Problem set 3

Riccardo Catena

Deadline for this assignment: March the 10th at 24:00. Please submit your solutions via Canvas.

Exercise 1 (10 points)

a) Determine the critical value of the energy density, ρ_c , such that a universe described by the Robertson-Walker metric has zero curvature constant, k. Express ρ_c in g cm⁻³ (2 points).

b) Assuming k = 0, determine the time evolution of the scale factor, R(t), in a universe with total energy density $\rho = \rho_M + \rho_\Lambda$. Here, ρ_M and ρ_Λ are the contributions to the total energy density ρ of a matter and a cosmological constant component, respectively (4 points).

c) Combine Friedmann equation with the continuity equation,

$$\frac{\mathrm{d}p(t)}{\mathrm{d}t} = \frac{1}{R^3(t)} \frac{\mathrm{d}}{\mathrm{d}t} \left\{ R^3(t) \left[p(t) + \rho(t) \right] \right\}$$
(1)

to obtain the *tt*-component of Einstein equations, $R_{tt} = -8\pi GS_{tt}$, in a Robertson-Walker universe. Here,

$$S_{\mu\nu} = T_{\mu\nu} - \frac{1}{2} g_{\mu\nu} T^{\rho}_{\ \rho} \,, \tag{2}$$

where $T_{\mu\nu}$ is the energy momentum tensor of a perfect fluid of pressure p and energy density ρ . Under what circumstances does the Universe undergo a stage of accelerated expansion, i.e. $\ddot{R} > 0$? Provide an example of perfect fluid that leads to an accelerating universe (4 points).

Exercise 2 (10 points)

a) Let us consider two infinitesimally close geodesics $x^{\mu}(\tau)$ and $x^{\mu}(\tau) + \delta x^{\mu}(\tau)$. Being infinitesimally close to each other, at leading order in δx^{μ} the two geodesics have the same tangent vector $u^{\mu} = dx^{\mu}/d\tau$. Write down the equation of geodesic deviation in terms of δx^{μ} , u^{μ} and the Riemann tensor. Here, τ is the proper time of an observer of four-velocity u^{μ} (2 points).

b) Let us now consider the Roberston-Walker metric with scale factor R(t), k = 0, and line element,

$$ds^{2} = -dt^{2} + R^{2}(t) \left[dr^{2} + r^{2} \left(d\theta^{2} + \sin^{2} \theta \, d\varphi^{2} \right) \right] \,. \tag{3}$$

Let us also consider two infinitesimally close geodesics of tangent vector $u^{\mu} = \delta^{\mu}_t$ and displacement vector $\delta x^{\mu} = \delta^{\mu}_r$. Use the geodesic deviation equation to calculate the rel-

ative acceleration $D^2 \delta x^{\mu} / D \tau^2$, where $D/D\tau$ denotes a covariant derivative along the geodesics. Express this relative acceleration as a function of the Hubble parameter $H \equiv \dot{R}/R$ (where a dot denotes a derivative with respect to t) and the deceleration parameter $q \equiv -R\ddot{R}/\dot{R}$ (4 points).

c) Assuming Eq. (2) as a source term for Einstein equations, express q as a function of p and ρ (2 points).

d) Assuming H > 0, under what conditions is the relative acceleration at point b) positive (2 points).

Exercise 3 (10 points)

a) Extract the infinitesimal area element of a sphere of comoving radius r from the Robertson-Walker metric (2 points).

b) Calculate the area of a sphere of comoving radius r in Robertson-Walker geometries with k = -1, 0, +1 (2 points).

c) Extract the infinitesimal volume element of a sphere of comoving radius r from the Robertson-Walker metric (2 points).

d) Calculate the volume of a sphere of comoving radius r in Robertson-Walker geometries with k = -1, 0, +1 (4 points).

Exercise 4 (10 points)

a) Let us consider a Schwarzshild black hole of mass M and a *static* observer of fourvelocity u^{μ} ($u^{i} = 0, i = r, \theta, \varphi$). Express u^{μ} as a function of M and the radial coordinate r (2 points).

b) Let us now focus on two points infinitesimally close to the static observer at a). Being infinitesimally close to the static observer, their four-velocity is also u^{μ} . Let δx^{μ} be the associated displacement vector. Write down the radial component of the geodesic deviation equation. Express the relevant components of the Riemann tensor in terms of M and r (6 points).

c) Calculate the relative radial acceleration between the infinitesimally close points, namely $D^2 \delta x^r / D\tau^2$, for $r \to 2MG$. In the limit, $M \to 0$, does $D^2 \delta x^r / D\tau^2$ increase or decrease? (2 points).