Problem set 2

Riccardo Catena

Deadline for this assignment: March the 3rd at 24:00. Please send your solutions to catena@chalmers.se.

Exercise 1 (10 points)

a) Show that the geodesic equation for a particle of mass m and four-momentum p^{μ} can be written as

$$
\begin{equation*}
m \frac{\mathrm{~d} p_{\mu}}{\mathrm{d} \tau}=\frac{1}{2}\left(\frac{\partial g_{\nu \lambda}}{\partial x^{\mu}}\right) p^{\lambda} p^{\nu} \tag{1}
\end{equation*}
$$

where τ is the proper time. Use this result to prove that if the metric $g_{\mu \nu}$ does not depend on the coordinate $x^{\sigma *}$, then the component of the particle four-momentum $p_{\sigma *}$ is constant along the particle path (3 points).
b) Show that the geodesic equation for a particle of mass m and four-momentum p^{μ} can be written as

$$
\begin{equation*}
p^{\mu} \nabla_{\mu} p^{\nu}=0 \tag{2}
\end{equation*}
$$

where ∇_{μ} is a covariant derivative. Use this result to prove that $\xi_{\nu} p^{\nu}$ is constant along the particle path ${ }^{1}$, i.e.

$$
\begin{equation*}
\frac{\mathrm{d}\left(\xi_{\nu} \mathrm{p}^{\nu}\right)}{\mathrm{d} \tau}=p^{\mu} \nabla_{\mu}\left(\xi_{\nu} p^{\nu}\right)=0 \tag{3}
\end{equation*}
$$

if and only if the four-vector ξ^{μ} in Eq. (3) is a Killing vector of the underlying metric tensor (4 points).
c) Let us now consider the metric tensor of line element

$$
\begin{equation*}
\mathrm{d} s^{2}=-f(r) \mathrm{d} t^{2}+f(r)^{-1} \mathrm{~d} r^{2}+r^{2}\left(\mathrm{~d} \vartheta^{2}+\sin ^{2} \vartheta \mathrm{~d} \varphi^{2}\right) \tag{4}
\end{equation*}
$$

and the following notation: $x^{0}=t, x^{1}=r, x^{2}=\vartheta$ and $x^{3}=\varphi$. Show that the p_{0} and p_{3} components of a particle four-momentum are conserved along the particle trajectory, and that the vector fields $\eta^{\mu}=\delta_{0}^{\mu}$ and $\xi^{\mu}=\delta_{3}^{\mu}$ are Killing vectors of the given metric tensor (3 points).

Exercise 2 (10 points)

a) Let us consider the matter action

$$
\begin{equation*}
I_{M}=\int d^{4} x \sqrt{g} \mathscr{L}_{M}(x) \tag{5}
\end{equation*}
$$

[^0]where $\mathscr{L}_{M}(x)$ si the corresponding Lagrangian density. Show that the associated energymomentum tensor, defined via
\[

$$
\begin{equation*}
\delta I_{M}=\frac{1}{2} \int d^{4} x \sqrt{g} T^{\mu \nu}(x) \delta g_{\mu \nu}(x), \tag{6}
\end{equation*}
$$

\]

can be written as

$$
\begin{equation*}
T^{\mu \nu}=2 \frac{\partial \mathscr{L}_{M}}{\partial g_{\mu \nu}}+\mathscr{L}_{M} g^{\mu \nu} \tag{7}
\end{equation*}
$$

(4 points).
b) Let $T^{\mu \nu}$ be the energy-momentum tensor of an electromagnetic field with four-vector potential A_{μ} :

$$
\begin{equation*}
T^{\mu \nu}=F_{\rho}^{\mu} F^{\nu \rho}-\frac{1}{4} g^{\mu \nu} F_{\rho \sigma} F^{\rho \sigma}, \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{\mu \nu}=\frac{\partial}{\partial x^{\mu}} A_{\nu}-\frac{\partial}{\partial x^{\nu}} A_{\mu} . \tag{9}
\end{equation*}
$$

Show that if $T^{\mu \nu}$ is the only source term in Einstein equations, then these can be written as

$$
\begin{equation*}
R_{\mu \nu}=-8 \pi G T_{\mu \nu} \tag{10}
\end{equation*}
$$

(3 points).
c) If $T_{\mu \nu}$ is the energy-momentum tensor of a perfect fluid, show that $T^{\mu \nu} T_{\mu \nu}=0$ implies $T_{\mu \nu}=0$ (3 points).

Exercise 3 (10 points)

a) Let us define $x^{0}=t, x^{1}=r, x^{2}=\vartheta$ and $x^{3}=\varphi$ and consider the metric tensor of line element

$$
\begin{equation*}
\mathrm{d} s^{2}=-f(r) \mathrm{d} t^{2}+f(r)^{-1} \mathrm{~d} r^{2}+r^{2}\left(\mathrm{~d} \vartheta^{2}+\sin ^{2} \vartheta \mathrm{~d} \varphi^{2}\right), \tag{11}
\end{equation*}
$$

where $f(r)$ is a differentiable function of r only. Let us also consider the four-vector velocity

$$
\begin{equation*}
u^{\mu}=e^{\psi(r, \vartheta)}\left[\delta_{0}^{\mu}+\Omega(r, \vartheta) \delta_{3}^{\mu}\right] \tag{12}
\end{equation*}
$$

where Ω and ψ are differentiable functions of r and ϑ only. By imposing

$$
\begin{equation*}
u_{\mu} u^{\mu}=-1 \tag{13}
\end{equation*}
$$

express $e^{\psi(r, \vartheta)}$ in terms of $f(r)$ and $\Omega(r, \vartheta)$ (2 points).
b) Within the same assumptions at point a), show that if u^{μ} is tangent to a geodesic, namely

$$
\begin{equation*}
\frac{\mathrm{d} u^{\mu}}{\mathrm{d} \tau}+\Gamma_{\rho \sigma}^{\mu} u^{\rho} u^{\sigma}=0 \tag{14}
\end{equation*}
$$

then ψ and Ω are constant along the given geodesic and, furthermore, can be written in terms of $f(r)$ and its first derivative $f^{\prime}(r)$, as long as $f^{\prime}(r) \geq 0$ and $2 f(r)-r f^{\prime}(r) \geq 0$. Finally, briefly comment on the shape of the geodesic to which the four-vector u^{μ} is tangent (6 points).
c) In addition to the assumptions at point a), let us now consider the following form for $f(r)$:

$$
\begin{equation*}
f(r)=\left(1-\frac{2 M G}{r}\right) \tag{15}
\end{equation*}
$$

where M is the mass of the underlying gravitational source and G Newton constant. Express Ω and $T \equiv 2 \pi / \Omega$ as a function of G, M and the radial coordinate r, and then compare these expressions with the angular frequency and period of a keplerian orbit (2 points).

Exercise 4 (10 points)

a) Let us consider a test particle of mass m moving along a radial trajectory in the equatorial plane of a spacetime region described by the Schwarzshild solution to Einstein equation. Using the notation $x^{0}=t, x^{1}=r, x^{2}=\vartheta$ and $x^{3}=\varphi$, show that for this trajectory $p_{\varphi}=p_{3}=p_{\vartheta}=p_{2}=0$, and $p_{0}=p_{t}=-E$, where E is a constant of motion (2 points).
b) Using the relation between mass and four-momentum of the test particle at point a), namely

$$
\begin{equation*}
g_{\mu \nu} p^{\mu} p^{\nu}=-m^{2} \tag{16}
\end{equation*}
$$

and $p^{1}=m \mathrm{~d} r / \mathrm{d} \tau$, where τ is the proper time, show that

$$
\begin{equation*}
r^{2}\left(1-\frac{2 M G}{r}\right)\left[E^{2}-m^{2}-\left(p^{1}\right)^{2}\right]=L^{2} \tag{17}
\end{equation*}
$$

where L is a second constant of motion. What is the value of L corresponding to a radial orbit? Use Eq. (17) to calculate the radial velocity, p^{1} / m, for both inward and outward orbits (6 points).
c) Show that in the Schwarzshild spacetime the surfaces

$$
\begin{equation*}
t+r+2 M G \ln \left|\frac{r}{2 M G}-1\right|=\text { constant } \tag{18}
\end{equation*}
$$

are null hypersurfaces, i.e. the associated normal four-vector vector, n_{μ}, is a null vector; (2 points).

[^0]: ${ }^{1}$ Notice that for a scalar quantity, like $\xi_{\nu} p^{\nu}$, total derivative and covariant derivative along the particle path coincide.

