

React and JavaScript frontendsReact and JavaScript frontends

DAT076/DIT126 Web Applications

Adam Waldenberg

JavaScript frontendsJavaScript frontends

Can be run on server-side or client side (as covered in the
lecture on web application design)

● Many JavaScript frameworks exist

● Some notable mentions include React (Facebook), Vue.js, Angular (Google),
Ember and Backbone.js (with the exception of Ember, we have covered all of
them in one way or another in past iterations of this course)

● We focus on React specifically because it has become very popular and has
a big business backing it

● React is also very popular to combine with EE backends

JavaScript popularityJavaScript popularity

Compared to EE, choosing JavaScript (and often NodeJS for
the backend) is especially popular with startups and smaller

businesses

● Works especially well if security and stability is not critical

● The learning curve is less steep, allowing businesses to lower development
costs by using cheaper developers

● Growing in popularity on a yearly basis

● Just like with Java, there is a huge infrastructure of open source community
libraries, additional frameworks and extensive documentation available

JavaScript popularity continuedJavaScript popularity continued

In the last few years, React has
gained a dominant position

among JavaScript frameworks

● Statistics taken from indeed.com
● At the time of making these slides - in

Sweden, there are roughly 700-800 free
job postings concerning React

● There are roughly 300-500 postings
alone concerning web development and
Java and/or EE in some way

● Many of them actually ask for both!

When to learn something newWhen to learn something new

Watch out for the constant hype in
the web development sphere

● When learning something new, always
consider the long-term return and if it’s even
a good idea

● Previous hypes include (not in order of
greatness) Ruby on rails, Perl, PHP OOP,
Web 3.0, Angular 1.x, JQuery etc

● Enterprise frameworks generally allow you
to take advantage of all your hard-earned
learning during a longer period

The Hype PendulumThe Hype Pendulum

Just as relevant today as before

● A few years ago there was a lot of talk and
hype around NodeJS
● “Why NodeJS is awesome and why you shouldn't even

think about using it” - 2013
www.giantbomb.com/profile/rick/blog/why-nodejs-is-awesome-and-why-you-shouldn-t-even-t/102475
/

● “NodeJS is cancer” - 2015
www.semitwist.com/mirror/node-js-is-cancer.html

● Leave the Hype Pendulum to swing and come
to an informed long-term decision on your own

● This course is guilty of occasionally jumping on
the hype bandwagon in previous years

hackernoon.com/the-hype-pendulum-of-web-development-33f500723f31

https://www.giantbomb.com/profile/rick/blog/why-nodejs-is-awesome-and-why-you-shouldn-t-even-t/102475/
https://www.giantbomb.com/profile/rick/blog/why-nodejs-is-awesome-and-why-you-shouldn-t-even-t/102475/
https://www.semitwist.com/mirror/node-js-is-cancer.html
https://hackernoon.com/the-hype-pendulum-of-web-development-33f500723f31

The Hype Pendulum continuedThe Hype Pendulum continued

JavaScript frontends, JavaScript tooling and JavaScript
frameworks seem especially susceptible to hype

● There is an excessive amount of competing tooling, different forks and
solutions to the same problem. Some hyped more than others, with many
being utter garbage from a software engineering viewpoint

● It’s the human condition. To take an analogy, Wikipedia lists over 26 types of
hammers (en.wikipedia.org/wiki/Hammer). Do we really need all of them?

● Use common sense and let the hype pendulum find it’s resting place

● It can take a while before you can make a informed long-term decision

https://en.wikipedia.org/wiki/Hammer

Introducing ReactIntroducing React

A JavaScript library for building user
interfaces

● Define views in .jsx or a .js files

● Build encapsulated components that manage their own state
and compose them to make complex user interfaces

● Similar philosophy to Java Server Faces components or composite components with
Facelets

● Supports client-side and server-side rendering

● Can power mobile apps using React Native

● Can be used with Electron (www.electronjs.org) to deploy desktop applications

https://www.electronjs.org/

A simple view definition in ReactA simple view definition in React

A view and component defined in pure JavaScript

● A clean way to use it on the browser side, but not very pleasant code to read

● A React component holds properties and states

● A new or updated state causes the component to refresh

class Hello extends React.Component {
 render() {
 return React.createElement('div', null, `Hello ${this.props.toWhat}`);
 }
}

ReactDOM.render(
 React.createElement(Hello, {toWhat: 'World'}, null),
 document.getElementById('root')
);

A simple view definition in React continuedA simple view definition in React continued

A view and component defined in JSX

● Much nicer code, but introduces an additional dependency on Babel
(babeljs.io) – a transpiler to convert back to compatible JavaScript

● Browsers generally support ES6. For anything newer you need to transpile
with Babel.

class Hello extends React.Component {
 render() {
 return <div>Hello {this.props.toWhat}</div>;
 }
}

ReactDOM.render(
 <Hello toWhat="World" />,
 document.getElementById('root'));

https://babeljs.io/

React and propertiesReact and properties

React properties

● Components in React take inputs in the form of properties (often referred to
as props) and return elements describing what should appear on the screen

● Properties are read-only and should never be changed

● If we need to change the state of a component we use the concept of states

class Hello extends React.Component {
 render() {
 return <div>Hello {this.props.toWhat}</div>;
 }
}

ReactDOM.render(
 <Hello toWhat="World" />,
 document.getElementById('root'));

React and statesReact and states

React states

● Each React component can hold a state

● The state represent the visual backing data that the component uses to
render it’s view. The concept is similar to backing bean values in Java Server
Faces

● To modify the state you call this.setState({newstate}) on the object in
question

● This triggers an update of the component, calls the life-cycle events and
invokes the render() method of the component.

The life cycle of ReactThe life cycle of React

React components have a life cycle which you can exploit
when you write components

getDerivedStatesFromProps()

● Invoked right before the render()
method is called, both on the initial
mount and on subsequent updates

● It should return an object to update
the state, or null to update nothing

● A component can not update its
own props - but it can update its
children and their props

The life cycle of React continuedThe life cycle of React continued

getSnapshotBeforeUpdate()

● Invoked right before the most
recently rendered output is
committed to the DOM. Allows you
to capture some information from
the DOM (e.g. scroll position)
before it is potentially changed. Any
value returned by this lifecycle will
be passed as a parameter to
componentDidUpdate()

React and input eventsReact and input events

In React, we can listen to input events and other types of
events that happen - allowing us to add input handlers to

handle those events

● The frameork offers so many events it’s easier to list the event categories
rather than the events themselves:

Image Events

Animation Events

Transition Events

Other Events

Pointer Events

Clipboard Events

Composition Events

Keyboard Events

Focus Events

Form Events

Mouse Events

Selection Events

Touch Events

UI Events

Wheel Events

Media Events

React and input events – An exampleReact and input events – An example

● Connects to a handler that (in this case) updates the state of the component

● Will trigger a refresh and a call to render()

● Not dissimilar to the way you connect method expressions to action listeners
in Java Server Faces

<button onClick={this.onHandleResult}>=</button>

onHandleResult = e => {
this.setState({

 result: this.state.number1 + this.state.number2
});

}

Using React client-side in an enterprise applicationUsing React client-side in an enterprise application

We can easily combine React and Facelets – allowing us to
use the templating engine together with JSX pages

● In practice this is an XHTML document extended with Babel and JSX syntax

● Babel and React are included in the template

<html xmlns="http://www.w3.org/1999/xhtml" xmlns:ui="http://xmlns.jcp.org/jsf/facelets">
<ui:composition template="WEB-INF/template/common.xhtml">

<ui:define name="title">A Simple react page</ui:define>
<ui:define name="content">

const App = () => {
return (

<div>hej</div>
);

};
ReactDOM.render(<App />, document.querySelector("#root"));

</ui:define>
</ui:composition>

</html>

Using React client-side in an enterprise application - continuedUsing React client-side in an enterprise application - continued

● We incude all the React and Babel dependencies

● data-plugins=”transform-es2015-modules-umd” is used by Babel to handle
imports on the client side without a NodeJS server

<html xmlns="http://www.w3.org/1999/xhtml" xmlns:ui="http://xmlns.jcp.org/jsf/facelets">
<head>

<title><ui:insert name="title"/></title>

<script src="https://unpkg.com/react@16/umd/react.development.js"></script>
<script src="https://unpkg.com/react-dom@16/umd/react-dom.development.js"></script>
<script src="https://unpkg.com/babel-standalone@6/babel.min.js"></script>
<ui:insert name="dependencies"/>

</head>
<body>

<div id="root"/>
<script data-plugins="transform-es2015-modules-umd" type="text/babel">

<ui:insert name="content"/>
</script>

</body>
</html>

Creating a Book componentCreating a Book component

Lets create a Book component for our previously written web
service

● We reference two properties which are defined with <Book title=”a”
author=”b”/> when the parent view and it’s element are created

● We extend from the React.Component class using ordinary ES6 syntax

export default class Book extends React.Component {
render() {

return (
<div>

<p>Title: {this.props.title}</p>
<p>Author: {this.props.author}</p>

</div>
);

}
}

Using the Book component on a pageUsing the Book component on a page

To use the component, we import it and use it as a usual
React component or HTML element

● We define the Book dependency and import it in our code
● The rest works like any other component

<html xmlns="http://www.w3.org/1999/xhtml" xmlns:ui="http://xmlns.jcp.org/jsf/facelets">
<ui:composition template="WEB-INF/template/common.xhtml">

<ui:define name="title">A Simple react page</ui:define>
<ui:define name="dependencies">

<script data-plugins="transform-es2015-modules-umd" type="text/babel" src="./components/Book.jsx"></script>
</ui:define>
<ui:define name="content">

import Book from "./components/Book";

const App = () => {
return (<Book author="Carl Sagan" title="Contact"/>);

};
ReactDOM.render(<App />, document.querySelector("#root"));

</ui:define>
</ui:composition>

</html>

Defining a Shelf componentDefining a Shelf component

Next, let’s define a Shelf component that uses our Book
component

● We just hard code two books into the shelf for now

import Book from "./Book";

export default class Shelf extends React.Component {
constructor(props) {

super(props);
this.state = {books: []};

}

ComponentDidMount() { /* We want to fetch the books here at some point */ }

render() {
return (

<div>
<Book author=”a” title=”b” />
<Book author=”c” title=”d” />

</div>
);

}
}

Defining a Shelf component - continuedDefining a Shelf component - continued

Using the Shelf component on the main page is easy

● At this point we have a shelf and two books in that shelf

● Next, let’s consume our web service and populate the shelf with actual data
from our model!

● Where did we define our books?

<ui:define name="content">
import Shelf from "./components/Shelf";

const App = () => {
return (

<Shelf />
);

};
ReactDOM.render(<App />, document.querySelector("#root"));

</ui:define>

Consuming our web serviceConsuming our web service

To fetch data from our web service, we simply send a GET
with the JavaScript fetch() function

● We fetch JSON directly from the web service endpoint /shelf

● This updates the state of the component and populates books

● When we change the state we trigger a re-rendering of the component,
causing React to update the view

componentDidMount() {
fetch("http://localhost:8080/wsbooks-react/ws/shelf")

.then(res => res.json())

.then((data) => {
this.setState({books: data})

}).catch(console.log);
}

Consuming our web serviceConsuming our web service

We modify the render() method accordingly, fetching the
books and populating a list of Book components with the

data

● React calls the render() method

● We loop through the book array and populate the Shelf component with a
series of Book components

render() {
return (

<div>
{this.state.books.map((b, idx) => {

return <Book author={b.author} title={b.title} key={idx} />
})}

</div>
);

}

Avoiding client-side transpilingAvoiding client-side transpiling

With babel as a dependency on the client-side, the client will
always transpile the XHTML files

● Small performance hit incurred, which gets worse with more complex page
structures

● You can use babel-maven-plugin (github.com/jarslab/babel-maven-plugin) to
instead run this step when the application is being built

● Instead of constantly transpiling, the plugin will generate the files and write
them to the target directory before the web archive is built and deployed to
the server

● We won’t cover it in detail, as it only complicates the build slightly - but you
may play with it if you find it interesting

https://github.com/jarslab/babel-maven-plugin

An example of using React!An example of using React!

Let’s take a look at a test project based on the code we just
covered that consumes our web services!

