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Chapter 2: Mathematical tools (summary)

January 25, 2021

Goal: Introduce some (abstract) spaces and various mathematical tools. This will help us to solve
(numerically) differential equations in the next chapters.

• A set V is called a vector space or linear space (VS) if, for all u, v, w ∈V and for all α,β ∈R one has

1. u +αv ∈V (linearity)

2. (u + v)+w = u + (v +w) = u + v +w (associativity)

3. There exists an element 0 ∈V such that u +0 = 0+u = u for all u ∈V (identity element)

4. For all u ∈V , there exists an element (−u) ∈V such that u + (−u) = 0 (inverse element)

5. u + v = v +u (commutativity)

6. (α+β)u =αu +βu

7. α(u + v) =αu +βv

8. α(βu) = (αβ)u =αβu

9. There exists 1 ∈R such that 1u = u for all u ∈V .

The elements in V are called vectors (but they can be something else, like "normal" vectors, matri-
ces, functions, or sequences) and the ones in R scalars. The above axioms (rules) tell us that we can
do anything reasonable with vectors and scalars.

Example: The vector space of all polynomials, defined on R, of degree ≤ n is denoted by

P (n)(R) = {a0 +a1x +a2x2 + . . .+an xn : a0, a1, . . . , an ∈R}.

• A subset U ⊂V of a VS V is called a subspace of V if αu +βv ∈U for all u, v ∈U and α,β ∈R.

• Let V be a VS. The space of all linear combinations of the elements v1, v2, . . . , vn ∈V is denoted by

span(v1, . . . , vn) = {a1v1 +a2v2 + . . .+an vn : a1, . . . , an ∈R}.

Example: span(1, x, x2) = {a01+a1x +a2x2 : a0, a1, a2 ∈R} =P (2)(R).

• A set {v1, v2, . . . , vn} in a VS V is linearly independent if the equation

a1v1 +a2v2 + . . .+an vn = 0 ∈V

has only the trivial solution a1 = a2 = . . . = an = 0 ∈R. Else it is called linearly dependent.

Example: The set {1, x, x2} ∈P (2)(R) is linearly independent.

• A set {v1, v2, . . . , vn} in a VS V is called a basis of V if the set is linearly independent and span(v1, . . . , vn) =
V . The dimension of V is then given by the number of elements of this set, here dim(V ) = n.

Example: The set {1, x, x2} is a basis of P (2)(R) and thus dim(P (2)(R)) = 3.

• A scalar product or inner product on a VS V is a map (·, ·) : V ×V → R such that, for all u, v, w ∈ V
and α ∈R,

1. (u, v) = (v,u) (symmetry)
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2. (u +αv, w) = (u, w)+α(v, w) (linearity)

3. (u,u) ≥ 0 (positivity)

4. (u,u) = 0 ∈R if and only if u = 0 ∈V .

• A VS V with an inner product is called an inner product space, which is denoted by (V , (·, ·)) or
(V , (·, ·)V ) or (V ,〈·, ·〉V ).

Such space has a norm defined by ‖v‖ = p
(v, v) for all v ∈V .

Example: The space of square integrable functions defined on the interval [a,b] is denoted by

L2([a,b]) = L2(a,b) = L2(a,b) = { f : [a,b] →R :
∫ b

a
| f (x)|2 dx <∞}.

It is equipped with the inner product

( f , g )L2 =
∫ b

a
f (x)g (x)dx

which induces the norm ∥∥ f
∥∥

L2 =
√

( f , f )L2 =
√∫ b

a
| f (x)|2 dx.

More generally, for Ω⊂Rn , one defines

L2(Ω) = { f : Ω→R :
∥∥ f

∥∥
L2(Ω) <∞},

where
∥∥ f

∥∥
L2 =

√
( f , f )L2(Ω) and ( f , g )L2(Ω) =

∫
Ω

f (x)g (x)dx.

• Let (V , (·, ·)) be an inner product space and u, v ∈ V . u and v are orthogonal if (u, v) = 0. Notation:
u ⊥ v .

• Let (V , (·, ·)) be an inner product space and u, v ∈V . Cauchy–Schwarz inequality (CS) reads

|(u, v)| ≤ ‖u‖ ·‖v‖ .

• Let (V , (·, ·)) be an inner product space and u, v ∈V . The triangle inequality (4) reads

‖u + v‖ ≤ ‖u‖+‖v‖ .

• The space of continuous function defined on [a,b] is given by

C 0([a,b]) =C 0([a,b]) =C (0)(a,b) = { f : [a,b] →R : f is continuous}

and equipped with the norm ∥∥ f
∥∥

C 0([a,b]) = max
a≤x≤b

| f (x)|.

Similarly, for Ω ⊂ Rn bounded and open and a positive integer k, one defines the space of kth
continuously differentiable functions

C k (Ω) =C k (Ω) = { f : Ω→R : Dα f are continuous for all |α| ≤ k}
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and equipped with the norm ∥∥ f
∥∥

C k (Ω) =
∑

|α|≤k
sup
x∈Ω

|Dα f (x)|.

One shall also use the following space

C k (Ω) =C k (Ω) = { f ∈C k (Ω) : Dα f can be extended from Ω to its closure Ω}

and equipped with the norm ∥∥ f
∥∥

C k (Ω) =
∑

|α|≤k
sup
x∈Ω

|Dα f (x)|.

• For a positive integer k and Ω⊂Rn open, one considers the Sobolev space

H k (Ω) = { f ∈ L2(Ω) : Dα f ∈ L2(Ω) for |α| ≤ k}

with the inner product

( f , g )H k =
∑

|α|≤k

∫
Ω

Dα f (x)Dαg (x)dx.

and norm ∥∥ f
∥∥

H k =
√

( f , f )H k .

For k = 1 and n = 1, the above reads ∥∥ f
∥∥2

H 1 =
∥∥ f

∥∥2
L2 +

∥∥ f ′∥∥2
L2 .

• The triangle inequality as well as Cauchy–Schwarz can be extended to Lp spaces:

Minkowski’s inequality: Consider a domain Ω⊂Rn , 1 ≤ p <∞ and f , g ∈ Lp (Ω). One then has∥∥ f + g
∥∥

Lp ≤
∥∥ f

∥∥
Lp +

∥∥g
∥∥

Lp .

Hölder’s inequality: Consider a domain Ω ⊂ Rn , 1 ≤ p, q < ∞ with 1
p + 1

q = 1, f ∈ Lp (Ω), and g ∈
Lq (Ω). One then has ∥∥ f g

∥∥
L1 ≤

∥∥ f
∥∥

Lp

∥∥g
∥∥

Lq .

This is Cauchy–Schwarz for p = q = 2.

• Poincaré inequality (1d): Let L > 0 and consider the open interval Ω= (0,L). One then has

‖u‖L2(Ω) ≤
Lp

2

∥∥u′∥∥
L2(Ω)

for all u ∈ H 1
0 = {v ∈ H 1(Ω) : v(0) = 0, v(L) = 0}.

• Trace theorem (p = 2): Let Ω⊂Rn (bounded domain with Lipschitz boundary). One then has

‖u‖2
L2(∂Ω) ≤C ‖u‖L2(Ω) ‖u‖H 1(Ω)

for all u ∈ H 1(Ω).
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• The strong form of Poisson’s equation reads{
−u′′(x) = f (x) for x ∈Ω= (0,1)

u(0) = 0,u(1) = 0,

where f : Ω→R is a given function (bounded and continuous for instance).

The weak form or variational formulation (VF) reads

Find u ∈ H 1
0 (Ω) s.t. (u′, v ′)L2(Ω) = ( f , v)L2(Ω) for all v ∈ H 1

0 (Ω).

The minimisation problem (MP) reads

Find u ∈ H 1
0 (Ω) s.t. F (u) is minimal,

where the functional F : H 1
0 (Ω) →R is defined by F (v) = 1

2 (v ′, v ′)L2(Ω) − ( f , v)L2(Ω) for v ∈ H 1
0 (Ω).

We have proved that
Strong =⇒ VF ⇐⇒ MP

and if in addition u ∈C 2(Ω)
Strong ⇐= VF.

• Lax–Milgram theorem: Consider a Hilbert space H , a bounded and coercive bilinear form a : H ×
H → R, and a bounded linear functional ℓ : H → R. Then, there exists a unique element u ∈ H
solution to the equation

a(u, v) = ℓ(v) for all v ∈ H .

Lax–Milgram’s theorem can be used, for instance, to find a unique solution to the VF of Poisson’s
equation seen above.

Further resources:

• https://sv.wikipedia.org/wiki/Linj%C3%A4rt_rum

• https://sv.wikipedia.org/wiki/Inre_produktrum

• https://sv.wikipedia.org/wiki/Lp-rum

• https://sv.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_olikhet

• https://web.auburn.edu/holmerr/2660/Textbook/innerproduct-print.pdf

• https://terrytao.files.wordpress.com/2008/03/function_spaces1.pdf

• https://www.icts.res.in/sites/default/files/MAH2019-08-26-Patrizia.pdf (a little bit
more advanced)

• https://www.math.tamu.edu/~phoward/m612/s20/elliptic2.pdf (application and proof of
LM (more advanced))
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