

Persistence &Persistence &
The Object Relational ModelThe Object Relational Model

DAT076/DIT126 Web Applications

Adam Waldenberg

Meet your student representativesMeet your student representatives

● TIDAL Albin Becevic <albbec@student.chalmers.se>

● TKDAT John Blåberg Kristoffersson <krjohn@student.chalmers.se>

● TIDAL Johan Ericsson <j_ericsson_85@hotmail.com>

● MPALG Madeleine Lexén <lexen@student.chalmers.se>

● TKITE Paulina Palmberg <paupal@student.chalmers.se>

The role of a student representative?

student.portal.chalmers.se/en/chalmersstudies/courseinformation/coursee
valuation/Pages/Being-a-Student-representative.aspx

mailto:albbec@student.chalmers.se
mailto:krjohn@student.chalmers.se
mailto:j_ericsson_85@hotmail.com
mailto:lexen@student.chalmers.se
mailto:paupal@student.chalmers.se
https://student.portal.chalmers.se/en/chalmersstudies/courseinformation/courseevaluation/Pages/Being-a-Student-representative.aspx
https://student.portal.chalmers.se/en/chalmersstudies/courseinformation/courseevaluation/Pages/Being-a-Student-representative.aspx

Object Relational ModelObject Relational Model

A combination of an object oriented database model and a
relational database model

● Typically supports objects, classes and inheritance

● Can define data types and tabular structures like a relational data model

● Available for most languages to allow you to bridge the gap between the
language and relational databases

● One of the first, or even the first ORM was developed for SmallTalk in the early
1990’s (one of the earliest popular object oriented languages)

Object Relational MappingObject Relational Mapping

Technique for converting data between incompatible type
systems using object-oriented programming languages

Object Relational Mapping - JavaObject Relational Mapping - Java

● Java is an object-oriented language

● Objects and classes arranged in a mixed hierarchy
(graph) of scalar types and sub-classed relationships
to other objects

● Objects contain methods for fetching various states

● We need to find an easy way to map this to a relational
database

● Java supports annotations, so this is a perfect way to
describe settings and definitions for the mappings

Object Relational Mapping - SQLObject Relational Mapping - SQL

● SQL is a relational database language

● Rows (records), all with the same fields (columns) populate a specific table

● Links and dependencies to other tables via foreign keys

● Contain only scalar types

● An ORM framework will convert objects into groups of simpler (scalar)
values upon storage and convert those back to objects upon retrieval

Object Relational Mapping – The ChallengeObject Relational Mapping – The Challenge

Two very different ways of
modeling data

● This incompatibility problem and the
difficulties that arise when trying to relate
them to each other is called the object-
relational impedance mismatch

● How would you actually go about
achieving this and implementing it?

● Different languages have different
preconditions and possibilities

Java Persistence APIJava Persistence API

Java EE specifies a standard interface for performing ORM
- The Java Persistence API (JPA)

● There are several implementations of this API:

● EclipseLink (www.eclipse.org/eclipselink), reference implementation

● Hibernate (hibernate.org), the most commonly used implementation at
one point

● TopLink (www.oracle.com/middleware/technologies/top-link.html)

● ObjectDB (www.objectdb.com)

● We call these implementations persistence providers

https://www.eclipse.org/eclipselink/
https://hibernate.org/
https://www.oracle.com/middleware/technologies/top-link.html
https://www.objectdb.com/

JPA EntitiesJPA Entities

A POJO class with an @Entity annotation defines a JPA entity

● An entity class is a class representing a table in the database. Each instance
(entity) represents a record (row) in the table

● An entity class also holds meta-data describing how it’s properties map to
the database

● Entities persist data. If we create, update or delete an entity, the database is
modified

● The class that handles this is called an entity manager, given by the
persistence provider and @PersistenceContext or @PersistenceUnit

Persistence UnitPersistence Unit

The persistence unit defines the name of the persistence
unit and it’s connection to the underlying data source

● The data source is what defines the connection to the underlying database in
the application server

●

● The transaction-type attribute can be defined as either JTA (Java
Transaction API) or RESOURCE_LOCAL

<persistence>
 <persistence­unit name="webshop" transaction­type=”JTA”>
 <jta­data­source>jdbc/webshopds</jta­data­source>
 </persistence­unit>
</persistence>

Persistence Unit continuedPersistence Unit continued

● The resources/META-INF/persistence.xml file consists of a persistence
element and a number of child elements

● When using RESOURCE_LOCAL, the connection itself can be defined directly
inside the persistence.xml file instead of using a JTA data source

● Can be defined with additional elements to configure the persistence unit

● Oracle offers extensive documentation on all the elements and attributes
(docs.oracle.com/cd/E16439_01/doc.1013/e13981/cfgdepds005.htm)

● No need to worry about the full specification at the moment – you will get the
chance to define the persistence unit in the assignment

https://docs.oracle.com/cd/E16439_01/doc.1013/e13981/cfgdepds005.htm

JPA Entities continuedJPA Entities continued

A number of requirements are enforced on entity classes

● The class must implement Serializable and have a default (no-arg)
constructor

● The class must not be final and have no final methods

● Must be defined with the @Entity annotation

● Must have a primary key defined with the @Id annotation

● Use @GeneratedValue together with the @Id annotation to specify
automatically generated primary keys

● The @Column and @Table annotations can be used to modify the default
name for tables and columns in the relational database

JPA Entities continuedJPA Entities continued

Persistent instance variables or Persistent properties
- Two different ways to map the class to the database

constructor

● Persistent instance variable Associate instance variables with
columns in the table

● Persistent properties Associate properties (getters/setters)
with columns in the table

● Exclusive – the two methods can not be mixed in one entity class

● Generally we want to use persistent properties for the sake of flexibility

Relationship MappingRelationship Mapping

Relationships can be mapped between entity classes to
control how the model is connected in the relational

database

● @OneToOne, @OneToMany, @ManyToOne and @ManyToMany define all
the relational annotations we can use on properties

● We use the @JoinTable and @JoinColumn annotations plus the mappedBy
attribute of relations to avoid the creation of an extra table in the database
when creating the relationship between entities

● Generally we tend to only want that extra relationship table if we create a
Many-To-Many relationship.

@OneToOne & @ManyToOne@OneToOne & @ManyToOne

Most of the time there is no
need for any attributes to

these annotations /
relationships

● Classical definition as defined by
entity-relationship models

● If we choose unidirectional or
bidirectional relationships comes
down to the database design and
query optimization

employee
Job

Position

product
product

line
part of

is assigned

@OneToMany@OneToMany

● Type of the instance variable must be a
collection

● @JoinColumn specifies that this entity is
the owner of the relationship (or put
differently: the opposing table has a
column with a foreign key back to us)

company branch

has

@Entity
public class Company {

@OneToMany(mappedBy = “company”) private List<Branch> branches;
}

@Entity
public class Branch {

@JoinColumn(name = “company_id”)
@ManyToOne private Company company;

}

@ManyToMany@ManyToMany

● @JoinTable is used to define the
relationship table in the many-to-many
relationship

student course
< has
in >

@Entity
public class Student {

@Id private int id;
@JoinTable(name = “student_course”,

 joinColumns = @JoinColumn(name = “student_id”),
 inverseJoinColumn = @JoinColumn(name = “course_id”))

@ManyToMany private List<Course> courses;
}

@Entity
public class Course {

@Id private int id;
@ManyToMany(mappedBy = “courses”) private List<Student> students;

}

Composite keysComposite keys

● To create a composite key in JPA, we create a
separate class to define it

● The @IdClass annotation specifies that this
entity is using the class CoursesPK for it’s key
definition

● At this point we can specify multiple @Id
annotations in our entity class to define the
composite key in the entity

public class CoursePK {
private String code;
private int year;

}

@Entity
@IdClass(CoursePK.class)
public class Course {

@Id private String code;
@Id private int year;

}

A word of warning...A word of warning...

Keep an eye on your generated tables!
● When modeling your database and defining your entities – always keep track

of what the persistence provider actually generates

● If you you make a mistake with @JoinTable / @JoinColumn / mappedBy,
the generated tables and schema can become very inefficient. In some cases
it won’t even work correctly!

● To inspect the database, NetBeans has a very handy database explorer that
you can use – just create a connection to your database from within
NetBeans

● During testing, using the property <property name="eclipselink.ddl-
generation" value="drop-and-create-tables" /> in your
persistence.xml to drop and re-create tables on each redeployment

Entity ManagerEntity Manager

The class provided by the container to manage a specific
entity

● When using a JTA-enabled persistence unit, you can inject it directly into an
enterprise java bean

@PersistenceContext(unitName = “petshop”)
private EntityManager em;

● The entity manager contains methods for counting, finding, inserting, updating
and deleting entities, plus methods for creating queries

em.persist(pet);
em.merge(pet);

em.remove(pet);
em.refresh(pet);

em.createNamedQuery(...);

JPA Query API'sJPA Query API's

Beyon the simple find() method available in the entity
manager, JPA offers a number of methods and API's to

query the database
● Native Queries You can send a native queries. This would send

(discouraged usage) the exact defined statement directly to the RDBMS
(Relational Database Management System)

● JPQL Queries An SQL derivate language for querying the relational
database, bridging the differences

● Named Queries A JPQL query associated to and annotated on an
entity (@NamedQuery).

● The Criteria API The last addition to the standard

JPQL explainedJPQL explained

Kind of looks like SQL, but with subtle differences

SELECT c FROM Country c; /* returns all Country entities */

● JPQL also has support for parameter placeholders. It also rebuilds the query,
and escapes all input parameters, protecting us from statement manipulation
and injection attacks

SELECT c.name FROM Country AS c; /* returns all Country names */

SELECT e FROM Employee e WHERE e.id = :id; /* returns specific Employee
with primary key id */

query.setParameter(“id”, 42);

JPQL grammarJPQL grammar

For an almost complete grammar of the JPQL language, visit:

dzone.com/refcardz/getting-started-with-jpa?chapter=7

• Also covers more on the entity manager, queries and configuration of the
persistence unit

file:///home/chalmers/Skrivbord/

Named QueriesNamed Queries

Named queries are just JPQL statements that have a
functional name and are directly connected to a entity class

● Moves more of the model away from the database access classes and
collects the query definitions in one place

@NamedQuery(name = “Country.findAll”,
 query = “SELECT c FROM Country c”);

em.createNamedQuery(“Country.findAll”);

The Criteria APIThe Criteria API

The newest addition to the standard

● Allows developers to programmatically define and control
queries to the relational database

● Instead of a custom syntax, queries are built with pure Java

● Allows for the creation of type-safe queries

● Has been heavily criticized as being completely over-
engineered , nonsensical and extremely difficult to use

● Has resulted in the creation of several convenience layers on top
of the Criteria API

The Criteria API – Making it usableThe Criteria API – Making it usable

Many convenience layers have
been developed – this is a non-

exhaustive list

● Blaze Persistence
(github.com/Blazebit/blaze-persistence)

● Easy Criteria
(github.com/sveryovka/easy-criteria)

● QueryDSL
(www.querydsl.com/)

file:///home/chalmers/Skrivbord/
file:///home/chalmers/Skrivbord/
file:///home/chalmers/Skrivbord/

QueryDSLQueryDSL

QueryDSL and most of the other convenience layers allow us
to write queries in a more natural flow

● Faster to write code and queries than with Criteria API

● More readable than Criteria API!

/* fetch the first customer with the name “Bob” */
Customer bob = query.select(customer)
 .from(customer)
 .where(customer.firstName.eq("Bob"))
 .fetchOne();

The DAO design patternThe DAO design pattern

Data access objects allow us s to isolate the
application/business layer from the persistence layer

● Each entity has an access object

● Access objects use inheritance to implement common methods
for all access objects (such as getAll(), find(), delete(), merge()
and so on)

@Entity
Account

AccountDAO
extends AbstractDAO<Account>

AbstractDAO<T>

	Sida 1
	Sida 3
	Sida 4
	Sida 5
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 18
	Sida 19
	Sida 20
	Sida 21
	Sida 22

