

Testing & Java Server FacesTesting & Java Server Faces

DAT076/DIT126 Web Applications

Adam Waldenberg

Testing EE applicationsTesting EE applications

Testing an EE application is
complicated

● How do you handle CDI and all the EE
annotations in the model?

● How do you support the database?

● Many EE applications simply don’t bother
and just do pure model tests, manually
filling in any required injected members
with reflection

● Is there a problem with this approach?

Testing approaches - MockingTesting approaches - Mocking

Mocking is the process of simulating behavior and responses
of objects, including encapsulated objects

● Reaching anything near to complete code coverage, let alone full logical
coverage in an EE application - is quite a hassle because of all the required
mocking

● Mockito (site.mockito.org)

● EasyMock (easymock.org)

● PowerMock (github.com/powermock/powermock),
extends Mockito and EasyMock,
allowing you to mock static methods,
private methods and constructors

https://site.mockito.org/
http://easymock.org/
https://github.com/powermock/powermock

When mocking simply doesn’t cut itWhen mocking simply doesn’t cut it

Two notable solutions exist

● CDI-Unit (bryncooke.github.io/cdi-unit)

● Arquillian (arquillian.org) - No more mocks. No more container lifecycle
and deployment hassles. Just real tests!

● A complete shift in the way we write tests, allowing us to mimic or get the
behavior of the application server and the EE framework

● Results in much simpler and cleaner test code

http://bryncooke.github.io/cdi-unit/
http://arquillian.org/

Introducing ArquillianIntroducing Arquillian

Allows us to write fully EE-
aware JUnit tests and

integration test

● From the team behind JBoss and
WildFly

● Supported and developed by Red Hat and supported by JBoss Enterrpise

● Supports CDI, JPA, EJB, Java Server Faces and most (if not all) parts of the
EE infrastructure

● Can run tests in both client and server mode

Testing with ArquillianTesting with Arquillian

● Arquillian.class handles all the heavy lifting

● Requires a shrink wrap for bootstrapping the application server into the test

@RunWith(Arquillian.class)
public class BasicClientTest {
 @Deployment
 public static WebArchive createDeployment() {
 return ShrinkWrap.create(WebArchive.class)
 .addClasses(MyBean.class)
 .setWebXML("WEB-INF/web.xml");
 }

 @Test
 public void shouldDoSomethingSuccessfully() { … }
}

More testing with ArquillianMore testing with Arquillian

● Most (maybe all?) types of injections are supported

● Configuration files and resources are processed and looked for in the test/
directory. This allows us to have a separate collection of resources for tests

@RunWith(Arquillian.class)
public class BasicClientTest {
 @Deployment
 public static WebArchive createDeployment() { … }

@EJB
private EntityDAO entityDao;

 @Test
 public void shouldReturnThisAndThatOnQuery() { … }
}

Frontend development in EEFrontend development in EE

Several options are available for developing the frontend
code in an EE application

● JSP with scriptlets Combines Java code and markup code into a .jsp file.
Resembles the coding style of PHP scripts

● Pure servlets Markup code is generally created and outputted by
the servlet

● Java Server Faces The cleanest and most modern solution. Supports
components and clean separation

● Requestlets Planned for EE 9. Convenience layer on top of
servlets. Unlike servlets they are also CDI beans

Java Server FacesJava Server Faces

Has a long incremental history of
improvements over a span of over fifteen

years
● JSF 1.0 (2004-03-11)
● JSF 1.1 (2004-05-27)
● JSF 1.2 (2006-05-11)
● JSF 2.0 (2009-07-01)
● JSF 2.1 (2010-11-22)
● JSF 2.2 (2013-05-21)
● JSF 2.3 (2017-03-28)
● JSF 3.0 (Coming in EE 9)

 Where yours truly started
 to get involved

Overview of Java Server FacesOverview of Java Server Faces

Java Server Faces is a component-based architecture with
a design focus on MVC

● Treats view elements as JSF UI components instead of HTML

● Maintains an internal component tree (similar to the DOM)

● Callbacks and events back to Java work with ActionEvent calls similar to
Swing and JavaFX

● Each tag in a page has a JSF tag handler class and component

● The JSF component class handles translation of of JSF tags to HTML tags,
and interpretation of HTTP requests

View Definition LanguageView Definition Language

Java Server Faces uses an exchangeable View Definition
Language (VDL) to define the user interface

● Originally JSP (Java Server Pages via .jspx files) was used. Not something
we will cover as it is considered deprecated – but for historical reasons it’s
interesting to mention

● JSP(x) was replaced by Facelets in JSF 2.0

● All major new features from this version on, such as templating, composite
components, and more, are only available for Facelets

Java Server Faces XML namespacesJava Server Faces XML namespaces

The Standard EE component library consists of various
name spaces as shown below

● Can be extended with external libraries

● Examples: PrimeFaces, BootsFaces, OmniFaces and DeltaSpike

http://xmlns.jcp.org/jsf jsf: Pass-through elements
http://xmlns.jcp.org/jsf/core f: Core library, not HTML
http://xmlns.jcp.org/jsf/html h: HTML library
http://xmlns.jcp.org/jsf/facelets ui: Facelet Templating tag library
http://xmlns.jcp.org/jsf/composite cc: Composite Component tag library
http://xmlns.jcp.org/jsf/passthrough pt: Pass-through attributes

http://xmlns.jcp.org/jsp/jstl/core c: JSP Standard Tag Library (JSTL)
http://xmlns.jcp.org/jsp/jstl/functions fn: JSTL functions

http://xmlns.jcp.org/jsf
http://xmlns.jcp.org/jsf/core
http://xmlns.jcp.org/jsf/html
http://xmlns.jcp.org/jsf/composite
http://xmlns.jcp.org/jsf/passthrough
http://xmlns.jcp.org/jsp/jstl/core
http://xmlns.jcp.org/jsp/jstl/functions

Testing Java Server FacesTesting Java Server Faces

● @RunAsClient allows us run the test on the client-side
● Allows us to combine server-side tests and client-side tests
● Uses a combination of Arquillian, Graphene, Drone and Selenium

@RunWith(Arquillian.class)
public class BasicClientTest {
 @Deployment
 public static WebArchive createDeployment() { … }

@Drone private WebDriver browser;

@FindByJQuery("input#name")
private WebElement name;

 @RunAsClient @Test
 public void shouldReturnThisAndThatOnQuery() { … }
}

Expression LanguageExpression Language

An integral part of Java Server Faces for adding expression
inside the XML documents that define the views

● Almost Java but not quite!

●

● A very small taste of what you can do !

#{myBean.myMethod}
#{myBean.myMethod()} // method expressions

#{myBean.myProperty}
#{myBean.myProperty + 10}
#{myBean.myProperty == 5}
#{myBean.invoice.customer["street"]} // value expressions

Expression Language continuedExpression Language continued

A number of implicit objects exist

● application

● component

● cookie

● facesContext

● flash

● header

● initParam

● param

● request

● resource

● session

● view

● … and more ...

An example view descriptorAn example view descriptor
<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:p="http://primefaces.org/ui"
xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:fn="http://xmlns.jcp.org/jsp/jstl/functions">
 <h:head><title>Test</title></h:head>
 <h:body>
 <p>
 The name was... <h:outputText value="#{formBackingBean.name}"
 and is #{fn:length(formBackingBean.name)} /> characters long!
 </p>
 <h:form>
 <p:inputText value="#{formBackingBean.name}" />
 <p:commandButton action="#{formBackingBean.onClicked}"

 value="Set name" update=”@(p)” />
 </h:form>
 </h:body>
</html>

The backing bean for the viewThe backing bean for the view
@Data
@Named
@ViewScoped
public class FormBackingBean implements Serializable {

 private String name;

@PostConstruct
private init() {

name = “John Smith”;
}

 public void onClicked() {
 /* In this case we don’t need to do anything */
 }
}

● So what is @Named used for ?

Component librariesComponent libraries

As stated before, Java Server Faces can be easily extended
with component libraries

One of the most notable is PrimeFaces

Let’s take a look:
www.primefaces.org/showcase

https://www.primefaces.org/showcase/

Lets make an example!Lets make an example!

Let’s see if we can take what we learned so far and quickly
write a Java Server Faces application

