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Chapter 7: Scalar initial value problems (summary)

February 12, 2021

Goal: Study exact solutions to particular IVPs and present Galerkin discretisations of these IVPs.

e Let f,a: (0, T] — R be continuous and bounded for instance. Let uy € R. Consider the first order

linear DE
{mn+mnmn=ﬂn for te(0,T]

u(0) = uo.

The exact solution to the above IVP is given by the variation of constants formula (voc)

t
u(t) = uge™ 40 +f e~ (AD=AB) £(5) ds,
0

t
where A(t) :f a(s)ds.
0

If a(t) = 0 for all £ € (0, T'], we have the following stability estimate

t
|M(f)|5|u0|+f0 |f(s)lds

and the above IVP is called stable.

If a(t) = @ > 0 for all £ € (0, T], we have the following stability estimate
1
lu(t) < e™*uol + —(1-e™*") max |f(s)|
a 0<s<T
and the above IVP is called asymptotically stable.
If a(t) <0, the above IVP is called unstable.

* We define the continuous Galerkin scheme cG(1) for the following IVP
ut)+au()=f(t) for te(0,T]
u(0) = up.

Consider first a partition of the interval [0, T] given by 0 = fp < f; < ... < fy = T and the following
equation on the small interval [0, #;]:

Find U(1) e 21(0, 1) s.t.
151 N 5]
‘[(Um+aUunwﬂm:j)fMUmdsﬂnm1vey@wju )
0 0
By definition of these polynomial spaces, one can take v(¢) =1 (constant) and

fHh—t
Ut) =uy

t
+U(f1))— (linear).
1 h

Insert this in the equation (1) gives the following formula for the unknown U (#;):

151
1+ a—tl)U(tl) =(1- a—tl)uo +f fdte.
2 2 0

Inserting the above in the definition of U(#) provides the approximation by cG(1) on the first inter-
val [0, #;]. Repeat this procedure in the next interval.
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* The following generalisation of cG(1) is called a discontinuous Galerkin scheme. We briefly illus-
trate this procedure for a positive integer g:

Forn=1,2,...,N, find U(t) € 29 (t,,_1, t,,) such that

ty . In
Ut)+aU®))vndet+U;_vi_ = fovw,dt+U,_vi_, forall ve@D(, 1, t,).
n-1n-1 : n-1n-1
n-1

In—1
For g =0, one gets the dG(0) scheme (defined on the interval [£,_1, £,]):
tn
uUt=U,=U,_1 —kyaU, + f(nde,

In-1

where k; denotes the length of the considered interval.

* We finally state some error estimates for continuous and discontinuous Galerkin schemes for IVP.

First, consider the initial value problem

ut)y+au(t)=f() for re(0,T]
u(0) = up.
A posteriori error estimates for cG(1): Let U(t) denote the cG(1) approximation of the exact solution

u(t) of the above problem on a partition with time step-size k(t) = kj, = t,, — t,—1 for t € (-1, ty].
Then, one has

2 d
[u() U] = S(T) max |k(6)*—(a(U() - f(D)I,
te[0,T] dt

where S is some stability function, see the book for details.

A posteriori error estimates for dG(0): Let U(f) denote the dG(0) approximation of the exact so-
lution u(f) of the above problem on a partition with time step-size k(t) = k,, = t,, — t,—; for t €
(ty-1, tn]. Then, one has
lu(t) = U(0)] = S(T) max |k(£)R(U(0)I,
te(0,T]

where R is some residual function, see the book for details.

Next, consider

u)+au(t)=f(t) for te(0,T]
u(0) = uyg.

A priori error estimates for dG(0): Let U(#) denote the dG(0) approximation of the exact solution
u(r) of the above problem on a partition with time step-size k(t) = k,, = t, — t,—1 for t € (t;-1, t5].
Under some assumptions, one has

Iu(T)—U(T)ISZ(ezl“'T—l) max (k, max |u(5))).

lsnsN te(ty-1,tn)
Further results for the case a(t) = 0 or for cG(1) can be found in the book.
Further resources:
¢ whitman.edut

¢ britannica.com
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https://www.whitman.edu/mathematics/calculus_online/section17.03.html
https://www.britannica.com/science/stability-solution-of-equations

