
Problem set 2

Riccardo Catena

Deadline for this assignment: March the 3rd at 24:00. Please send your solutions to
catena@chalmers.se.

Exercise 1 (10 points)

a) Show that the geodesic equation for a particle of mass m and four-momentum pµ can
be written as

m
dpµ
dτ

=
1

2

(
∂gνλ
∂xµ

)
pλpν , (1)

where τ is the proper time. Use this result to prove that if the metric gµν does not depend
on the coordinate xσ∗, then the component of the particle four-momentum pσ∗ is constant
along the particle path (3 points).

b) Show that the geodesic equation for a particle of mass m and four-momentum pµ can
be written as

pµ∇µp
ν = 0 , (2)

where ∇µ is a covariant derivative. Use this result to prove that ξνp
ν is constant along

the particle path1, i.e.
d(ξνp

ν)

dτ
= pµ∇µ (ξνp

ν) = 0 , (3)

if and only if the four-vector ξµ in Eq. (3) is a Killing vector of the underlying metric
tensor (4 points).

c) Let us now consider the metric tensor of line element

ds2 = −f(r)dt2 + f(r)−1dr2 + r2(dϑ2 + sin2 ϑdϕ2) (4)

and the following notation: x0 = t, x1 = r, x2 = ϑ and x3 = ϕ. Show that the p0 and p3
components of a particle four-momentum are conserved along the particle trajectory, and
that the vector fields ηµ = δµ0 and ξµ = δµ3 are Killing vectors of the given metric tensor
(3 points).

Exercise 2 (10 points)

a) Let us consider the matter action

IM =

∫
d4x
√
gLM(x) (5)

1Notice that for a scalar quantity, like ξνp
ν , total derivative and covariant derivative along the particle

path coincide.
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where LM(x) si the corresponding Lagrangian density. Show that the associated energy-
momentum tensor, defined via

δIM =
1

2

∫
d4x
√
g T µν(x)δgµν(x) , (6)

can be written as

T µν = 2
∂LM

∂gµν
+ LMg

µν , (7)

(4 points).

b) Let T µν be the energy-momentum tensor of an electromagnetic field with four-vector
potential Aµ:

T µν = F µ
ρ F

νρ − 1

4
gµνFρσF

ρσ , (8)

where

Fµν =
∂

∂xµ
Aν −

∂

∂xν
Aµ . (9)

Show that if T µν is the only source term in Einstein equations, then these can be written
as

Rµν = −8πGTµν , (10)

(3 points).

c) If Tµν is the energy-momentum tensor of a perfect fluid, show that T µνTµν = 0 implies
Tµν = 0 (3 points).

Exercise 3 (10 points)

a) Let us define x0 = t, x1 = r, x2 = ϑ and x3 = ϕ and consider the metric tensor of line
element

ds2 = −f(r)dt2 + f(r)−1dr2 + r2(dϑ2 + sin2 ϑdϕ2) , (11)

where f(r) is a differentiable function of r only. Let us also consider the four-vector
velocity

uµ = eψ(r,ϑ) [δµ0 + Ω(r, ϑ) δµ3 ] (12)

where Ω and ψ are differentiable functions of r and ϑ only. By imposing

uµu
µ = −1, (13)

express eψ(r,ϑ) in terms of f(r) and Ω(r, ϑ) (2 points).

– 2 –



b) Within the same assumptions at point a), show that if uµ is tangent to a geodesic,
namely

duµ

dτ
+ Γµρσu

ρuσ = 0 , (14)

then ψ and Ω are constant along the given geodesic and, furthermore, can be written in
terms of f(r) and its first derivative f ′(r), as long as f ′(r) ≥ 0 and 2f(r)−rf ′(r) ≥ 0. Fi-
nally, briefly comment on the shape of the geodesic to which the four-vector uµ is tangent
(6 points).

c) In addition to the assumptions at point a), let us now consider the following form for
f(r):

f(r) =

(
1− 2MG

r

)
(15)

where M is the mass of the underlying gravitational source and G Newton constant. Ex-
press Ω and T ≡ 2π/Ω as a function of G, M and the radial coordinate r, and then
compare these expressions with the angular frequency and period of a keplerian orbit (2
points).

Exercise 4 (10 points)

a) Let us consider a test particle of mass m moving along a radial trajectory in the
equatorial plane of a spacetime region described by the Schwarzshild solution to Einstein
equation. Using the notation x0 = t, x1 = r, x2 = ϑ and x3 = ϕ, show that for this trajec-
tory pϕ = p3 = pϑ = p2 = 0, and p0 = pt = −E, where E is a constant of motion (2 points).

b) Using the relation between mass and four-momentum of the test particle at point a),
namely

gµνp
µpν = −m2 , (16)

and p1 = mdr/dτ , where τ is the proper time, show that

r2
(

1− 2MG

r

)[
E2 −m2 −

(
p1
)2]

= L2 (17)

where L is a second constant of motion. What is the value of L corresponding to a radial
orbit? Use Eq. (17) to calculate the radial velocity, p1/m, for both inward and outward
orbits (6 points).

c) Show that in the Schwarzshild spacetime the surfaces

t+ r + 2MG ln
∣∣∣ r

2MG
− 1
∣∣∣ = constant (18)

are null hypersurfaces, i.e. the associated normal four-vector vector, nµ, is a null vector; (2
points).
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