compilers

● Single-threaded, but can be threaded under Node.js

● Dynamically typed

● Completely open and unprotected, we can monkey-patch and modify everything –
even external dependencies

JavaScript continuedJavaScript continued

Some example code

function myFunc(theObject) {
theObject.brand = "Toyota";

}

var mycar = {
brand: "Honda",
model: "Accord",
year: 1998

};

console.log(mycar.brand);
myFunc(mycar);
console.log(mycar.brand);

JavaScript continuedJavaScript continued

Dynamic typing and safety

var dog = { name : “Spot”, breed : “Dalmatian” };

● This is called a dictionary and is a key/value store

● No set properties are fixed. JavaScript allows us to change them and to set
them to any type. If we set a non-existent property, it gets created

dog.name = -3;
dog.age = 17;
dog.age = “Seventeen”;
delete dog.breed;

● All of the above operations would be considered valid

JavaScript continuedJavaScript continued

So how similar is it to Java?

● Similar syntax resembling the C/C++/Java code style

● ECMASCript 6 and upwards brings many new features like template strings,
imports, classes, yields and promises

● We will cover some of these features in the React lecture later in the course

● Unfortunately does not support any proper object orientation, however you
can overwrite parts of a class with the usual monkey patching that you have
always been able to do in JavaScript

JavaScript continuedJavaScript continued

● Has the usual arithmetic operators (+, -, *, /, %, ++, --)

● Same logical operators (!, &&, ||)

● JavaScript offers a decent string library with string operations:

var str = “The quick brown fox”
str.slice(4, 19) – returns “quick brown fox”
str.split(“ “) - returns [“The”, “quick”, “brown”, “fox”]

● As with everything else, you can mix any type you want in arrays

● Watch out for the differences between double-equals and triple-equals

JavaScript continuedJavaScript continued

Lets take a look at the behavior of double equals vs triple
equals

jsitor.com

https://jsitor.com/

The Domain Object Model (DOM)The Domain Object Model (DOM)

● The internal representation of the HTML document inside
the browser and a JavaScript object

Manipulating and querying the DOMManipulating and querying the DOM

We use JQuery to manipulate and query the DOM. Why?
Because it is a lot more streamlined to use compared to the

built in API

● JQuery simplifies everything to such an extent that it has basically become a
standard. It is used by almost every JavaScript framework on the web. This
also includes most component frameworks for JSF and Java EE / Jakarta EE

● Cached with in browsers and included as a library by default

● Has an amazing documentation:
api.jquery.com

https://api.jquery.com/

Unobtrusive JavaScriptUnobtrusive JavaScript

You are not allowed to have obtrusive JavaScript code in your
HTML documents (it’s considered bad practice)

● This means that other than having to include a JavaScript file in the
document, there should be no JavaScript code visible inside the document

JQuery makes it simple to achieve – just attach a callback to the ready event:

 $(document).ready(function() { … }

● The document.ready callback is called by JQuery when the document has
finished loading and the DOM is fully available – allowing you to populate it
with any additional events or elements you might need

Modifying a collection of elementsModifying a collection of elements

 $(document).ready(function() {
$("p").text(“this is a paragraph”);

$("article > p").text(function(index) {
return "number " + (index + 1);

});
});

● In this example we first find all paragraph elements in the HTML document
and modify their text to “this is a paragraph”.

● Next, we look up all paragraphs that have a article as parent and change
their text to “number <index>” where index is the index of the returned
collection

● The selector is
similar to a CSS
selector and returns
a collection of
matching elements

JavaScript eventsJavaScript events

$(document).ready(function() {

$("button").click(function() {
console.log(“button was pressed”);

});
});

● In this example we attach an onclick event to all button elements in the
document. When the user clicks on the button, the message “button was
pressed” will be printed on the JavaScript console of the browser

CSS3 AnimationsCSS3 Animations

 CSS allows you to animate and transform the state of
elements

p {
transition: transform 3s;

}

p:hover {
transform: rotate(45deg);

}

● This example initiates a transition (animation) and rotates all paragraph 45
degrees whenever a user hovers the mouse pointer over them

CSS3 AnimationsCSS3 Animations

 CSS3 also supports the animation property in conjunction
with keyframes to allow you to define complex animations

div {
animation-name: example;
animation-duration: 10s;

}

@keyframes example {
 from {background-color: red;}
 50% {background-color: black;}
 to {background-color: yellow;}
}

● This example instantly starts animations on page load – transitioning the background
color of all the divs on the page from red to black to yellow under a period of 10
seconds

CSS3 Animation – an extreme exampleCSS3 Animation – an extreme example

The only limit to what you can do is your imagination – with
some tweaks and work you can do almost anything

● Not only do CSS animations support simple transitions – they can even
rotate elements in 3D and set a perspective

● This first-person shooter demo shows what you can actually do:
keithclark.co.uk/labs/css-fps

https://keithclark.co.uk/labs/css-fps/

