Problem set 1

Riccardo Catena

Deadline for this assignment: February the 16th at noon. Please send your solutions to catena@chalmers.se.

Exercise 1 (10 points)

a) Let $S_{\mu \nu}$ be a set of coefficients and u^{ν} a contravariant vector. Show that if ω_{μ}, defined by

$$
\begin{equation*}
\omega_{\mu}=S_{\mu \nu} u^{\nu}, \tag{1}
\end{equation*}
$$

is a covariant vector, then the coefficients $S_{\mu \nu}$ are the components of a covariant tensor (3 points).
b) Consider the constant ω and the coordinate transformation

$$
\begin{align*}
t^{\prime} & =t \\
x^{\prime} & =x \cos \omega t+y \sin \omega t \\
y^{\prime} & =-x \sin \omega t+y \cos \omega t \\
z^{\prime} & =z . \tag{2}
\end{align*}
$$

Furthermore, consider the contravariant vector u of components $u^{\mu}=\delta_{t}^{\mu}$ in the (t, x, y, z) coordinate system ${ }^{1}$. Find the components of u in the ($t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}$) coordinate system (3 points).
c) Consider the metric $g_{\mu \nu}$ with associated proper time interval in the (t, x, y, z) coordinate system,

$$
\begin{equation*}
\mathrm{d} \tau^{2}=\mathrm{d} t^{2}-\mathrm{d} x^{2}-[1+\varphi(t, x)] \mathrm{d} y^{2}-[1-\varphi(t, x)] \mathrm{d} z^{2}-2 \psi(t, x) \mathrm{d} y \mathrm{~d} z \tag{3}
\end{equation*}
$$

Express $g_{\mu \nu}$ in the $\left(u, v, y^{\prime}, z^{\prime}\right)$ coordinate system defined by

$$
\begin{equation*}
u=\frac{t-x}{\sqrt{2}} ; \quad v=\frac{t+x}{\sqrt{2}} ; \quad y^{\prime}=y ; \quad z^{\prime}=z \tag{4}
\end{equation*}
$$

(4 points).

Exercise 2 (10 points)

a) Given a constant ω, and the metric tensor $g_{\mu \nu}$ associated with the proper time interval

$$
\begin{equation*}
\mathrm{d} \tau^{2}=\left[1-\omega^{2}\left(x^{2}+y^{2}\right)\right] \mathrm{d} t^{2}-2 \omega(x \mathrm{~d} y-y \mathrm{~d} x) d t-\mathrm{d} x^{2}-\mathrm{d} y^{2}-\mathrm{d} z^{2}, \tag{5}
\end{equation*}
$$

find the components of the affine connection, $\Gamma_{\rho \sigma}^{\mu}$, in the coordinate system (t, x, y, z) (4 points).

[^0]b) Given a constant ω, show that the metric tensor $g_{\mu \nu}$ associated with the proper time interval
\[

$$
\begin{equation*}
\mathrm{d} \tau^{2}=\left[1-\omega^{2}\left(x^{2}+y^{2}\right)\right] \mathrm{d} t^{2}-2 \omega(x \mathrm{~d} y-y \mathrm{~d} x) d t-\mathrm{d} x^{2}-\mathrm{d} y^{2}-\mathrm{d} z^{2} \tag{6}
\end{equation*}
$$

\]

can be transformed in the Minkowski tensor by means of an appropriate coordinate transformation. Is there a gravitational field the spacetime region described by Eq. (6) (6 points).

Exercise 3 (10 points)

a) Prove the identity

$$
\begin{equation*}
\frac{\partial}{\partial x^{\lambda}} g^{\rho \sigma}=-g^{\rho \mu} g^{\sigma \nu} \frac{\partial}{\partial x^{\lambda}} g_{\mu \nu} \tag{7}
\end{equation*}
$$

(2 points).
b) Given an arbitrary four-vector of contravariant components V^{μ}, show that

$$
\begin{equation*}
\left(\nabla_{\mu} \nabla_{\nu}-\nabla_{\nu} \nabla_{\mu}\right) V^{\rho}=-R_{\sigma \mu \nu}^{\rho} V^{\sigma} \tag{8}
\end{equation*}
$$

where ∇_{μ} is a covariant derivative (4 points). Here we use Weinberg's definition of Riemann tensor, which might differ by an overall minus sign compared to other books (e.g. Carroll's book).
c) Given an antisymmetric tensor $F^{\mu \nu}$, show that

$$
\begin{equation*}
\left(\nabla_{\mu} \nabla_{\nu}-\nabla_{\nu} \nabla_{\mu}\right) F^{\mu \nu}=0 \tag{9}
\end{equation*}
$$

(4 points).

Exercise 4 (10 points)

a) Prove the identity

$$
\begin{equation*}
\nabla_{\rho} R_{\sigma \mu \nu}^{\rho}=\nabla_{\mu} R_{\sigma \nu}-\nabla_{\nu} R_{\sigma \mu} \tag{10}
\end{equation*}
$$

(4 points).
b) Let us now assume that the Ricci tensor, $R_{\mu \nu}$, and the metric tensor, $g_{\mu \nu}$, are proportional,

$$
\begin{equation*}
R_{\mu \nu}=\lambda g_{\mu \nu} \tag{11}
\end{equation*}
$$

where λ is a constant. Show that:

- λ is necessarily equal to $R / 4$, where R is the curvature scalar
- for each four-vector of covariant and contravariant components V_{μ} and V^{μ}, respec-
tively,

$$
\begin{equation*}
\left(\nabla_{\mu} \nabla_{\nu}-\nabla_{\nu} \nabla_{\mu}\right) V^{\mu}=-\lambda V_{\nu} \tag{12}
\end{equation*}
$$

- and, finally,

$$
\begin{equation*}
\nabla_{\rho}\left(\nabla_{\mu} \nabla_{\nu}-\nabla_{\nu} \nabla_{\mu}\right) V^{\rho}=-R_{\sigma \mu \nu}^{\rho} \nabla_{\rho} V^{\sigma}, \tag{13}
\end{equation*}
$$

(6 points). In order to prove Eqs. (12) and (13), you might find useful Eq. (8) above (Ricci identity).

[^0]: ${ }^{1}$ More explicitly, $u^{\mu}=(1,0,0,0)$ in the (t, x, y, z) coordinate system.

