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WEAK EMERGENCE*

Mark A. Bedau
Reed College

An innocent form of emergence—what | call “weak emergence”—is now a
commonplace in a thriving interdisciplinary nexus of scientific activity—
sometimes called the “sciences of complexity”—that include connectionist mod-
elling, non-linear dynamics (popularly known as “chaos” theory), and artificial
life.* After defining it, illustrating it in two contexts, and reviewing the available
evidence, | conclude that the scientific and philosophical prospects for weak
emergence are bright.

Emergence is a tantalizing topic because examples of apparent emergent
phenomena abound. Some involve inanimate matter; e.g., a tornado is a self-
organizing entity caught up in a global pattern of behavior that seems to be au-
tonomous with respect to the massive aggregation of air and water molecules
which constitute it. Another source of examples is the mind; our mental life con-
sist of an autonomous, coherent flow of mental states (beliefs, desires, etc.) that
presumably somehow ultimately arise out of the swarm of biochemical activity
among our brain’s neurons. Life is a third rich source of apparent emergence. For
example, the hierarchy of life embraces ecosystems composed of organisms, which
are composed of organs, which are composed of cells, which are composed of
molecules, but each level in this hierarchy exhibits behavior that seems autono-
mous with respect to the behavior found at the level below.

These examples highlight two admittedly vague but nevertheless useful hall-
marks of emergent phenomena:

(1) Emergent phenomena are somelummastituted byandgenerated from
underlying processes.

(2) Emergent phenomena are somehmwtonomougrom underlying pro-
cesses.

If we place these hallmarks against a backdrop of abundant apparently emergent
phenomena, it is clear why emergence is a perennial philosophical puzzle. At
worst, the two hallmarks seem to make emergent phenomena flat-out inconsis-



376 / Mark A. Bedau

tent. At best, they still raise the specter of illegitimately getting something from
nothing.

So, aside from precisely defining what emergence is, any philosophical de-
fense of emergence should aim to explain—ideally, explain away—its apparently
illegitimate metaphysics. Another important goal should be to show that emer-
gence is consistent with reasonable forms of materialism. But perhaps the most
important goal should be to show that emergent properties are useful in empirical
science, especially in accounts of those phenomena like life and mind that have
always seemed to involve emergence. Adefense of emergence will be secure only
if emergence is more than merely a philosophical curiosity; it must be shown to
be a central and constructive player in our understanding of the natural world.

I will argue thatweak emergendglefined below) meets these three goals: it
is metaphysically innocent, consistent with materialism, and scientifically use-
ful, especially in the sciences of complexity that deal with life and mind. But first
I will briefly illustrate the scientific irrelevance characteristic of stronger, more
traditional conceptions of emergence.

Problems with Strong Emergence.

To glimpse the problems with stronger forms of emergence, consider the
conception of emergence defended by Timothy O’Conner (1994). O’Conner’s
clearly articulated and carefully defended account falls squarely within the broad
view of emergence that has dominated philosophy this century. His defifiion
as follows: PropertyP is an emergent property of a (mereologically-complex)
objectOiff P supervenes on properties of the part©oP is not had by any of
the object’s partsP is distinct from any structural property &, andP has a
direct (“downward”) determinative influence on the pattern of behavior involv-
ing O's parts.

The pivotal feature of this definition, to my mind, is the strong form of down-
ward causation involved. O’Conner (pp. 97f) explains that he wants

to capture a very strong sense in which an emergent’s causal influence is irreducible
to that of the micro-properties on which it supervenes; it bears its influence in a direct
‘downward’fashion, in contrast to the operation of a simple structural macro-property,
whose causal influence occurs via the activity of the micro-properties which consti-
tute it.

| call O’Conner’s notion “strong” emergence to contrast it with the weaker
form of emergence, defended below, that involves downward causation only in
the weak form created by the activity of the micro-properties that constitute struc-
tural macro-properties.

Itis worth noting that strong emergence captures the two hallmarks of emer-
gence. Since emergent phenomena supervene on underlying processes, in this
sense the underlying processes constitute and generate the emergent phenomena.
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And emergent phenomena are autonomous from the underlying processes since
they exertan irreducible form of downward causal influence. Nevertheless, strong
emergence has a number of failings, all of which can be traced to strong down-
ward causation.

Although strong emergence is logically possible, it is uncomfortably like
magic. How does an irreducible but supervenient downward causal power arise,
since by definition it cannot be due to the aggregation of the micro-level poten-
tialities? Such causal powers would be quite unlike anything within our scientific
ken. This not only indicates how they will discomfort reasonable forms of ma-
terialism. Their mysteriousness will only heighten the traditional worry that emer-
gence entails illegitimately getting something from nothing.

But the most disappointing aspect of strong emergence is its apparent scien-
tific irrelevance. O’Conner finds evidence that strong emergence is useful in the
empirical sciences in “the recent proposals of macro-determinitive influence on
lower-level sub-structure by Polanyi and Sperry with respect to embryonic cells
and consciousness, respectively” (p. 99). But these references to Polanyi and
Sperry provide little evidence of the empirical viability of strong emergence un-
less they refer to a flourishing scientific research program. Our doubts about this
should be raised when we note that in the recent philosophical literature on emer-
gence (including O’Conner) all citations are to gemePolanyi and Sperry pa-
pers, which generally date back twenty five years. This is not the trail left by a
thriving research program. Strong emergence is perbampatiblewith current
scientific knowledge. But if Sperry and Polanyi are the best defense of strong
emergence’s empirical usefulness, then its scientific credentials are very weak.
We should avoid proliferating mysteries beyond necessity. To judge from the
available evidence, strong emergence is one mystery which we don’t need.

Weak emergence contrasts with strong emergence in this respect; science
apparentlydoesneed weak emergence. Fortunately, there are no mysteries like
irreducible downward causation in weak emergence, to which we will now turn.

Definition of Weak Emergence.

Weak emergence applies in contexts in which there is a system, &ll it
composed out of “micro-level” parts; the number and identity of these parts might
change over timeS has various “macro-level” states (macrostates) and various
“micro-level” states (microstatesy's microstates are the intrinsic states of its
parts, and its macrostates are structural properties constituted wholly out of its
microstates. Interesting macrostates typically average over microstates and so
compresses microstate information. Further, there is a microdynamic, Ball it
which governs the time evolution &s microstates. Usually the microstate of a
given part of the system at a given time is a result of the microstates of “nearby”
parts of the system at preceding times; in this sebsis, “local”. Given these
assumptions, | define weak emergence as follows:
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MacrostateP of S with microdynamicD is weakly emergeniff P can be
derived fromD andS'’s external conditions but only by simulatién.

Conditions affecting the system’s microstates are “external” if they are “out-
side” the system. ID is deterministic and the system is closed, then there is just
one external condition: the system’s initial condition. Every subsequent mi-
crostate of the system is determined by elements inside the system (the micrody-
namicD and the system’s microstates). If the system is open, then another kind of
“external” condition is the contingencies of the flux of parts and states thrSugh
If the microdynamic is nondeterministic, then each accidental effect is an “ex-
ternal” condition. With external conditions understood in this fashion, it is co-
herent to speak of macrostates being “derivable” from external conditions evenin
nondeterministic systems.

Although perhaps unfamiliar, the idea of a macrostate being derived “by
simulation” is straightforward and natural. Given a system’s initial condition and
the sequence of all other external conditions, the system’s microdynamic com-
pletely determines each successive microstate of the system. To simulate the
system one iterates its microdynamic, given a contingent stream of external con-
ditions as input. Since the macrostate P is a structural property constituted out of
the system’s microstates, the external conditions and the microdynamic com-
pletely determine whethét materializes at any stage in the simulation. By sim-
ulating the system in this way one can derive from the microdynamic plus the
external conditions whether P obtains at any given time after the initial condition.
What distinguishes a weakly emergent macrostate is that this sort of simulation is
required to derive the macrostate’s behavior from the system’s microdynamic.
Crutchfield et al. (1986, p. 49) put the essential point especially clearly: the al-
gorithmic effort for determining the systems behavior is roughly proportional to
how far into the future the system’s behavior is derived. It is obvious that the
algorithmic effort required for a simulation is proportional to how far into the
future the simulation goes.

The need for simulations in the study of low-dimensional chaos has been
emphasized before (see, e.g., Crutchfield et al. 1986, Stone 1989, Kellert 1993).
Weak emergence has a special source in this kind of chaos: exponential diver-
gence of trajectories, also known as sensitive dependence on initial conditions or
“the butterfly effect”. This particular mechanism does not underlie all forms of
weak emergence, though. On the contrary, weak emergence seems to rampant in
all complex systems, regardless of whether they have the underlying mechanisms
that produce chaos. In fact, some include weak emergence as part of the defini-
tion of what it is to be a complex adaptive system in general (Holland 1992).
Indeed, itis the ubiquity of weak emergence in complex systems that makes weak
emergence especially interesting.

Derivations that depend on simulations have certain characteristic limita-
tions. First, they are massively contingent, awash with accidental information
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about the system’s components and external conditions. The derivations can be
too detailed and unstructured for anyone to be able to “survey” or understand how
they work. The derivations also can obscure simpler macro-level explanations of
the same macrostates that apply across systems with different external conditions
and different microdynamics. But none of this detracts from the fact that all of the
system’s macrostates can be derived from its microdynamic and external condi-
tions with a simulation.

The modal terms in this definition are metaphysical, not epistemological.
ForP to be weakly emergent, what matters is tthegre isa derivation ofP from
D andS's external conditions ananysuch derivation is a simulation. It does not
matter whether anyone has discovered such a derivation or even suspects that it
exists. If P is a weakly emergent, it is constituted by, and generated from, the
system’s underlying microdynamic, whether or not we know anything about this.
Our need to use a simulation is due neither to the current contingent state of our
knowledge nor to some specifically human limitation or frailty. Although a La-
placian supercalculator would have a decisive advantage over us in simulation
speed, she would still need to simulate. Underivability without simulation is a
purely formal notion concerning the existence and nonexistence of certain kinds
of derivations of macrostates from a system’s underlying dynamic.

Weak Emergence in the Game of Life.

A good way to grasp the concept of weak emergence is through examples.
One of the simplest source of examples is the Game of Life devised more than a
generation ago by the Cambridge mathematician John Conway and popularized
by Martin Gardne?. This “game” is “played” on a two-dimensional rectangular
grid of cells, such as a checker board. Time is discrete. A cell's state at a given
time is determined by the states of its eight neighboring cells at the preceding
moment, according to the birth-death rule: A dead cell becomes alive iff 3 neigh-
bors were just alive, and a living cell dies iff fewer than 2 or more than 3 neigh-
bors were just alive. (Living cells with fewer than two living neighbors die of
“loneliness”, those with more than three living neighbors die of “overcrowding”,
and a dead cell becomes populated by a living cell if it has the three living neigh-
bors needed to “breed” a new living cell.) Although Conway’s Game of Life does
not represent the state of the art of scientific attempts to understand complex
systems, it is a well-known and exquisitely simple illustration of many of the
principles of complexity science, including weak emergence, and it illustrates a
classof systems—so called “cellular automata”—that are one central paradigm
for how to understand complexity in general (see, e.g., Wolfram 1994).

One can easily calculate the time evolution of certain simple Life configu-
rations. Some remain unchanging forever (so-called “still lifes”), others oscillate
indefinitely (so-called “blinkers”), still others continue to change and grow in-
definitely. Figure 1 shows seven time steps in the history of six small initial
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Figure 1. Seven time steps in the evolution of some simple configurations in the Game of Life.
Configuration (a) is a “fuse” burning at both ends; after two time steps it is entirely consumed and no
life remains. Configuration (b), a still life called the “block”, never changes. Configuration (c), a
“traffic light”, is a blinker with period two. Configuration (d) evolves after two time steps into the
“beehive,” another still life. Configuration (e) evolves after five time steps into a period two blinker
consisting of four traffic lights. Configuration (f) is a glider, a period four pattern that moves diag-
onally one cell per period.
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configurations of living cells; some are still lifes, others are blinkers. Examining
the behavior of these initial configurations allows one to derive their exact be-
havior indefinitely far into the future. More complex patterns can also be pro-
duced by the simple birth-death rule governing individual cells. One simple and
striking example—dubbed the “glider”, shown as (f) in Figure 1—is a pattern of
five living cells that cycles through four phases, in the processes moving one cell
diagonally across the Life field every four time steps. Some other notable patterns
are “glider guns”—configuration that periodically emit a new glider—and
“eaters”—configurations that destroy any gliders that collide with them. Clusters
of glider guns and eaters can function in concert just like AND, OR, NOT, and
other logic gates, and these gates can be connected into complicated switching
circuits. In fact, Conway proved (Berlekamp et al. 1982) that these gates can even
be cunningly arranged so that they constitute a universal Turing machine, and
hence are able to compute literally every possible algorithm, or, as Poundstone
vividly puts it, to “model every precisely definable aspect of the real world”
(Poundstone 1985, p. 25).

There is no question that every event and pattern of activity found in Life, no
matter how extended in space and time and no matter how complicated, is gen-
erated from the system’s microdynamic—the simple birth—death rule. Every
event and process that happens at any level in a Life world can be deterministi-
cally derived from the world’s initial configuration of states and the birth-death
rule. It follows that a structural macrostate in Life will be weakly emergent if
deriving its behavior requires simulation. Life contains a vast number of mac-
rostates that fill this bill. Some are not especially interesting; others are fascinat-
ing. Here are two examples.

R pentomino growthThe R pentomino is a wildly unstable five-cell edge-
connected pattern. Figure 2 shows the first seven time steps in the evolution of the
R pentomino; Figure 3 shows the pattern at time step 100 (above) and time step
150 (below). Listen to part of Poundstone’s description (1985, p. 33) of what the
R pentomino produces: “One configuration leads to another and another and
another, each different from all of its predecessors. On a high-speed computer
display, the R pentomino roils furiously. It expands, scattering debris over the
Life plane and ejecting gliders.”

Indefinite growth (i.e., increase in number of living cells) is a structural
macrostate constituted by the cells in LffBoes the R pentomino (on an infinite
Life grid) grow indefinitely? Some Life configurations do grow forever, such as
glider guns, which continually spawn five-cell gliders that glide off into the in-
definite distance. So, if the R pentomino continually ejects gliders that remain
undisturbed as they travel into the infinite distance, for example, then it would
grow forever. But does it? There is no simple way to answer this question. As far
as anyone knows, all we can do is let Life “play” itself out when given the R
pentomino as initial condition, i.e., observe the R pentomino’s behavior. As it
happens (Poundstone 1985, p. 35), after 1103 time steps it settles down to a stable
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Figure 2. The first seven time steps in the evolution of the R pentomino (the figure at time 0), showing
slow and irregular growth.

state that just fits into a 51-by-109 cell region. Thus, the finite bound of the R
pentomino is a weak emergent macrostate of the Game of Life.

The R pentomino is one of the simplest Life configurations that is underiv-
able. What makes Life’s underivability so striking is that its microdynamic—the
underlying birth-death rule—is so simple.

Glider SpawningLet G be the structural macrostate of quickly spawning a
glider. (To make this property precise, we might defihas, say, the property of
exhibiting a glider that survives for at least a three periods, i.e., twelve time steps,
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Figure 3. Above: The R pentomino after 100 timesteps. The configuration contains five blocks, a
traffic light, a glider, and some unstable clusters of cells. Below: The R pentomino after 150 time-
steps. The configuration now includes three blocks, a traffic light, two gliders, and some unstable
clusters of cells. The pattern continues to grow steadily but irregularly.

within one hundred time steps of evolution from the initial condition.) It is easy
to derive that certain Life configurations never spawn a glider and so lack prop-
erty G. As illustrations, a little a priori reflection allows one to derive tiaats
absent from each of the five the configurations in Figure 1 (a) - (e), from any
configuration consisting of a sparse distribution of those five configurations, from
a configuration consisting of all dead cells or all living cells, and from a config-
uration split straight down the middle into living and dead cells. Similarly, no
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simulation is necessary to see that some Life configurationsGafae example,
consider the configuration consisting of one glider, Figure 1 (f). In general, though,
it is impossible to tell whether a given initial Life configuration will quickly
spawn a glider, short of observing how the initial condition evolves. TBYsr
non-G) is weakly emergent in most of the Life configurations that possess (or
lack) it, as contemplating a couple of examples makes evident. Figures 4 and 5
show two random initial configurations (above) and their subsequent evolution
(below). By timestep 115 the configuration in Figure 4 has spawned no gliders,
while by timestep 26 a glider has already emerged from the pattern in Figure 5.

Figure 4. Above: A random distribution of living cells. Below: The distribution after 115 timesteps.
No glider has appeared yet.
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Figure 5. Above: Arandom distribution of living cells. Below: The distribution after 26 timesteps. A
glider is emerging from an unstable cluster of cells at the lower left.

Being weakly emergent does not prevent us from readily discovering various
laws involvingG. If one observes the frequency of occurrence of gliders in lots
of random initial configurations, one discovers that usually gliders are quickly
spawnedG is true of most random Life fields. Extensive enough observation
allows one to measure the prevalencé&afuite accurately, and this information
can then be summarized in a little probabilistic law about all random Life fields
X, of this form: prob¥is G) = k.

Although perhaps not especially fascinating or profound, this little law of the
Game of Life nicely illustrates how empirical observation of computer simula-
tions can unearth evidence for laws involving the Game of Life’'s weakly emer-
gent states.

Empirical observation is generally tlalyway to discover these laws. With
few exceptions, itis impossible without simulation to derive the behavior of any
macrostate in a Life configuration even given complete knowledge of the con-
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figuration. In fact, since a universal Turing machine can be embedded in Life, the
undecidability of the halting problem proves that in principle there can be no
algorithm for determining whether the behavior exhibited in an arbitrary Life
world will ever stabilize. Yet all Life phenomena can be derived from the initial
conditions and the birth-death rule. Thus, Conway’s Game of Life abounds with
weakly emergent properties.

The Game of Life is an exceptionally simple system, simpler than many
systems studied in the sciences of complexity. For example, recent artificial life
work brims with weak emergence. | will present one illustration involving the
emergence of evolvability. Although not as simple as the Game of Life, this next
illustration will be more typical of current work in the sciences of complexity.

Weak Emergence in a Model of Evolving Life.

Evolving life forms display various macro-level patterns on an evolutionary
time scale. For example, advantageous traits that arise through mutations tend,
ceteris paribusto persist and spread through the population. Furthermore, or-
ganisms’ traits tend, within limits anceteris paribusto adapt to changing en-
vironmental contingencies. These sorts of supple dynamics of adaptation result
not from any explicit macro-level control (e.g., God does not adjust allele fre-
guencies so that creatures are well adapted to their environment); rather, they
emerge statistically from the micro-level contingencies of natural selection.

Norman Packard devised a simple model of evolving sensorimotor agents
which demonstrates how these sorts of supple, macro-level evolutionary dy-
namic can emerge implicitly from an explicit microdynamical model (Packard
1989, Bedau and Packard, 1992; Bedau, Ronneburg, and Zwick, 1992; Bedau and
Bahm, 1993 and 1994; Bedau 1994; Bedau and Seymour, 1994; Bedau 1995).
What motivates this model is the view that evolving life is typified by a popula-
tion of agents whose continued existence depends on their sensorimotor func-
tionality, i.e., their success at using local sensory information to direct their actions
in such a way that they can find and process the resources they need to survive
and flourish. Thus, information processing and resource processing are the two
internal processes that dominate the agents’ lives, and their primary goal—
whether they know this or not—is to enhance their sensorimotor functionality by
coordinating these internal processes. Since the requirements of sensorimotor
functionality may well alter as the context of evolution changes, continued via-
bility and vitality requires that sensorimotor functionality can adapt in an open-
ended, autonomous fashion. Packard’s model attempts to capture an especially
simple form of this open-ended, autonomous evolutionary adaptation.

The model consists of a finite two-dimensional world with a resource field
and a population of agents. An agent’s survival and reproduction is determined by
the extent to which it finds enough resources to stay alive and reproduce, and an
agent’s ability to find resources depends on its sensorimotor functionality—that
is, the way in which the agent’s perception of its contingent local environment
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affects its behavior in that environment. An agent’s sensorimotor functionality is
encoded in a set of genes, and these genes can mutate when an agent reproduces.
Thus, on an evolutionary time scale, the process of natural selection implicitly
adapts the population’s sensorimotor strategies to the environment. Furthermore,
the agents’ actions change the environment because agents consume resources
and collide with each other. This entails that the mixture of sensorimotor strat-
egies in the population at a given moment is a significant component of the en-
vironment that affects the subsequent evolution of those strategies. Thus, the
“fitness function” in Packard’s model—what it takes to survive and reproduce—is
constantly buffeted by the contingencies of natural selection and unpredictably
changes (Packard 1989).

All macro-level evolutionary dynamics produced by this model ultimately
are the result of an explicit micro-level microdynamic acting on external condi-
tions. The model explicitly controls only local micro-level states: resources are
locally replenished, an agent’s genetically encoded sensorimotor strategy deter-
mines its local behavior, an agent’s behavior in its local environment determines
its internal resource level, an agent’s internal resource level determines whether
it survives and reproduces, and genes randomly mutate during reproduction. Each
agent is autonomous in the sense that its behavior is determined solely by the
environmentally-sensitive dictates of its own sensorimotor strategy. On an evo-
lutionary time scale these sensorimotor strategies are continually refashioned by
the historical contingencies of natural selection. The aggregate long-term behav-
ior of this microdynamic generates macro-level evolutionary dynamics only as
the indirect product of an unpredictably shifting agglomeration of directly con-
trolled micro-level events (individual actions, births, deaths, mutations). Many
of these evolutionary dynamics are weakly emergent; although constituted and
generated solely by the micr-level dynamic, they can be derived only through
simulations. | will illustrate these emergent dynamics with some recent work
concerning the evolution of evolvability (Bedau and Seymour 1994).

The ability to adapt successfully depends on the availability of viable evo-
lutionary alternatives. An appropriate quantity of alternatives can make evolution
easy; too many or too few can make evolution difficult or even impossible. For
example, in Packard’s model, the population can evolve better sensorimotor strat-
egies only if it can “test” sufficiently many sufficiently novel strategies; in short,
the system needs a capacity for evolutionary “innovation.” At the same time, the
population’s sensorimotor strategies can adapt to a given environment only if
strategies that prove beneficial can persist in the gene pool; in short, the system
needs a capacity for evolutionary “memory.”

Perhaps the simplest mechanism that simultaneously affects both memory
and innovation is the mutation rate. The lower the mutation rate, the greater the
number of genetic strategies “remembered” from parents. At the same time, the
higher the mutation rate, the greater the number of “innovative” genetic strategies
introduced with children. Successful adaptability requires that these competing
demands for memory and innovation be suitably balanced. Too much mutation
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(not enough memory) will continually flood the population with new random
strategies; too little mutation (not enough innovation) will tend to freeze the pop-
ulation at arbitrary strategies. Successful evolutionary adaptation requires a mu-
tation rate suitably intermediate between these extremes. Furthermore, a suitably
balanced mutation rate might not remain fixed, for the balance point could shift
as the context of evolution changes.

One would think, then, that any evolutionary process that could continually
support evolving life must have the capacity to adapt automatically to this shift-
ing balance of memory and innovation. So, in the context of Packard’s model, it
is natural to ask whether the mutation rate that govéinss-order evolution
could adapt appropriately by means afeond-ordeprocess of evolution. If the
mutation rate can adapt in this way, then this model would yield a simple form of
the evolution of evolvability and, thus, might illuminate one of life’s fundamental
prerequisites.

Previous work (Bedau and Bahm 1993, 1994) wWiKed mutation rates in
Packard’s model revealed two robust effects. The first effect was that the muta-
tion rate governs a phase transition between genetically “ordered” and geneti-
cally “disordered” systems. When the mutation rate is too far below the phase
transition, the whole gene pool tends to remain “frozen” at a given strategy; when
the mutation rate is significantly above the phase transition, the gene pool tends
to be a continually changing plethora of randomly related strategies. The phase
transition itself occurs over a critical band in the spectrum of mutation rates,
roughly in the range 10° = u = 10 2. The second effect was that evolution
produces maximal population fithess when mutation rates are around values just
below this transition. Apparently, evolutionary adaptation happens best when the
gene pool tends to be “ordered” but just on the verge of becoming “disordered.”

Inthe light of our earlier suppositions about balancing the demands for mem-
ory and innovation, the two fixed-mutation-rate effects suggeshbé#h@nce hy-
pothesisthat the mutation rates around the critical transition between genetic
“order” and “disorder” optimally balance the competing evolutionary demands for
memory and innovation. We can shed some light on the balance hypothesis by mod-
ifying Packard’s model so that each agent has an additional gene encoding its per-
sonal mutation rate. In this case, two kinds of mutation play a role when an agent
reproduces: (i) the child inherits its parent’s sensorimotor genes, which mutate at
arate controlled by the parent’s personal (genetically encoded) mutation rate; and
(ii) the child inherits its parent’s mutation rate gene, which mutates at a rate con-
trolled by a population-wide meta-mutation rate. Thus, first-order (sensorimotor)
and second-order (mutation rate) evolution happen simultaneously. So, if the bal-
ance hypothesis is right and mutation rates at the critical transition produce opti-
mal conditions for sensorimotor evolution because they optimally balance memory
and innovation, then we would expect second-order evolution to drive mutation
rates into the critical transition. It turns out that this is exactly what happens.

Figure 6 shows four examples of how the distribution of mutation rates in the
population change over time under different conditions. As a control, distribu-
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(a)

(d)

Figure 6. Evolutionary dynamics in mutation rate distributions from four simulations of the model of
sensorimotor agents. Time is on the X-axis (100,000 timesteps) and mutation rate is on the Y-axis. The
gray-scale at a given point (n) in this distribution shows the frequency of the mutation raie the
population at timé. See text.

tions (a) and (b) show what happens when the mutation rate genes are allowed to
drift randomly: the bulk of the distribution wanders aimlessly. By contrast, dis-
tributions (c) and (d) illustrate what happens when natural selection affects the
mutation rate genes: the mutation rates drop dramatically. The meta-mutation
rate is lower in (a) than in (b) and so, as would be expected, distribution (a) is
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narrower and changes more slowly. Similarly, the meta-mutation rate is lower in
(c) than in (d), which explains why distribution (c) is narrower and drops more
slowly.

If we examine lots of simulations and collect suitable macrostate informa-
tion, we notice the pattern predicted by the balance hypothesis: Second-order
evolution tends to drive mutation rates down to the transition from genetic dis-
order to genetic order, increasing population fitness in the process. This patternis
illustrated in Figure 7, which shows time series data from a typical simulation.
The macrostates depicted in Figure 7 are (from top to bottom): (i) the mutation
rate distribution, as in Figure 6; (ii) a blow up distinguishing very small mutation
rates in the distribution (bins decrease in size by a factor of ten, e.g., the top bin
shows mutation rates betweenand 101, the next bin down shows mutation
rates between 10 and 102, etc.); (iii) the mean mutation rate (note the log
scale); (iv) the uningested resources in the environment; (v) three aspects of the
genetic diversity in the population’s sensorimotor strategies; and (vi) the popu-
lation level.

The composite picture provided by Figure 7 can be crudely divided into three
epochs: an initial period of (relatively) high mutation rates, during the time pe-
riod O - 20,000; a transitional period of falling mutation rates, during the time
period 20,000 - 40,000; and afinal period of relatively low mutation rates, through-
out the rest of the simulation. The top three time series are different perspectives
on the falling mutation rates, showing that the mutation rates adapt downwards
until they cluster around the critical transition region, $G= x = 10 2. Since
resources flow into the model at a constant rate and since survival and reproduc-
tion consume resources, the uningested resource inversely reflects the population
fitness. We see that the population becomes more fit (i.e., more efficiently gathers
resources) at the same time as the mutation rates drop. Although this is not the
occasion to review the different ways to measure the diversity of the sensorimotor
strategies in the population, we can easily recognize that there is a significant
qualitative difference between the diversity dynamics in the initial and final ep-
ochs. In fact, these qualitative differences are characteristic of precisely the dif-
ference between a “disordered” gene pool of randomly related strategies and a
gene pool that is at or slightly below the transition between genetic order and
disorder (see Bedau and Bahm 1993, 1994, Bedau 1995).

If the balance hypothesis is the correct explanation of this second-order evo-
lution of mutation rates into the critical transition, then we should be able to
change the mean mutation rate by dramatically changing where memory and
innovation are balanced. And, in fact, the mutation desrise and fall along
with the demands for evolutionary innovation. For example, when we randomize
the values of all the sensorimotor genes in the entire population so that every
agent immediately “forgets” all the genetically stored information learned by its
genetic lineage over its entire evolutionary history, the population must restart its
evolutionary learning job from scratch. It has no immediate need for memory (the
gene pool contains no information of proven value); instead, the need for inno-
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Figure 7. Time series data from a simulation of the model of sensorimotor agents, showing how the
population’s resource gathering efficiency increases when the mutation rates evolve downward far
enough to change the qualitative character of the population’s genetic diversity. From top to bottom,
the data are: (i) the mutation rate distribution; (ii) a blow up of very small mutation rates; (iii) the
mean mutation rate (note the log scale); (iv) the uningested resource in the environment; (v) three
aspects of the diversity of the sensorimotor strategies in the population; (vi) the population level. See
text.
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Figure 8. Time series data from a simulation of the model of sensorimotor agents. From top to bottom,
the data are: (i) a blow up of very small mutation rates in the mutation rate distribution; (ii) mean
mutation rate (note the log scale); (iii) the level of uningested resources in the world; (iv) population
level. At timestep 333,333 all sensorimotor genes of all living organisms were randomly scrambled.
See text.

vation is paramount. Under these conditions, we regularly observe the striking
changes illustrated around timestep 333,333 in Figure 8. The initial segment (time-
steps 0 - 100,000) in Figure 8 shows a mutation distribution evolving into the
critical mutation region, just as in Figure 7 (but note that the time scale in Figure 8
is compressed by a factor of five). But at timestep 333,333 an “act of God” ran-
domly scrambles all sensorimotor genes of all living organisms. At just this point
we can note the following sequence of events: (a) the residual resource in the
environment sharply rises, showing that the population has become much less fit;
(b) immediately after the fithess drop the mean mutation rate dramatically rises as
the mutation rate distribution shifts upwards; (c) by the time that the mean mu-
tation rate has risen to its highest point the population’s fitness has substantially
improved; (d) the fitness levels and mutation rates eventually return to their pre-
vious equilibrium levels.

All of these simulations show the dynamics of the mutation rate distribution
adjusting up and down as the balance hypothesis would predict. Temporarily
perturbing the context for evolution can increase the need for rapid exploration of
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a wide variety of sensorimotor strategies and thus dramatically shift the balance
towards the need for innovation. Then, subsequent sensorimotor evolution can
reshape the context for evolution in such a way that the balance shifts back to-
wards the need for memory. This all suggests tteigris paribusmutation rates
adapt so as to balance appropriately the competing evolutionary demands for
memory and innovation, and thateteris paribusthis balance point is at the
genetic transition from order to disorder. An indefinite variety of environmental
contingencies can shift the point at which the evolutionary need for memory and
innovation are balanced, and the perturbation experiments show how mutation
rates can adapt up or down as appropriate.

This sort of supple adaptability in Packard’s model can be counted among
the hallmarks of life in general (Maynard Smith 1975, Cairns-Smith 1985, Bedau
1996). And, clearly, these evolutionary dynamics are weakly emergent. The mod-
el's macro-level dynamic is wholly constituted and generated by its micro-level
phenomena, but the micro-level phenomena involve such a kaleidoscopic array
of non-additive interactions that the macro-level dynamics cannot be derived
from micro-level information except by means of simulations, like those shown
above. In a similar fashion, many other characteristic features of living systems
can be captured as emergent phenomena in artificial life models; see, e.g., Farmer
etal (1986), Langton (1989), Langtat al. (1992), Varela and Bourgine (1992),
Brooks and Maes (1994), Gaussier and Nicoud (1994), Stonier and Yu (1994),
Banzhaf and Eeckman (1995).

Support for Weak Emergence.

Conway’s Game of Life and Packard’s model of evolving life serve to clarify
weak emergence and illustrate its role in the sciences of complexity. But one
might still ask whether weak emergence is philosophically interesting and, in-
deed, whether it deserves the name “emergence” at all. These questions deserve
answers, especially since weak emergence differs significantly from traditional
twentieth century accounts of emergence.

For example, since weakly emergent properties can be derived (via simula-
tion) from complete knowledge of micro-level information, from that informa-
tion they can bepredicted at least in principle. If we have been observing a
simulation of some syste®and at time we saw thaSwas in statéP, then we
know that there is an appropriate derivation tBeifll be in macrostat® att.” So,
if we are give a system’s microdynamic and all relevant external conditions, then
in principle we can derive the system’s behavior because we can simulate the
system and observe its behavior for as long as necessary. And if we can derive
how the system will behave, we can predict its future behavior with complete
certainty. Thus, on this key issue weak emergence parts company with at least the
letter of those traditional conceptions of emergence (e.g., Broad 1925, Pepper
1926, Nagel 1961) that focus on in principle unpredictability of macrostates even
given complete microstate information.
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At the same time, weak emergence does share much spthieof those tra-
ditional views that emphasize unpredictability. For one thing, in the case of open
systems, making the prediction would require prior knowledge of all details of the
flux of accidental changes introduced by contact with the external world; and in
the case of nondeterministic systems, it would require knowledge of all the non-
deterministic events affecting the system’s behavior. This sort of knowledge is be-
yond us, except “in principle;” so weak emergent macrostates of such systems are
predictablenly“in principle.” Furthermore, even for closed and deterministic sys-
tems, weak emergent macrostates can be “predictely’by observing step-by-
step how the system’s behavior unfolds. For example, one can “predict” whether
an R pentomino will grow forever only by observing in time what happens to the
configuration. Some might find this so unlike what should be expected of a pre-
diction that they would agree with Stone (1989) that it is no prediction at all.

One might worry that the concept of weak emergence is fairly useless since
we generally have nproofthat a given macrostate of a given system is underiv-
able without simulatiof.For example, | know no proof that the unlimited growth
of the R pentomino and glider-spawning probability can be derived only by sim-
ulation; for all | know thereis no such proof. On these grounds some might
conclude that weak emergence “suffers in the course of application in practice”,
to use Klee’s words (1984, p. 49). | would strenuously disagree, however, since
unproven weak emergence claims can, and often do, still possess substantial
pirical support. My earlier weak emergence claims about R pentomino growth
and random glider spawning, although unproved, still have more than enough
empirical support. Similar weak emergence claims have substantial empirical
support. A significant part of the activity in artificial life consists of examining
empirical evidence about interesting emergent phenomena in living systems;
tatis mutandisthe same holds for the rest of the sciences of complexity.

One might object that weak emergencéigweak to be called “emergent”,
either because it applies so widely or arbitrarily that it does not demark an inter-
esting class of phenomena, or because it applies to certain phenomenathat are not
emergent. For example, indefinitely many arbitrary, ad hoc Life macrostates are
(for all we know) underivability without simulation. Or, to switch to a real world
example, even though the potentiality of a certain knife to slice a loaf of bread is
“not the sort [of macrostate] emergence theorists typically have in mind”
(O’Conner 1994, p. 96), the knife’s potentiality might well be weakly emergent
with respect to its underlying molecular microdynamic. But this breadth of in-
stances, including those that are arbitrary or uninteresting to “emergence theo-
rists”, is not a problem or flaw in weak emergence. Weak emergence explicates an
everyday notion in complexity science. Itis not a special, intrinsically interesting
property; rather, it is widespread, the rule rather than the exception. So not all
emergent macrostates are interesting; far from it. A central challenge in complex-
ity science is to identify and study those exceptional, especially interesting weak
emergent macrostates that reflect fundamental aspects of complex systems and
are amenable to empirical investigation. Simulation gives us a new capacity to
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identify and study important macrostates that would otherwise beyond the reach
of more traditional mathematical or empirical methods.

The micro-level derivability of weak emergent phenomena might be thought
to deprive them of the right to be called “emergent”; they might not seem “emer-
gent” enough. The impetus behind this worry might come partly from the history
of emergence concepts being ineliminably and unacceptably mysterious—as if
no acceptable and non-mysterious concept could deserve to be called “emer-
gence.” By contrast, part of my defense of weak emergence is precisely that it
avoids the traditional puzzles about emergence.

In any event, there are good reasons for using the word “emergence” in this
context. For one thing, complexity scientists themselves routinely use this lan-
guage and weak emergence is an explication of their langlagether com-
pelling reason for allowing the “emergence” language is that weak emergence
has the two hallmarks of emergent properties. It is quite straightforward how
weak emergent phenomena are constituted by, and generated from, underlying
processes. The system’s macrostates are constituted by its microstates, and the
macrostates are entirely generated solely from the system’s microstates and mi-
crodynamic. Atthe same time, there is a clear sense in which the behavior of weak
emergent phenomena are autonomous with respect to the underlying processes.
The sciences of complexity are discovering simple, general macro-level patterns
and laws involving weak emergent phenomena. There is no evident hope of side-
stepping a simulation and deriving these patterns and laws of weak emergent
phenomena from the underlying microdynamic (and external conditions) alone.
In fact, as | emphasized earlier, the micro-level “explanations” of weak emer-
gence are typically so swamped with accidental micro-details that they obscure
the macro-level patterns. In general, we can formulate and investigate the basic
principles of weak emergent phenomena only by empirically observing them at
the macro-level. In this sense, then, weakly emergent phenomena have an auton-
omous life at the macro-level. Now, there is nothing inconsistent or metaphysi-
cally illegitimate about underlying processes constituting and generating
phenomena that can be derived only by simulation. In this way, weak emergence
explains away the appearance of metaphysical illegitimacy.

It is also clear why weak emergence is consistent with reasonable forms of
materialism. By definition, a weak emergent property can be derived from its
microdynamic and external conditions. Any emergent phenomenon that a mate-
rialist would want to embrace would have materialistic micro-level components
with materialist micro-properties governed by a materialistic microdynamic. Thus,
the weak emergent phenomena of interest to the materialists would have a com-
pletely materialistic explanation.

Conclusion.

Weak emergence is no universal metaphysical solvent. For example, if (hy-
pothetically, and perhapgser impossiblewe were to acquire good evidence that
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human consciousness is weakly emergent, this would not immediately dissolve
all of the philosophical puzzles about consciousness. Stillywweld learn the
answers to some questions: First, a precise notion of emergeimomlved in
consciousness; second, this notion of emergence is metaphysically benign. Thus,
free from special distractions from emergence, we could focus on the remaining
puzzles just about consciousness itself.

As Conway’s Game of Life and Packard’s model of evolving sensorimotor
agents illustrate, weak emergence is ubiquitous in the burgeoning, interdisci-
plinary nexus of scientific research about complex systems. The central place of
weak emergence in this thriving scientific activity is what provides the most
substantial evidence that weak emergence is philosophically and scientifically
important. It is striking that weak emergence is so prominent in scientific ac-
counts of exactly those especially puzzling phenomena in the natural world—
such as those involving life and mind—that perennially generate sympathy for
emergence. Can this be an accident?

Notes

* Many thanks for comments on earlier drafts and discussion on these topics to Hugo
Bedau, John Collier, Seth Crook, Dick Grandy, Mark Hinchliff, Terry Horgan, Stephen
Leeds, Norman Packard, Teresa Robertson, Bill Uzgalis, and to audiences at the Third
Workshop on Artificial Life (in Santa Fe during summer 1993), at Oregon State Uni-
versity (spring 1994), and at the Northwest Philosophy Conference (fall 1994). This
research was supported with the help of an external fellowship from the Oregon Center
for the Humanities and a research grant from the Oregon Council for the Humanities.

1. Accessible introductions to the study of chaos, with references to more technical treat-
ments, include Crutchfield et al. (1986), Gleick (1987), and Kellert (1993). The bible
of connectionism is Rumelhart and McClelland (1986); discussions for philosophers,
and references to the technical literature, can be found in Bechtel and Abrahamsen
(1990), Horgan and Tienson (1991), and Ramsey, Stich, and Rumelhart (1991). The
locus of much recent activity in the “sciences of complexity” is the Santa Fe Institute,
a private, independent multidisciplinary research center. Semi-popular introductions to
some of the research centered at the Santa Fe Institute include Levy (1992), Lewin
(1992), and Waldrop (1992). A representative range of technical work can be found in
the series Santa Fe Institute Studies in the Sciences of Complexity, published by Addison-
Wesley; e.g., Langton (1989) and Langton et al. (1992).

2. O’Conner adapts Kim’s notion of “strong supervenience” (Kim 1990) and Armstrong’s
definition of structural property (Armstrong 1978).

3. The macrostate might fall into a variety of categories. It might be a propertySpf
possibly one involving various other macrostateSoit might be some phenomenon
concerningS, possibly involving a variety o8's other macrostates; it might be a pat-
tern of S's behavior, possibly including other macrostatesSoThere are also more
complicated cases, in which the macrostate is “supple” or “fluid”, and the structural
definition of the macrostate might be infinitely long. This latter issue is developed in
Bedau (forthcoming).
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4. This definition is explicitly restricted to a given macrostate of a given system with a
given microdynamic. This is theore or focal notion in a family of related notions of
weak emergence, all others of which would be defined by reference to the core notion
and would crucially invoke underivability without simulation. For example, one can
speak of aweak emergdatvwhen it is a law that a given macrostate of a given system
with a given microdynamic is weakly emergent from a range of initial conditions; this
law is underivable without simulations across many initial conditions. Similarly, one
can speak of a weak emergg@atterninvolving a range of suitably related macrostates,
microdynamics, or systems, but | will not attempt here to define weak emergence in this
whole family of contexts. The guiding strategy behind these definitional extensions is
reasonably clear. The range of new contexts for weak emergence is limited only by our
imagination.

Itis worth at least mentioning that the notion of underivability without simulation
provides another dimension along which notions of weak emergence can vary. There is
arange of more or less stringent conditions. For example, consider a macrostate thatin
principle is derivable without simulation, yet the derivation uses vastly more resources
(e.g., “steps”) than any human could grasp; or consider a macrostate that is derivable
(only) by simulation but the simulation is infinitely long. | will not elaborate on this
dimension here. The paradigm of weak emergence involves underivability except by
finite simulation.

5. See Berlekamp et al. (1982) and Gardner (1983). An excellent introduction to the in-
tellectual delights of Conway’s Game of Life is Poundstone (1985).

6. Specifically, indefinite growth is the macrostate defined as the (infinite) disjunction of
all those (infinite) sequenceof life states such that, for each positive integgethere
is a timet whens contains more than living cells.

7. This can be spelled out as follows: L@&tbe the set of microstates of all the partsSof
attimei. Apply D (possibly with nondeterministic steps) to t8s initial conditionC,

(and possibly include a property synchronized sequence of external conditions) through
successor conditionS; until D yields C,. From C; and the structural definition d®,
determine whetheP obtains at.

8. Itis a mathematical fact whether a given macrostate of a given system is underivable
from the system’s microdynamics and external conditions. So, unless it's undecidable,
it's provable. Nevertheless, being provable does not entail that it is easy, or even hu-
manly possible, to find and evaluate the proof.

9. Even if we adopt the quite simplistic expedient of restricting our attention to the
titles of research reports, we can easily generate a rich range of examples of this
language. E.g., rummaging for a few minutes in a handful of books within easy
reach produced the following list, all of which speak of emergence in the weak sense
defined here in their titles: “Emergent Colonization in an Artificial Ecology” (Assad
and Packard 1992), “Concept Formation as Emergent Phenomena” (Patel and Schnepf
1992), “A Behavioral Simulation Model for the Study of Emergent Social Struc-
tures” (Drogoul et al. 1992), “Dynamics of Artificial Markets: Speculative Markets
and Emerging ‘Common Sense’ Knowledge” (Nottola, Leroy, and Davalo 1992),
Emergent Computation: Self-Organizing, Collective, and Cooperative Phenomena in
Natural and Artificial Computing Network&-orrest 1989), “Emergent Frame Rec-
ognition and its Use in Artificial Creatures” (Steels 1991),“ The Coreworld: Emer-
gence and Evolution of Cooperative Structures in a Computational Chemistry”
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(Rasmussen, Knudsen, and Feldberg 1991), “Spontaneous Emergence of a Metabo-
lism” (Bagley and Farmer 1992).
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