

Java EE Fundamentals &Java EE Fundamentals &
Structure of a Web ApplicationStructure of a Web Application

DAT076/DIT126 Web Applications

Adam Waldenberg

Jakarta / Java EE in a nutshellJakarta / Java EE in a nutshell

A set of specifications for extending Java with features for
enterprise software

● Enterprise software is computer software used to satisfy the needs of an
organization rather than individual users

● Vague concept. The exact definition depends on the context

● In the case of Java Enterprise we talk about the underlying system providing
a tool set and an API for fulfilling the needs of an enterprise (large business)

● Consequently scalability, maintainability, security and reliability are very
important factors

Quotes about enterprise softwareQuotes about enterprise software

● “Software products designed to integrate computer systems that run all
phases of a businesses' operations to increase internal coordination of work
and cooperation across an enterprise” (p5ee, 2005)

● “Enterprise applications are about the display, manipulation, and storage of
large amounts of often complex data and the support or automation of
business processes with that data.” - Martin Fowler

● “Software whose failure everyone notices quickly.” - Brian D. Foy

Some Features of Jakarta / Java EESome Features of Jakarta / Java EE

● Java Persistence API

● Java Transaction API

● Enterprise Java Beans (EJB)

● Contexts and Dependency Injection (CDI)

● Java Server Faces (JSF) and Facelets

● Java API for Restful Web Services (JAX-RS)

● Java Security API

… and much, much more ...

Anatomy of an Application ServerAnatomy of an Application Server

● Servlets Handling the parsing of incoming requests and the sending of
responses

● Enterprise Java Beans (EJB) Handling the business logic and micro
services of the application

ServletsServlets

● Servlets are an integral part of Java EE. However, most of the time we don’t
use them when developing a modern Java Server Faces application.

● Java Server Faces is implemented via a servlet called FacesServlet

● Sometimes used for specific tasks. Some examples;
● A servlet that, given a name, fetches and returns an image from a database
● A servlet that, given a string, generates and returns a bar code image
● A servlet that, given a social security number, returns a name

● These days, web services replace most of these use cases – thus, other than
making you aware of them, we won’t be covering servlets at all

Model-View-ControllerModel-View-Controller

view controller

model

● The model contains the logic
and mental representation

● The view is the visual output
and representation

● The controller handles input
from the user and the view

● The controller updates the
model

● The view shows the new state
of the model

MVC, MVP, MVVM and the list goes on...MVC, MVP, MVVM and the list goes on...

Many variations of MVC have been defined, slightly tweaking
how the core idea is defined

● For example – JSF requires a backing bean as a placeholder for view values.
Does this make it a MVCVM framework (can we make our own definition)?

● The only way to know the exact meaning is to locate the original source of
each definition. Everybody on the Internet (including in articles and books)
seem to have their own idea

● Many different interpretations and variations of each exist

● In the end, it’s all about separating the view and input handling from the
model and business logic

Server-side MVCServer-side MVC

The whole application and state lives on the server-side

● Browser is mostly a thin client. Modern JSF component frameworks do
however have some model manipulation and state stored on the client-side
because of the richness of the component frameworks

● At some point this is pushed up to the server-side to persist the state

● Some examples include
Java Server Faces, React
and Vue.js

MVC - Client-side viewMVC - Client-side view

No view representation on the server side

● The view representation is stored
completely on the client side

● A web service with endpoints
separates the view from the rest of
the application logic

● Examples include React and Vue.js

Client-side MVCClient-side MVC

The whole application lives on the client side

● Calculations and state updates
originate and are performed on the
client-side

● The server-side is used for security,
validation and persistence

● Examples include Angular and Ember

Pros and cons of the different approachesPros and cons of the different approaches

Server-side MVC

● Consider the advantages of server-side MVC
● Less reliance on JavaScript
● Cleaner implementation, allowing you to implement almost all you code

on the server-side
● Tightened security and control

● Consider the disadvantages of server-side MVC
● Bigger load on the server

Pros and cons of the different approachesPros and cons of the different approaches

Client-side MVC

● Consider the advantages of client-side MVC
● Less load on the server
● For many (most?), a simpler implementation

● Consider the disadvantages of client-side MVC
● More reliance on JavaScript
● Security concerns with business logic on the client-side

A final word on the different approachesA final word on the different approaches

● Each approach has advantages and disadvantages

● You don’t have to strictly stick to one. It’s OK to use a mixture to offset the
advantages and disadvantages of each approach

● Even with Java Server Faces you can potentially get the best of both worlds
by using a component framework like AngularFaces (angularfaces.net)

http://angularfaces.net/

SessionsSessions

● As we previously covered, HTTP is a stateless protocol. What are sessions?

● Defining a session on the server-side is one way of keeping track of a client
between HTTP requests

● The server can track session via cookies, URL rewriting or hidden form fields.
This is used to identify a single client across different requests

● Session tracking using cookies is the primary mechanism. JavaEE
containers can fall back to one of the other methods if the browser does not
support cookies or has cookies disabled

● To access the and store data into the session we can use the CDI session
scope to tell the container to store the data in the session

Controlling the session in Java EEControlling the session in Java EE

<?xml version="1.0" encoding="UTF-8"?>
<web-app ...>
 ...
 <session-config>

<session-timeout>
10

</session-timeout>
</session-config>

</web-app>

HttpSession session = request.getSession();
session.setMaxInactiveInterval(10 * 60);

● In Java EE, we can control the
session timeout by configuring
editing the web.xml file

● Payara supports persistence
types such as memory, file or
hazelcast

● We can also programmatically
modify the session

Resource and dependency injectionResource and dependency injection

● Dependency injection allows us to turn regular classes into managed objects
and to inject those managed objects into other managed objects

● Application or the framework has to ensure we it’s providing the correct
managed object at the right time

● Makes it easier to mock and test objects

● In some frameworks, parameters sent during instance creation can be defined
in seperate configuration files

● In Java EE the framework is called Contexts and Dependency Injection (CDI)

Dependency injection and instance managementDependency injection and instance management

Utilizing dependency injection is a complete shift in the way
you program in Java

● You generally never instantiate instance variables yourself

● You allow the container of the application server to completely control the life
cycle of your instances

● Makes it very important that you annotate your classes with the correct scope

● Different scopes control how long a specific object instance is kept active and
under which conditions it’s destroyed

Dependency injection scopesDependency injection scopes

Many scopes exist in Java EE, some are backend-specific,
while others are tightly bound to the view model

● @ApplicationScoped Active during the life cycle of the application

● @SessionScoped Active during the life cycle of the session

● @RequestScoped Active during the life cycle of a a servlet request

● @ViewScoped Active during the life cycle of the view

● @ConversationScoped Manually controlled scope

● @Clustered @ApplicationScoped

Apache DeltaSpike extension scopesApache DeltaSpike extension scopes

DeltaSpike (deltaspike.apache.org) consists of a number of
portable CDI extensions that provide useful features for Java

application developers

● @WindowScoped Active during the life cycle of a tab

● @GroupedConversationScoped Allows you to sequence and combine
conversations in one JSF view

https://deltaspike.apache.org/index.html

Injections and interceptors (Example)Injections and interceptors (Example)

 public class Email { … }

@ApplicationScoped
public class ApplicationBean {

@Inject
private Email email;

@PostConstruct
private void init() {
}

}

What is actually
happening here?

● An instance is injected and
instantiated by the container
when you use the @Inject
annotation

● @PostConstruct and
@PreDestroy are interception
annotations to do initializations
and de-initializations

Factory classes and CDIFactory classes and CDI

public class LoggerFactory {
@Produces
public Logger createLogger(InjectionPoint ip) {

return Logger.getLogger(
ip.getMember().getDeclaringClass().getName()

);
}

}

● When creating certain objects, we might need to initialize them in different
ways before any injection

● @Produces allows us to implement factory classes whose responsibility is
the creation of fully-initialized services

● Can be defined together with a CDI scope

Factory classes – an exampleFactory classes – an example

@Qualifier
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD, ElementType.FIELD})
public @interface Global { }

public class LoggerFactory {
@Produces
public Logger createLogger(InjectionPoint ip) {

return Logger.getLogger(
ip.getMember().getDeclaringClass().getName()

);
}

@Produces @Global
public Logger createGlobalLogger(InjectionPoint ip) {

return Logger.getLogger(Logger.GLOBAL_LOGGER_NAME);
}

}

What is happening here?

Factory classes and CDI continuedFactory classes and CDI continued

● @Produces can be used with CDI qualifiers to modify the behavior

● Qualifiers can even have parameters/arguments

● What if we want to inject a @Global Logger? How would we do that?

@Inject @Global
private Logger logger;

OmniFaces & Apache DeltaSpikeOmniFaces & Apache DeltaSpike

● DeltaSpike consists of a number of portable CDI
extensions that provide useful features for Java
application developers

● OmniFaces aim is to make JSF life easier by
providing a set of artifacts meant to improve the
functionality of the JSF framework

● OmniFaces was created in response to seeing the
same questions and the same example and utility
code posted over and over again

OmniFaces

Enterprise Java BeansEnterprise Java Beans

A server-side software component that encapsulates business
logic of an application

● Allows for the creation of micro-services and modules with a very specific
target functionality

● Supports and grants transaction control

● Integrates with JPA (Java Persistence API)

● Concurrency control (@Lock(LockType))

● Asynchronous method invocations (@Asynchronous)

● Job scheduling and timers (@Schedule and @Timeout)

Enterprise Java Beans continuedEnterprise Java Beans continued

Support for @Stateless and @Stateful EJB beans

● The server can maintain a variable amount of stateless session bean
instances in a pool. Each time a client requests such a stateless bean a
random instance is chosen to serve that request

● A stateful session bean is closely connected to the client. Each instance is
created and bound to a single client and serves only requests from that
particular client. Similar to a @SessionScoped CDI bean

● Service layers that are a collection of enterprise beans can be packaged in an
EJB package an distributed as a collection to a web application (war) or an
enterprise archive (ear)

Enterprise Java Beans usageEnterprise Java Beans usage

@Stateless
public class UserService {

public String getPrimaryEmail(User user) {
return user.getEmails().first();

}
}

@EJB
private UserService userService;

● Usage of Enterprise Java Beans is similar to CDI beans. However, instead of
using @Inject, we inject them with @EJB

An example layout of a EE applicationAn example layout of a EE application

Using an EJB module, a simplest EE application could look

something like this

view
backing beans

controller
controller beans

model
model beans

database
database

(EJB module)

What about the design of the database module ?What about the design of the database module ?

The database service is extremely simple

● Data access objects have all the connections to the underlying database and
typically connect to the Java Persistence API

● Entities just describe the tables and their relationships

dao
data access

objects

entity
table definitions

The file structure of an EE applicationThe file structure of an EE application

When developing a EE application, you typically follow a strict
file structure enforced upon you by Maven and the

requirements from the EE standard

● webapp/ All the main files on the client side of the application

● webapp/WEB-INF/ Application server configuration files and hidden
HTML files/resources loaded by Facelets

● resources/META-INF/ Configuration files related to persistence and EJB

● setup/ Actual setup files for the application server

	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 5
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 18
	Sida 19
	Sida 20
	Sida 21
	Sida 22
	Sida 23
	Sida 24
	Sida 25
	Sida 26
	Sida 27
	Sida 28
	Sida 29
	Sida 30
	Sida 31

