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Evolved ecosystems
A simulation of an emerging complex adaptive system
JOAKIM JOHANSSON
Department of Energy and Environment
Chalmers University of Technology

Abstract
The study of artificial life has been ongoing since even before the term was coined by
Christopher Langton in 1986 as an attempt to broaden the definition of life beyond
its organic form. This master’s thesis introduces Grafiliv, a model of artificial life
based on a particle simulation run on a general-purpose graphics card. This is done
for the purpose of studying the construction of open-ended evolution, its principles
and possibilities, in complex adaptive systems. The organisms in the model consists
of cell particles determined through pattern-producing networks that evolve over
time in a manner inspired by the CPPN-NEAT method proposed by Stanley in
2007.
Results from a 14-day simulation are presented and include a list of several distinctly
adapted lineages originating from a single initial organism. Categorised trophic
levels include plants, decomposers and predators, with examples from each level
described and compared.
Selecting an appropriate modelling level was arguably one of the more difficult chal-
lenges in the project, thus different possible approaches are discussed, together with
the problem of creating a suitable environment for the organisms.
Finally, it is concluded that, while life definitely is a hard-to-define subject, this
work could be considered a step on the way towards an understanding of its nature,
its characteristics and its limitations.

Keywords: Artificial life, CUDA, Complex Adaptive Systems, CPPN, NEAT, Ecosys-
tem evolution, Niche construction, Ecosystem engineering
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1
Introduction

This chapter introduces the project, its goals and limitations, as well as the history
and background of Artificial Life research.

1.1 Background

What is life? In the book Life: the science of biology, Sadava et al. (2014) list a set
of characteristics shared by living organisms: They are composed of a certain set
of chemical components, they consist of cells (mostly), they use energy to process
molecules from their environment, they contain genetic information that changes as
the populations evolve over time, et cetera. The authors admit that the list is not
exhaustive and that it does not apply to all life at all times. A seed of a desert plant
does not consume any energy and can go for years without water, still, it could be
considered alive. Likewise, a virus has no cells, but many biologists would consider
it a form of life.
Although it might feel as if the definition of life is easy and intuitive, we know that
flowers may cease to be alive if we forget to water them, it is not so easy to settle
on a definition. An approach toward a more clear definition of life would be to try
creating life artificially. The term Artificial Life was first coined by Langton (1986)
in his paper Studying artificial life with cellular automata, where he suggested a
broadening of the definition of life beyond its organic form.
Also, Farmer & Belin (1990) argued for a wider definition of life, in a paper where
they describe possibilities and dangers of artificial life and how it might broaden our
understanding of the nature of living things.
Many different versions of artificial life have been investigated, either realised in
software, hardware or as synthetic biology. These three kinds are usually called
"soft", "hard" and "wet" artificial life respectively (Bedau 2003).
Many artificial life simulations have had their creatures optimise toward a specific
goal, such as distance travelled or likewise, but a few have instead tried the more
implicit fitness function of survival alone. As early as in 1970, John Horton Conway
devised the now-famous cellular automaton called Game of Life (Gardner 1970).
Although computers were used for his more time-consuming experiments, he car-
ried out many of the smaller ones manually by hand. The cellular automaton was
remarkably lifelike, especially considering the simplicity of its rules. However, it
took until 2010 before a self-replicating creature could be created in the simulator,
achieved by an enthusiast named Andrew Wade (Aron 2013), so, while somewhat
lifelike, it is not the most optimal model for studying evolution.
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1. Introduction

In 1992, Thomas S. Ray developed the computer program Tierra (Ray 1992). Tierra
used the computer memory and CPU time as analogues for energy and material
resources in biology. Organisms, having a genome of machine code, reproduce by
executing their code to copy themselves. Mutations occur at a given rate in the form
of randomly flipped bits in the memory. Tierra showed many interesting results in
the form of co-evolution, parasitism and symbiosis.
In 1994, Larry Yaeger introduced Polyworld (Yaeger 1994). Polyworld was a three-
dimensional world populated by polygon creatures. By seeing a one-dimensional
band of pixels, the creatures evolved the ability to, to some extent, hunt for food
- in the form of either pellets or other creatures - and to avoid predators. Species
(Schumacher 2011), created by James Schumacher is a similar but more modern
example in the form of a simulation game, with plants also there being a non-
evolving part of the ecosystem.
While both computing power and the knowledge of biology has increased over time,
there are still a lot of questions remaining to be answered. Ray (1992) described
his ambition to simulate an origin of diversity similar to that of the Cambrian
explosion and his work with Tierra was a first step on the way. A central part of
the study of the Cambrian explosion and origin of the Metazoan ecosystems is the
process of niche-construction, where the evolution of one species create new niches
for additional species (Erwin & Valentine 2013). This master thesis introduces the
simulation program named Grafiliv and will be on the level of basic research in the
principles of ecosystem evolution, niche construction and ecosystem engineering.

1.2 Ecological, societal and ethical aspects

Simulating an artificial ecosystem certainly has ecological aspects; insights gained by
constructing and studying artificial ecosystems can be adapted in order to better the
understanding of natural ecosystems and their dynamics. Although many differences
will exist, at the very least a model will not - by definition - be the same as the
system it tries to model, the effects of an event (e.g. a removal of a top predator
species) in a simulation can on a principle basis hint to the possible effects of such
an event in a natural ecosystem.
Considering societal aspects, open-ended evolution has bearing not only on biological
evolution but also on innovation processes in general. By investigating how adaptive
novelty can continually drive the emergence of more adaptive novelty elsewhere,
transforming the environments to which it adapts, a better understanding can be
reached in the dynamics of other complex systems as well; one such example being
societal systems.
Finally, on a more philosophical note, how do you define life? Since artificial life can
be considered a subset of life life, what conditions does an artificial creature need to
fulfil in order to be considered living? If you decide to consider a virtual creature to
be living, will there at any point arise an ethical obligation to keep it alive? At the
current time being, however, experimenting with an artificial ecosystem can arguably
be considered more ethical that experimenting with its biological counterpart.
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1.3 Aim
Understanding the nature of open-ended evolution is an old and open problem and
if this project can shed some light on the issue, it could be of large scientific value.
This project aims to investigate how life can be simulated using GPU (Graphics
Processing Unit) computing.

1.4 Objectives
The goal is to construct open-ended evolution in a simulated ecosystem, using be-
havioural models and genetically driven morphology. Emphasis will not be placed
on detailed similarity with biological evolution and innovation but on in-principle
similarity with evolution and innovation in complex adaptive systems.

1.5 Demarcations
Although the computer used for running the simulations can be considered powerful,
it still has limitations regarding the number of particles it is able to simulate in a
certain amount of time. Simulating more particles, more generations and more in-
teractions will result in longer simulation times. Finally, since particles are allocated
on GPU memory, there will be a limitation on how easily the number of particles
simulated could be changed dynamically.

1.6 Method
The simulation model was constructed in iterations, with further complexity added
along the course of the project. In order to simulate large populations over long
periods of time, the project was implemented using the Nvidia CUDA programming
on a high-end GPU (nVidia Quadro M6000).
This work was facilitated using the library Fluidix (OneZero Software 2016). Fluidix
makes it possible to write custom interaction function to be executed on either each
particle or each pair of particles within a certain distance from one another. Such
interactions are executed in an optimised manner by utilising the power of GPU
computing.

3
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2
Model

The simulation is at the essence a particle-based model. Spherical particles are used
to represent entities analogous to biological cells, both dead and living, along with
energy particles. This chapter will describe the simulation model, including the
physics implemented to handle the particle interactions as well as the evolutionary
and organism-related structures created around them.

2.1 Particle-based physics
Each particle has properties such as position, velocity, force, radius, density and
energy level. Particles also have a given particle type and, if their particle type
is Cell, also a given cell type. These properties are accessible and modifiable in
concurrent interaction functions and will be described in detail in this section.

2.1.1 Interaction functions
Functions that need to be applied to a majority of particles, such as handling ter-
rain collisions, boundary conditions, buoyancy, energy decay and position updates,
are implemented as interaction functions and are executed in parallel on the GPU
through the Fluidix library.
This is also true for particle-pair interactions: For all non-buffer particles within
a predefined distance, a repulsive force is applied unless they are cell neighbours1.
Depending on the particle types, and in the case of cells also their cell types, energy
will be exchanged between the particles upon contact. For example, a digestive cell
colliding with a detritus particle will gain some of its energy.
Finally, the model also make use of particle-to-surface interactions to handle colli-
sions between particles and the terrain described in subsection 2.2.2.

2.1.2 Particle types
There are four particle types implemented in the model: Cells, Detritus, Buffer and
Energy particles. Particles change type depending on what happens to them in the
simulation and transform according to Figure 2.1. The number of particles might
be decreased if there exists an excess number of buffer particles at the end of the
particle array, but the normal action for an unneeded particle is to turn into a buffer
particle.

1Cell neighbours are defined in Figure 2.5

5
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Cell

Detritus

Buffer

Energy

Figure 2.1: Transformations between the different particle types. Since changing
the total number of particles is computationally expensive, especially decreasing the
particle count, a buffer is kept for creating new cell and energy particles. A cell
usually turns into a detritus particle as it loses its energy, however it might in some
cases turn directly into a buffer particle. Energy particles are created corresponding
to the number of photosynthetic cells and will turn into buffer particles as their
respective cells die.

Cell particle

The cell particle is analogous to the biological cell, although a significant sim-
plification. Apart from the ordinary particle properties, a cell also has knowl-
edge of which organism it belongs to (by an organism ID), which cells are
its neighbours, and what type of cell it is. Neighbouring cells will, while in
contact, exchange energy with each other, where the amount being exchanged
depends on the cell types (see Table 2.1).

Detritus particle

When a cell has less energy than the predefined amount minCellEnergy, the
cell dies and turns into a detritus particle. All detritus particles are dead cells,
but they might have an energy amount larger than minCellEnergy if they died
of other causes than energy deprivation. Over time, the detritus will decay,
losing energy, until none is left and the particle turns into a buffer particle and
disappears.

Buffer particle

A limitation of the Fluidix library is that changing the number of particles is a
costly operation. Because of this, the model keeps a particle buffer in order to
ensure that there always will be particles available. The ones not currently in
use are set as buffer particles and positioned outside the simulation boundaries.

6
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Energy particle

Photosynthetic cells receive energy while they have a clear path to the ceiling
above them. To check if they do, energy particles are sent straight up from
the photosynthetic cells to check for collisions.

2.1.3 Cell types

For cell particles, another property called cell type is also used. Cells each belong to
one of eight discrete cell types, introduced to give evolution different adaptive options
for harvesting and handling energy. Some cell types gain energy by interacting with
other particles, while others store, transmit or simply spend energy.

Photosynthetic cell

Inspired by biological photosynthesis, the photosynthetic cell receives energy
while it has a clear view to the top of the simulated volume (accomplished by
the use of energy particles).

Digestive cell

The digestive cell instead gains energy by consuming detritus (dead cells),
receiving their energy upon collision.

Sting cell

While the digestive cell consumes detritus, the sting cell "steals" energy from
living cells of other organisms upon contact. Both digestive and sting cells are
inspired by biological phagocytes.

Vascular cell

Whereas photosynthetic, digestive and sting cells all collect energy for the
organisms, the fat, sensor and egg cells only consume (and/or store) energy.
The vascular cell is implemented in order to transport energy between non-
adjacent cells.

Fat cell

The fat cell works as energy storage (battery). It can store more energy than
the other cell types (except eggs) and has a much higher energy inflow than
outflow.

Sensor cell

In order for the nervous system (described in 2.3.4) to have any input from
the surrounding world, the model includes a sensor cell. The sensor cell does
not collect energy in any way, nor does it store it. However, it does observe
the particles in its vicinity and sums their energy readings into a signal value.
That signal is then used as one of the possible inputs to the nervous system.

7
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Buoyancy cell

Buoyancy cells have a significantly lower density than the other cell types,
allowing them to float upwards.

Egg cell

Last, but not least, is the egg cell. An egg cell, like the fat cell, stores energy.
Differing from the fat cell, however, it does not have any energy outflow at all.
Furthermore, the egg cell can store orders of magnitude more energy than the
other cell types and it will continue to collect energy from its neighbouring
cells until it has enough energy to form a new organism, in which case it
immediately does.

2.2 The arena
This section will describe the environment created for the organisms to develop and
adapt in. In order to create a non-homogeneous environment for the organisms,
terrain and water were added to the model. Figure 2.2 and Figure 2.3 both shows
the arena used in the final simulation described in Chapter 3, illustrating water and
terrain as well as particles and boundaries respectively.

2.2.1 Water and air
A basic implementation of water was introduced, where the density of the sur-
rounding medium would be higher in the lower half of the simulation volume. The
organisms, in normal configurations, have densities slightly higher than the water so
that they can stay afloat with some movement effort. However, they need to spend
significantly more energy to fly in the air. The water level is exemplified together
with the terrain in figure 2.2, where the tiny dot of the initial organism is about to
fall through the air and down to the bottom below the water surface.

2.2.2 Terrain
The terrain collision is implemented as a particle-to-surface interaction function
in the Fluidix library. Each cell or detritus particle inside the 3d terrain volume,
defined by linked vertex particles, will be moved back to the closest position on
the terrain surface and will experience a ground repulsive force proportional to the
distance it had penetrated. As can be seen in Figure 2.3, the particles remain on
the outside of the volume defined by the larger blue terrain vertices.

2.2.3 Boundaries
The boundaries of the simulation volume, affecting cells and detritus particles, are
implemented as linear soft-wall repulsion. Particles straying outside the simulation
area will experience a repulsive force proportional to the trespassed distance. The
boundaries can be distinguished as the thin blue edges in Figure 2.3, with the

8
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Figure 2.2: Depiction of the arena terrain and water. These elements were intro-
duced to enable organisms to settle in different environments and possibly diversify.
The image is rendered at the initiation of the simulation described in Chapter 3,
with the single initial organism barely visible in the centre of the arena.

particles remaining strictly on the inside (the light-green box instead encloses the
terrain particle set).

2.3 Definition of an organism

Similar to biological life, the information defining the organisms are encoded with
a genotype-to-phenotype encoding. The choice of encoding is not trivial, as it will
influence how mutations traverse the space of possible phenotypes. The approach
chosen for this model is inspired by a method called CPPN-NEAT proposed by
Stanley (2007). Organism phenotypes are defined using pattern-producing networks
and are evolved over time through network topology mutations. This section will
detail how the method was implemented for this project.
An organism is modelled to consist of three parts:

1. The genome, a genotype-to-phenotype mapping pattern-producing network
detailed in subsection 2.3.3.

2. The nervous system, an artificial neural network to allow the organism to
interact with its surroundings, detailed in subsection 2.3.4.

3. A list of the particles that constitute its cells. Each cell has a link to its von
Neuman neighbours, as defined in figure 2.5, so that each pair of neighbour
particles can exert a spring force holding the organism together.

Larger genome network cost more energy to reproduce, while larger nervous system
networks cost more energy each timestep.

9
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Figure 2.3: Visualisation of all elements of the particle model. The purple object is
the terrain, with the larger blue particles making up its vertices. The multicoloured
particles above the terrain are energy, detritus and cell particles, with their colour
representing their energy level. The opaque particles are the cells, while the trans-
parent particles above are mostly energy particles, but also detritus. A blue energy
particle belongs to an occluded photosynthetic cell while a red one indicates that
it has not yet collided with anything before reaching the top. Detritus particles
of varying remaining energy can be seen among the organisms beneath the water
surface. The thin blue bounding box determines the boundary that the particles
cannot pass. The large number of blue transparent particles beneath the terrain are
buffer particles.
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2.3.1 Compositional Pattern Producing Networks

The encoding method CPPN, Compositional Pattern Producing Networks, is an
abstraction of natural development proposed by Stanley (2007). It deviates from
previous developmental encodings in that it requires neither local interactions nor
temporal unfolding, but instead achieves similar properties by using a structure very
similar to artificial neural networks.

Given coordinates as input, the network produces output used to set the properties
of that specific coordinate. Each link in the network has a certain weight w and each
node has a certain activation function f . The activation functions implemented are
the following:

Sine f(x) = sin(x)

Abs f(x) = 1 − abs(x), clamped within [−1, 1]

Id f(x) = x, clamped within [−1, 1]

Gaus f(x) = e
x2
2

Mod f(x) = x mod 1

The Sine and Mod functions contributes with repetition while the Abs and Gaus
provide symmetry.

Values are propagated through the network by calculating the next value vi,t+1 of
each node as its activation function of the sum of the previous values times weights
for all its connected nodes; that is vi,t+1 = ∑

j∈n f(vj,t ∗ wij), where n is the set
of nodes connected to node i. A number of outputs are generated for any given
location, resulting in a pattern. An example of this can be seen in Figure 2.4.
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Figure 2.4: Example of a compositional pattern-producing network. Input is z
and y coordinates. The actual simulation model also uses the z-coordinate as well
as r, the radial distance to origo, but they are for the sake clarity not included here.
For the same reason, all links have the weight of one. The pattern seen on the right
is the result of evaluating the network seen on the left. The currently evaluated cell
(−2, 0) is marked with a blue border and is coloured green since the output node
corresponding to the green colour has the highest output value. Numbers above the
nodes are their input values while the numbers above are their output.

2.3.2 Neuroevolution of Augmenting Topologies
NeuroEvolution of Augmenting Topologies (NEAT) is a method presented by Stan-
ley & Miikkulainen (2002) where not only the edge weights of a network but also
the network topology is evolved over time. This is done in order to avoid fixing the
network structure beforehand.
In this model, mutations suggested by Stanley & Miikkulainen (2002) and Stanley
(2007) are used, but crossover is disregarded since the organisms only reproduce
asexually. While crossover could possibly improve the evolution of the organisms, its
implementation was left outside the scope of this project. The following mutations
were implemented:
Mutate weights With a certain mutation probability, each node is perturbed by

a certain amount
Add node A hidden node is added at the site of a current connection, replacing the

connection and creating new connections to the previously connected nodes
Add connection A new connection is added between two random nodes. However,

there can be no connections going into input or bias nodes nor any out of
output nodes.

12
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Remove connection A random connection is removed. If this causes a hidden
node to be without any connections, that node will be removed as well.

2.3.3 Genome
The genome consists of a pattern-producing network, as described in 2.3.1, as well
as a discrete vector of organism diameters Dorg =

(
dx dy dz

)
. An organism

consists of at least one cell, placed at the origin, while Dorg determines the number
of cells outside of it in each direction. Thus, the size of the resulting rectangular
cuboid of cells is Sorg =

(
2dx + 1 2dy + 1 2dz + 1

)
.

Given the cell index as input to the CPPN, the resulting output determines the
cell type together with other optional cell properties, for example radius or density.
Thus the network genotype defines the organism phenotype.
In the genome network implemented for the final long-term simulation (described in
the results chapter 3), there are four input nodes plus one bias node with a constant
value of one. Together they specify the initial distance and position of the current
cell relative to the organism origin. Furthermore, there are nine output nodes: one
for each cell type, plus one extra output node determining the cell radius. The node
indices are assigned as follows:

Input nodes 0 1 2 3
x y z r

Output nodes 4 5 6 7 8 9 10 11 12 13 14
Photo Digest Sting Vascular Fat Sense Egg Buoyancy Cell radius

Bias nodes 15
Gives constant value of 1

Hidden nodes 16 and onward

In order to determine the cell type, the output nodes 4 through 11 are inspected. The
cell type corresponding to the output node with the largest value will be selected.
Compare this with the example of the coloured lattice in Figure 2.4.
If two values are exactly equal, preference will be given to the lower node id. How-
ever, if no node produces a value over 0 the cell will not be created at all. Of the
nodes 12, 13 and 14 only the node 12 fills a purpose. The remaining two were
actually left as a mistake in the initial organism genome from earlier versions of
the model, where the density and other properties of cells were also considered for
genome output.
When an organism reproduces, its genome (and nervous system) will mutate as it
is copied to the offspring. The CPPN will mutate according to the NEAT method
described in 2.3.2, while Dorg might increase or decrease in either of its vector
components.

2.3.4 Nervous system
The nervous system is an ANN (artificial neural network) very similar in structure
to the CPPN in the genome and also evolved using the NEAT method (described
in 2.3.2). The input to the nervous system consists of signals from the sensor cells
as well as from a bias node sending out a constant value of 1. The output consists
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Figure 2.5: Identifiers for the six three-dimensional von Neumann neighbours to a
cell. Subscripts denote distance in x, y, and z directions between the cell and each
neighbour at birth.

of a movement vector for the organism in its local coordinate system, converted to
the global coordinate system as described in section 2.4.

2.4 Organism coordinate system
The most simple approach for generating movement from the output of the nervous
system would be to directly output a force vector f =

(
fx fy fz

)
in the global

coordinate system, where the three components of f are the three output values
from the network and f is added to the current total force of the organism.
However, this approach creates an inherent knowledge of world direction, easily
causing the organisms to move, for example: directly up, north or west. As such,
the organism in this model instead moves according to their local coordinate system,
an approach which will be explained in this section.
The organisms do not have any stored orientation since they consist of relatively
independent cells. However, cells have links to their 3-dimensional von Neumann
neighbours; front, back, left, right, up and down. These are denoted nx,y,z as in
Figure 2.5, where x, y and z are initial distances between the neighbouring cells.
For each neighbour nx,y,z, we then calculate a vector vx,y,z pointing in their direction
as follows:

vx,y,z =

pos(self) − pos(nx,y,z), if nx,y,zexists
(0, 0, 0), otherwise

The function pos(n) gives the current position of the neighbour n. Cells at the edges
of an organism does not have any neighbours in their "outward" directions, so a zero
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vector is returned from vx,y,z if the neighbour does not exist.
A property of the neighbourhood structure is that the top and bottom neighbour
vectors, for example, should point in almost opposite directions. Thus, the six
vectors v0,0,1, v0,0,−1, ..., v−1,0,0 can be reduced to three by taking the sum of the
linearly dependent pairs:

vx = v1,0,0 − v−1,0,0

vy = v0,1,0 − v0,−1,0

vz = v0,0,1 − v0,0,−1

These three vectors would work as base vectors defining the local coordinate system
of the cell. However, to further account for missing neighbours, each is also combined
with the cross product of the other two. Normalised and written as the columns of
the transformation matrix M we get:

M =
(
norm(vx + (vy × vz)), norm(vy + (vz × vx)), norm(vz + (vx × vy))

)
Where norm(v) = v

|v| .
Thus from the movement force flocal given by the nervous system in the local co-
ordinate system, we get the force to be applied to the cell in global coordinates as
fglobal = cmove(M · flocal), where cmove is a movement parameter.

2.5 The energy cycle

The final part of the model to be explained here is the energy cycle; how the energy
is transferred through the system.
Each photosynthetic cell is paired with an energy particle. The energy particle
is initialised just above the cell and travels straight upwards with a speed of one
particle diameter per timestep. Each timestep the cell gains an amount of energy
proportional to its cross-section area, provided that the energy particle reaches the
top of the simulated volume without any collisions. If there is a collision, the cell
will stop gaining energy until the view is once again clear. When the particle reaches
the top of the volume it is returned to a position just above the cell. Figure 2.6
illustrates this with an example of photosynthetic cells and their respective energy
particles.
Digestive cells and sting cells are the other two cell types that harvest energy to an
organism, as described in subsection 2.1.3. From them and the photosynthetic cells,
the energy is dispersed within the organism. Different cell types disperse energy in
different amounts. For example, egg cells only absorb energy without ever giving
anything back, while the energy-harvesting cells part with most of their energy. See
Table 2.1 for an example of how the energy dispersion was configured in the final
run described in the results.
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Figure 2.6: Energy particles rising from an early population of photosynthetic
organisms. Each energy particle belongs to a photosynthetic cell. If the energy
particle reaches the top of the arena without colliding with any cells, the photo-
synthetic cell it belongs to will continue gaining energy every frame. If the parti-
cle does collide, the cell will not get any energy until its particle once again can
complete the distance without collisions. In this illustration, energy particles that
have collided are coloured blue, while the rest are red. The cells are opaque and
coloured according to the amount of energy they contain, with warm colours in-
dicating higher energy density. A video animating the process can be found at
https://youtu.be/jsNgbxvU5Js
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Cell type Energy in Energy out Maximum energy
Photosynthetic 0.01 0.5 10

Digestive 0.01 0.5 10
Sting 0.01 0.5 10

Vascular 1 0.2 3
Fat 1 0.01 50

Sensor 1 0 5
Buoyancy 1 0 5

Egg 1 0 1000

Table 2.1: Example of a cell types energy configuration. Energy in is the portion
of the energy offered by a neighbour that is absorbed, Energy out is the portion of
the cell’s surplus energy that is offered to a neighbour.

17



2. Model

18



3
Results

These results originate from a simulation run for 2 weeks, investigating the features
emerging after long-term evolution in a large system. Many previous simulations had
been performed with smaller world sizes, but while they achieved a larger number of
total timesteps they did not contain the diversity and the trophic levels that resulted
from this larger simulation. While it still remains a subject of further investigation,
it at least seems as if a certain amount of organisms are needed on a trophic level
before organisms on the next can be sustained.

Parameter Value
World size 350 × 150 × 350

Timestep length 0.01s
Timesteps simulated 1 160 000

Simulated time 3h, 46m, 20s
Simulation runtime 14 days, 2h, 46m

Table 3.1: Statistics about the performed large timescale simulation, detailing its
extent and magnitude

3.1 Initial organism
The initial organism was designed such that it would have a very simple genome
and a non-existent nervous system, but so that it would still be able to survive long
enough to reproduce. As can be seen in Figure 3.1, the inputs to the genome network
come from the input node 1, n1, and the bias node 15, n15. The interpretation of
all node indices can be found in section 2.3.3.
While the bias node gives a constant signal of 1, the input n1 follows the value of
the y-coordinate. The output node n4 corresponds to the photosynthetic cell type
while n10 corresponds to egg cells and n13 does nothing. The connection to n13, as
well as the node itself, is a residue left by mistake from earlier versions of a model
where more properties were determined by the genome.
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Input Hidden Output Bias

0.5 0.5
-2.
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13

Figure 3.1: Initial organism genome and visualisation. No hidden nodes exist in
the network. Since the nervous system had no initial connections, the organism was
inanimate and hence no nervous system network is displayed here.

3.2 Lineages and trophic levels
Since there is no sexual reproduction within a model the notion of species cannot
really be applied, however, it is possible to follow and compare differently adapted
ancestral lines. The clearly dominant type of organism belongs to the plant-like line
exemplified in Figure 3.6, but the results also include organisms of higher trophic
levels resembling the adaptions of decomposers and plant-eating animals (herein
called predators). The order-of-magnitude differences between the amount of photo,
digest and sting cells seen in figure 3.3 indicate how many plant organisms are needed
to support the decomposers and predators.

3.2.1 Plants
Plants are organisms that gain energy through their photosynthetic cells. Looking
at figure 3.3 it is clear that a large majority of the cells (over 90 percent) are
photosynthetic, something that is also supported by the green cover of vegetation
seen in figure 3.2. Since the photosynthetic surface-dwellers are a large majority
of the total population, the conclusions drawn here will mostly be taken from an
analysis of the whole population average. This subsection will cover a number of
the adaptions to be found in the photosynthetic organisms.

3.2.1.1 Swimming upwards

One of the first mutations that show signs of adaption is the upwards movement.
There were mutations involving buoyancy cells that allowed very early organisms
to float to the surface, but since those cells either replaced the photosynthetic cells
or the egg cells those organisms were short-lived. After some sideways-moving or-
ganisms had started to spread across the water and, later on, some ventured a little
higher, the organisms finally started inhabiting the surfaces at around t=130 000.
At t=200 000, a population dense with organisms started out in the small lagoon at

20



3. Results

Figure 3.2: Simulation arena at the end of the simulation, at t=1 160 000. While
the organisms have spread all over the arena, the large majority is found on the
surface level. A video of the full simulation can be viewed at https://youtu.be/
yMY1dIjbFY8.

200000 400000 600000 800000 1×106
Timestep

1
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Figure 3.3: The number of cells belonging to each respective cell type over time.
Note that the y-axis is logarithmic and that the photosynthetic cells thus represents
a large majority. At the final timestep t=1 160 000, the photosynthetic cells consti-
tute 90.83% of the cells, while the digest and sting cells are at 6.45% and 0.23%
respectively. Vascular, fat, sense and buoyancy cells, having no part in energy col-
lection or reproduction are very uncommon.
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Figure 3.4: Cell altitude density over time. The more cells that occupy a given
altitude (y-coordinate) at a given timestep, the more light the point appears in the
chart. The plot range is clipped at a cell density of 5000, but the lightest area
reaches close to 40 000 at around t=600 000. Due to gravity, the initial organism,
having spawned in the exact centre of the arena, quickly falls to the bottom, below
the water surface. This is where the population starts out, at an altitude of about
30, which can be seen in the bottom-left corner of the chart. Quite quickly, however,
the organisms evolve movement vectors upwards and the large majority end up at
the altitude of 75 by the water surface, after about t=200 000. The fact that the
organisms are spread out and focused on different altitudes shows signs of niche
adaption.

the corner of the map and soon the entire surface of the water was covered, as can
be seen in Figure 3.4.

3.2.1.2 Larger organisms

Another trend for the organisms is that they increase in size. Looking at the charts
in Figure 3.5 it is clear that the population increased exponentially until about
t=300 000 after which the number of cells remained approximately constant while
the number of organisms steadily decreased. The bottom chart shows even clearer
how the size of the organisms then started to increase. The time t=300 000 is also
right after the water surface got crowded with photosynthetic organisms. A probable
explanation for the increase in size is therefore that it is an adaption resulting from
the competition for the water surface area; a larger more spread-out organism can
harvest more energy and reproduce faster. This is supported by the observation of
the surface organisms getting increasingly spread-out over the generations.

3.2.1.3 Pyramid-shaped organisms

Apart from increasing in size, the water-surface organisms also became more "pyramid-
shaped" over time, as seen in Figure 3.6. This enables the lower layers of the organism
to extract photosynthetic energy as well, instead of relying on the energy from the
top layer like their early ancestors.
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Figure 3.5: Simulation statistics over time. As can be seen in the top-left chart,
the number of particles stabilised after around t=300 000. However, the number of
organisms (top-right chart) henceforth decreased steadily. This can be explained
by the bottom chart, which clearly shows that the size of the organisms has, on
average, increased over time. The jumps in the number of buffer particles are only
the model ensuring that there is a sufficient amount of buffer particles available.
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Figure 3.6: Example of morphology changing over time. The phenotype for every
tenth ancestor of the organism with index 574174, which was one of the organisms
living on the water surface at t=1 000 000. It is located in the top-left corner, the
oldest ancestor is in the bottom-right, as indicated by the generation labels. A
trend of this ancestral line is that the organisms have increased in size, as well as
turning more "pyramid-shaped". The radii of the top cells are, in the later organisms,
significantly smaller than the bottom cells.
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It is interesting to note that this seems to be a direct artefact from how the model
was implemented, with the energy-particles checking for occluding particles above as
described in 2.5. In previous implementations, the model was instead bombarded by
photons from above that could bounce around until they run out of energy, but with
the current implementation, the number of cells seen from directly above is even more
important. A smaller cell radius decreases the energy gained per timestep, since it
depends on the cross-section area of the cell, but also increases the probability of
the energy particle reaching the top without any collisions.
Another possible reason for the plants to be pyramid-shaped might be that it helps
them stay on the surface better. Cells have a constant density, so a larger cell will
have a larger mass and thus the organisms will not risk tipping over. Having a
pointier tip could also help them penetrate to the surface better after being born,
as either they or their parent often are pushed below the surface at birth.

3.2.1.4 Higher ratio of fertile organisms

Observing the top-right chart of Figure 3.5 it looks as if the proportion of organisms
that are fertile (meaning that they have at least one egg cell) are increasing relative
to the total number of organisms over time. This is even more evident in Figure 3.7
where, after an initial drop from unity caused by the single initial organism and its
immediate offspring, the proportion steadily approaches a level of almost 0.95.
A certain proportion of the organisms could be expected to not be fertile since there
is always a certain non-zero probability for each offspring to be born without egg
cells. Since non-fertile organisms per definition cannot produce offspring it is clear
to see that their proportion should not increase. However, the fact that the fertile
proportion is steadily increasing, instead of remaining constant, seem to show an
emerging resilience in the genome against birthing non-fertile offspring.
A majority of all the organisms that ever existed in the simulation never did repro-
duce, as can be seen in Figure 3.8. Some of those were not fertile while most simply
died before they had gathered enough energy in their egg cells. Out of those that
did reproduce, most had between one and two children, but close to 15 percent of
the organisms had more than two children, with one having as many as 27.

3.2.1.5 Fewer eggs per organism

A clear adaption is the fact that the average number of egg cells per organism has
dropped. The initial organism had a total of nine egg cells, resulting merely from
the fact that it allowed the genome to stay simple while still allowing the organisms
to reproduce. That many egg cells were however redundant and the population
eventually evolved to settle on the lower value of two eggs per organism, as can be
clearly seen in Figure 3.9.
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Figure 3.7: The number of fertile organisms divided by the total number of organ-
isms over time.
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Figure 3.8: Distribution of the number of children per organism, given all organ-
isms throughout the whole simulation. A majority of the organisms never repro-
duced but multiple children are not uncommon among those that did, as can be
seen in the histogram on the bottom. Note that the y-axis is logarithmic and that
the number of children as such follows a power-law distribution.
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Figure 3.9: The average number of egg cells per organism over time. At about the
same time as the total number of cells in the simulation stabilised (t=400 000), each
organism settled on having about one egg cell each.

3.2.1.6 Three plant organisms

Table 3.2 shows a selection of three different plants and their properties. Noting the
position of plantA, its altitude (y-coordinate) of just above 100 places it a bit above
the water surface of 75. Studying the x and z coordinates it can be determined that
it is located upon the terrain, upon dry land. Comparing this with plantB, which
position places it directly at the water surface, it is clear that while both plants have
adapted in size and shape for efficient photosynthesis, their separate environments
have caused them to evolve in parallel.
As seen in Figure 3.15, the most recent common ancestor of plantA and plantB is at
generation 61, while plantB and plantC share a more recent ancestor at generation
96. The closer relationship between plantB and plantC can also be seen in their
more similar morphology. However, plantC has a much higher y-coordinate, placing
it floating in the air far above the surface and very close to the top of the arena
at 150. While this height altitude is beneficial in that it ensures a clear view for
photosynthesis, it also costs more energy to keep afloat in the low-density air.
The third column of the table, plantC, shows a plant organism that resides in the
air, far above the surface and close to the top of the arena.
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plantA plantB plantC
Organism ID 634078 574174 628131
Generation 148 121 136

Timestep of birth 1157422 999961 1140031
Timestep of death (still alive) 1000654 1160034

Visualisation
(at timestep) 1150000 1140000 1130000

Position

 x
y
z


 172.198

101.756
74.0961


 108.528

74.7777
341.747


 39.015

149.276
254.073


Table 3.2: Example of three different plant organisms, each using photosynthesis
but occupying different parts of the arena and having different adaptions.

3.2.2 Decomposers
With the surface plants covering the sunlight, gaining energy through photosynthetic
cells is practically impossible below the surface. Decomposers solve this issue by
instead gaining energy through their digestive cells; eating detritus particles as they
fall down from dying organisms above. Differing from the plants, the decomposers
have maintained the dimensions of the initial organism. Being significantly fewer,
there is not the same need to compete for space.
The decomposers are mostly made up of digestive cells and a single egg cell, although
some decomposing lineages contain other cell types as well. Some, like decompA in
Table 3.3, have a single (or a few) photosynthetic cells, perhaps useful when they
get a clear view of the sky, but maybe just a relic from previous generations. There
is also a lineage that has a single (or multiple) vascular cell adjacent to their egg
cell. An example of this is decompB in Table 3.3. This might be an adaption to
better transport the energy from digestive cells to the egg cell, like the vascular cell
was intended.

3.2.2.1 Three decomposer organisms

As can be seen in Table 3.3, three decomposer organisms have been selected as
examples of their lineages. As discussed above, they contain mostly digestive cells,
a single egg cell and, in the first two organisms, cells of other types. The positions
of the decomposer organisms are closer together than those of the plant organisms
(as can be seen in Figure 3.14), explained by the fact that decomposers occupy a
single niche at the bottom below the water surface.
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Figure 3.10: Rendered view of decomposers living off eating the dead cells falling
down from the surface-level plants. Note the occasional light-blue vascular cell in
some of the decomposers. A full video of the whole simulation as seen from beneath
the water surface can be found at https://youtu.be/evZK16QmrBk.

decompA decompB decompC
Organism ID 634597 634413 634596
Generation 220 234 206

Timestep of birth 1158806 1158364 1158806
Timestep of death (still alive) (still alive) (still alive)

Visualisation
(at timestep) 1160000 1160000 1160000

Position

 x
y
z


 102.983

45.5508
198.9


 107.391

52.922
143.383


 128.907

45.5792
184.384


Table 3.3: Example of three different decomposer organisms, each gaining energy
from eating detritus particles
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3. Results

Figure 3.11: Rendered frame of the predator lake at t=1 008 020. Because of the
topology of the terrain, the small lake at the corner of the arena was very beneficial
for predators. Without having to move, the predators could use their black sting
cells to take energy from the organisms sliding down the slope into the lake. A video
of the same scene can be found at https://youtu.be/onh0dPyuJiE.

3.2.3 Predators
The adapted line called predators is characterised by their use of sting cells to
steal energy from the living cells of other organisms. They are however similar to
decomposers in that they also have digestive cells, utilised when their prey dies or
when no living organisms can be found.
Some predators could be found among the decomposers at the bottom at around
t=500 000, but their ability to reproduce was not high enough to survive as a lineage.
A better source of prey was however found in the small lake upon the terrain. As
can be seen if figure 3.11, both plants and detritus slide down the slopes and into
the lake filled with the lurking predators. A view of the predators from below as
seen in figure 3.12 might give a better idea of their morphology.
Compared to plants and decomposers, which as a rule tend to have one egg cell per
organism, the predators have a lot more. This adaption can be explained by the
fact that predators gain their energy at non-regular intervals; sting cells only gain
energy while in contact with living cells from other organisms and there are not
always other organisms present. When they do gain energy, however, it could very
well be more than what fits in a single egg cell and so multiple egg cells ensure that
no energy goes to waste. This also explains the fact that Figure 3.9 approaches a
value slightly above, but not equal to, one.
Figure 3.13 shows an example of a predator lineage, where the evolution from plants
to predatory organisms can be seen.
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Figure 3.12: Rendered frame of the predator lake at t=1 008 020. This is the
same frame as in figure 3.11, but viewed from below, through the terrain. Here the
predator organisms at the lake surface can be more easily seen. A video of the same
scene can be found at https://youtu.be/Wm2TUDi2fPs.

3.2.3.1 Three predator organisms

Compared to the three example organisms from the plant and decomposer lineages,
the predator organisms are even more geographically constricted, as can be seen in
Figure 3.14. Looking at Table 3.4, the predator organisms are also quite similar
in their morphology; predA and predC are almost identical and while predB has
a larger ratio of sting cells, its original form of 3 × 3 × 3 cells has changed since
its conception. The similarity between the organisms is not strange given their
relatively recent common ancestor just a few generations earlier, as seen in Figure
3.15.
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Figure 3.13: Example of a predator lineage. The phenotype for every tenth ances-
tor of the organism with index 630807, which was one of the organisms living in the
predator bay at the end of the simulation, at t=1 160 000. Note that the organism
portraits are taken at certain exported frames and that, as such, some cannot be
found while others have lost cells since their birth. The predators originate, as all
organisms do, from the initial organism at generation 0.
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Plants

Decomposers

Predators

Figure 3.14: Positions of the nine example organisms described in subsections
3.2.1.6, 3.2.2.1 and 3.2.3.1

predA predB predC
Organism ID 630807 634099 634960
Generation 255 255 255

Timestep of birth 1148044 1157463 1159725
Timestep of death (still alive) (still alive) (still alive)

Visualisation
(at timestep) 1150000 1150000 1160000

Position

 x
y
z


 318.756

73.1252
46.4154


 330.843

76.0001
42.1454


 338.39

74.9417
40.7016


Table 3.4: Example of three different predator organisms, each gaining energy by
stealing it from cells of other living organisms

3.2.4 Inter-lineage relations
From each lineage type, plants, decomposers and predators, three example organisms
were chosen and investigated for their common ancestors. The resulting family tree
is illustrated in figure 3.15. It can be seen already from the phenotype that similar
organisms tend to be more closely related. The plants and the predators actually
share a more recent common ancestor compared to the decomposers, however since
that plant is born very early, at generation 15, this should not hold much significance
and can be mostly regarded as a result of the selected organisms.
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Figure 3.15: Each of the nine example organisms described in subsections 3.2.1.6,
3.2.2.1 and 3.2.3.1 represent a lineage among either plants, decomposers or preda-
tors. This diagram represents them as the leaf nodes of their family three, with
their mutual most common ancestors included all the way to the initial organism.
Note that the organism visualisations are taken from saved timesteps and that the
organisms are at different stages of decay. The ancestor 624933 was not found on
any saved timestep on record
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Figure 3.16: Genome (left) and nervous system (right) of the surface-dwelling plant
with id 574174. The genome node #59 and the nervous system node #59 are both
missing hidden nodes, where the nodes have been removed while the connections
remain. Thus they have no activation function and no value. The reason for the
connections remaining is an unknown bug.
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4
Discussion

The results were more numerous than anticipated and it is fascinating to be able to
list so many different observed adaptions. Earlier simulations performed with the
model still had adaptions within plant organisms where they moved upwards in order
to gain photosynthetic energy and changed in size to gain more area. There were,
however, no population of decomposers that managed to stay alive for any longer
duration. Instead, they fluctuated out of existence due to their small numbers. Even
more notably, sting cells were nothing but the result of unsuccessful mutations; the
smaller systems had no lineage of predators.
The higher trophic levels in this final run are likely due to the increased scale of
the model. With a larger top area, the number of photosynthetic cells that can
gain energy also increases, which means more energy input to the system. It would
seem as if there is a need for a certain number of plant organisms to sustain a
population of decomposers or predators, something that can be likened with the
concept of ecological pyramids within biology: The (biomass) quantity of plankton,
for example, is much larger than the quantity of fish. These relations in this model
are however not certain and should be investigated in future work.

4.1 On choosing a suitable environment configu-
ration

The results acquired seem to indicate that the environment configuration chosen for
the final result was quite good, but it is hard to know how the results would have
compared for other configurations without a proper investigation of the parameter
space. As for now, the parameters were chosen by a process of trial and error.
As long as the environment is hospitable enough for the organisms to survive, the
emerging population will evolve and adapt to thrive in that environment. Even a
very hostile environment might have life emerging and thriving, given enough time
to adapt. You could ensure this by having random initial organisms inserted in a
simulation as others die out; eventually, some organism should be able to survive
with the selected environment configuration. However, in order to avoid spending a
large amount of initial time, a form of life and an environment somewhat initially
compatible with each other were chosen, with the initial organism as described in
Section 3.1.
Still, while a population usually survived with this approach, it took some time
before signs of adaption and the more interesting results began to appear in this
simulation. Because this delay of results (it often took more than a day to decide if
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a given run was viable), together with the difficult search in the huge space of envi-
ronmental parameters, a long time had to be spent adjusting parameters. This leads
to a stopping-rule dilemma of whether to abort a simulation or to leave it running
in hope for better results. If something seems to be wrong with the simulation, is it
more strategic to abort it and try another, possibly better environment setup? Or
is it better to continue to run and instead hope that the extra time already spent
running will be worth more for the end result? Also, since larger-scale simulations
seem to give better results, how large should the simulations be while evaluating
other parameters?

4.2 Modelling level
An important thing to consider when modelling any system is which level to for-
mulate the model on. A lower-level model would increase the open-endedness of
the system, allowing for a larger design space. However, it would also require more
calculations to simulate and with a modelling-level too low there will not be enough
time for interesting results to appear.
Originally, the model was run solely on a cell-level; with cells replicating individually.
But such a setup proved to be too low-level for any interesting results to appear
within a reasonable timeframe. The organisms were still intended to be multicellular,
but that would require an emergent change of individuality, something the model did
not allow for. Instead, the egg cells were introduced and the organism reproduction
was centralised to the organism, not handled by each cell.
A model including mutable cell types, where the cells themselves consists of different
components, or where the cell types were continuous instead of discrete, could allow
for new adaptions unconstrained by the pre-set cell types used here. However,
it would make visualisation harder and could make the dynamics even trickier to
balance.
Not all of the cell types were used. Vascular cells were used only to a small extent,
possibly as an adaption, but their numbers were declining during the last 150 000
time steps as per figure 3.3. Fat cells were about as numerous but probably did
not have any advantages over egg cells since reproduction was the primary need for
energy. Perhaps both vascular and fat cells would still prove useful in larger and
more complex phenotypes. Sensor cells were almost never used, this might be due
to the way sensors were handled in the model, perhaps more sophisticated senses
would work better, or the signal input itself might somehow be incorrectly handled;
the nervous systems instead made use of the bias node as input.
The buoyancy cells were used as little as the sensors, while many plant organisms
evolved the strategy of swimming upwards to gain more sunlight, none were suc-
cessful in using buoyancy cells instead to save energy. This was likely because a
buoyant cell tends to orient the organism so that it is at its top, and thus getting in
the way of photosynthesis. Some phenotype configurations should be able to work
with buoyancy cells if they were spaced symmetrically, however, it would seem as if
the energy saved from not having to swim upward is not enough to overcome the
cost of sacrificing a possible position for a photosynthetic cell.
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4.3 Future work
To conclude the discussion part, there are some areas of future work that might
allow us to explore and develop the potential of the model:

• Performing larger-scale simulations for longer durations. The main interest of
future work would be to perform even larger and longer simulations. Because
of the significant increase in diversity in the final simulation compared to the
smaller previous ones, it would be of great interest to investigate how this
trend continues forward. This is needed also for developing the model further
as we need to see where the bottlenecks are.

• Improving the model visualisation. The visualisation would need to be im-
proved in order to handle a larger amount of particles while still being inter-
active.

• Investigating the effects of different environments, such as with and without
water, different terrain or day-and-night cycles.

• Developing a better nervous-system model. Since the nervous system was
mainly used for moving upwards, some changes to the model might improve
its usability. Furthermore, other input and output nodes could be included,
while a higher cost of large networks could be applied to avoid unnecessarily
large nervous systems.

• Introducing sexual reproduction. Since full NEAT implementations allow for
crossover between genomes, organisms could be allowed to reproduce sexually,
for example by colliding egg cells. This would allow for a definition of species
as well as possibly decrease adaption time.

• Investigate other genetic encodings. A genetic model that is more congruous
with biological genetics might be used for gaining insights into the evolution
of adaptive organisation of gene regulatory networks (GRN).
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5
Conclusion

This thesis was introduced by asking the somewhat existential question of how to
properly define life. It would then seem appropriate to conclude by asking whether
the organisms presented in this work can be considered alive. I would argue that, at
least under some reasonable minimal definitions, this is a form of life. The organisms
evolved in this project certainly feel more lifelike than a dry desert plant seed and
it would seem unwise to limit the definition of life to include only the form of life
we have encountered here on Earth.
A more substantial conclusion considers the actual nature of open-ended evolution
and emergent selection pressures. Biological ecosystems drive variability by dynam-
ically creating niches, as introduced in section 1.1. The organisms presented in this
work have been shown to drive variability among each other; inventing niches for
new adaptive lines to exploit.
A both obvious and expected example of this is the plant organisms covering the
water surface, thereby creating a niche for non-plant decomposer organisms living on
the bottom (subsection 3.2.2). Without the surface plants, the fitness of organisms at
the bottom would be determined by their ability to collect sunlight. However, with
the surface plants covering the sunlight, the fitness of the bottom-living organisms
is instead determined by their ability to harvest energy from the detritus particles
falling down from the dying plants above.
A less expected example is the predator-lagoon niche, seen in figures 3.11 and 3.12.
Created by a combination of the terrain topology and the land-living plants, the
predators overcame mobility- and sensor-related deficiencies in the model to discover
their niche of using sting cells. The original expectation was that predators, if they
would emerge at all, would move around to hunt for pray. But with the large
population of plant organisms sliding down into the "lagoon", there was no need for
predators to move or to sense their surroundings; the food was already provided.
To be truly open-ended, evolution need to continually introduce novelty and com-
plexity into a system. The Grafiliv simulation has not yet run for long enough
to be able to determine if that is the case, but this work could still be seen as a
contribution toward a better understanding of the nature of life and how it can be
simulated using GPU computing. More importantly, it also provides insights into
and examples of the emergence of endogenous niches and selection pressures.
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A
Getting started with Grafiliv

Grafiliv (short for grafikkortsliv, graphics card life) is the program created for running
the simulations. Source code and binaries can be found on GitHub: https://
github.com/Akodiat/grafiliv.
In order to run a grafiliv simulation:

1. Obtain binaries by either:
(a) Compile the source code:

i. Download and install the Fluidix library at: http://www.fluidix.
ca/

ii. Using the Fluidix app, compile \fluidix\grafiliv\grafiliv.cu
iii. If you want to compile the GrafilivViewer as well (instead of us-

ing the provided binary), download Unity3d https://unity3d.com/
and open and compile the project at \GrafilivViewer

(b) Download binaries from the Git repository:
i. Download and extract the zip-file corresponding to the version you

want to run from https://github.com/Akodiat/grafiliv/tree/
master/app

2. Configure \fluidix\grafiliv\config.txt with the parameters you desire.
3. If compiled for terrain, make sure terrain.stl is present in the same directory

as grafiliv.exe
4. Launch simulation by starting grafiliv.exe. If an earlier simulation was

aborted, you have the option to restart it.
5. Use GrafilivViewer.exe, also located in the same directory as grafiliv.

exe, to inspect the simulated organisms
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