Problem set 2
Riccardo Catena

Deadline for this assignment: March the 3rd at 24:00. Please send your solutions to
catena@chalmers.se.

Exercise 1 (10 points)

a) Show that the geodesic equation for a particle of mass m and four-momentum p# can

be written as 4 L /8
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where 7 is the proper time. Use this result to prove that if the metric g, does not depend
on the coordinate x°*, then the component of the particle four-momentum p,, is constant
along the particle path (3 points).

b) Show that the geodesic equation for a particle of mass m and four-momentum p# can

be written as
p"Vup' =0, (2)

where V,, is a covariant derivative. Use this result to prove that §,p” is constant along
the particle path?, i.e.
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if and only if the four-vector ¢* in Eq. (3) is a Killing vector of the underlying metric
tensor (4 points).

¢) Let us now consider the metric tensor of line element
ds® = —f(r)dt* + f(r)~'dr® 4+ r*(d¥® + sin® ¥dyp?) (4)

and the following notation: 2° = t, ! = r, 22 = ¥ and 2® = ¢. Show that the py and ps
components of a particle four-momentum are conserved along the particle trajectory, and
that the vector fields n* = ) and " = 0% are Killing vectors of the given metric tensor
(3 points).

Exercise 2 (10 points)

a) Let us consider the matter action

INotice that for a scalar quantity, like &, p”, total derivative and covariant derivative along the particle
path coincide.



where Z)(x) si the corresponding Lagrangian density. Show that the associated energy-
momentum tensor, defined via

1
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can be written as
0%
T™ =2 M+$Mg‘“’, (7)
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(4 points).

b) Let T" be the energy-momentum tensor of an electromagnetic field with four-vector
potential A,

1
T“V — Fup Fllp — ZgHVFngpg 9 (8)

where

F,, = A (9)

I Y

Show that if T"" is the only source term in Einstein equations, then these can be written
as

R,, = —8nG1T,,, (10)
(3 points).
c) If T),, is the energy-momentum tensor of a perfect fluid, show that 7T}, = 0 implies
T,, = 0 (3 points).
Exercise 3 (10 points)

a) Let us define 2° = ¢, 2! = r, 22 =¥ and 2 = ¢ and consider the metric tensor of line
element

ds® = —f(r)dt* + f(r)""dr® + r*(dd” + sin® ¥dp®) , (1)

where f(r) is a differentiable function of r only. Let us also consider the four-vector
velocity

ut = ¥ (58 + Q(r, 9) 04 (12)
where 2 and v are differentiable functions of r and ¥ only. By imposing
wut = —1, (13)

express (™) in terms of f(r) and Q(r,9) (2 points).



b) Within the same assumptions at point a), show that if u* is tangent to a geodesic,
namely

du# o

1 + F’;Uu’)u =0, (14)
then ¢ and €2 are constant along the given geodesic and, furthermore, can be written in
terms of f(r) and its first derivative f'(r), as long as f'(r) > 0 and 2f(r) —rf'(r) > 0. Fi-
nally, briefly comment on the shape of the geodesic to which the four-vector u* is tangent
(6 points).

c¢) In addition to the assumptions at point a), let us now consider the following form for

fr):

(15)

f(r) = (1 B QMG)
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where M is the mass of the underlying gravitational source and G Newton constant. Ex-
press  and T = 27/ as a function of G, M and the radial coordinate r, and then
compare these expressions with the angular frequency and period of a keplerian orbit (2
points).

Exercise 4 (10 points)

a) Let us consider a test particle of mass m moving along a radial trajectory in the
equatorial plane of a spacetime region described by the Schwarzshild solution to Einstein
equation. Using the notation 2° = ¢, 2! = r, 22 = 9 and 2® = ¢, show that for this trajec-
tory p, = p3 = py = p2 = 0, and py = p; = —E, where E is a constant of motion (2 points).

b) Using the relation between mass and four-momentum of the test particle at point a),
namely

gup'p’ = —m*, (16)

and p' = mdr/dr, where 7 is the proper time, show that
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where L is a second constant of motion. What is the value of L corresponding to a radial
orbit? Use Eq. (17) to calculate the radial velocity, p'/m, for both inward and outward
orbits (6 points).

c¢) Show that in the Schwarzshild spacetime the surfaces
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t+r+2MGln’ - 1‘ = constant (18)

are null hypersurfaces, i.e. the associated normal four-vector vector, n,,, is a null vector; (2
points).



