Chapter 7: Scalar initial value problems (summary)

February 12, 2021

Goal: Study exact solutions to particular IVPs and present Galerkin discretisations of these IVPs.

- Let $f, a:(0, T] \rightarrow \mathbb{R}$ be continuous and bounded for instance. Let $u_{0} \in \mathbb{R}$. Consider the first order linear DE

$$
\left\{\begin{array}{l}
\dot{u}(t)+a(t) u(t)=f(t) \quad \text { for } t \in(0, T] \\
u(0)=u_{0} .
\end{array}\right.
$$

The exact solution to the above IVP is given by the variation of constants formula (voc)

$$
u(t)=u_{0} \mathrm{e}^{-A(t)}+\int_{0}^{t} \mathrm{e}^{-(A(t)-A(s))} f(s) \mathrm{d} s
$$

where $A(t)=\int_{0}^{t} a(s) \mathrm{d} s$.
If $a(t) \geq 0$ for all $t \in(0, T]$, we have the following stability estimate

$$
|u(t)| \leq\left|u_{0}\right|+\int_{0}^{t}|f(s)| \mathrm{d} s
$$

and the above IVP is called stable.
If $a(t) \geq \alpha>0$ for all $t \in(0, T]$, we have the following stability estimate

$$
|u(t)| \leq \mathrm{e}^{-\alpha t}\left|u_{0}\right|+\frac{1}{\alpha}\left(1-\mathrm{e}^{-\alpha t}\right) \max _{0 \leq s \leq T}|f(s)|
$$

and the above IVP is called asymptotically stable.
If $a(t)<0$, the above IVP is called unstable.

- We define the continuous Galerkin scheme cG(1) for the following IVP

$$
\left\{\begin{array}{l}
\dot{u}(t)+a u(t)=f(t) \quad \text { for } \quad t \in(0, T] \\
u(0)=u_{0}
\end{array}\right.
$$

Consider first a partition of the interval [0,T] given by $0=t_{0}<t_{1}<\ldots<t_{N}=T$ and the following equation on the small interval $\left[0, t_{1}\right]$:
Find $U(t) \in \mathscr{P}^{(1)}\left(0, t_{1}\right)$ s.t.

$$
\begin{equation*}
\int_{0}^{t_{1}}(\dot{U}(t)+a U(t)) v(t) \mathrm{d} s=\int_{0}^{t_{1}} f(t) v(t) \mathrm{d} s \quad \text { for all } \quad v \in \mathscr{P}^{(0)}\left(0, t_{1}\right) \tag{1}
\end{equation*}
$$

By definition of these polynomial spaces, one can take $v(t)=1$ (constant) and

$$
U(t)=u_{0} \frac{t_{1}-t}{t_{1}}+U\left(t_{1}\right) \frac{t}{t_{1}} \quad \text { (linear). }
$$

Insert this in the equation (1) gives the following formula for the unknown $U\left(t_{1}\right)$:

$$
\left(1+\frac{a t_{1}}{2}\right) U\left(t_{1}\right)=\left(1-\frac{a t_{1}}{2}\right) u_{0}+\int_{0}^{t_{1}} f(t) \mathrm{d} t
$$

Inserting the above in the definition of $U(t)$ provides the approximation by $\mathrm{cG}(1)$ on the first interval $\left[0, t_{1}\right]$. Repeat this procedure in the next interval.

- The following generalisation of $\mathrm{cG}(1)$ is called a discontinuous Galerkin scheme. We briefly illustrate this procedure for a positive integer q :
For $n=1,2, \ldots, N$, find $U(t) \in \mathscr{P}^{(q)}\left(t_{n-1}, t_{n}\right)$ such that

$$
\int_{t_{n-1}}^{t_{n}}(\dot{U}(t)+a U(t)) v(t) \mathrm{d} t+U_{n-1}^{+} v_{n-1}^{+}=\int_{t_{n-1}}^{t_{n}} f(t) v(t), \mathrm{d} t+U_{n-1}^{-} v_{n-1}^{+} \quad \text { for all } \quad v \in \mathscr{P}^{(q)}\left(t_{n-1}, t_{n}\right)
$$

For $q=0$, one gets the $\mathrm{dG}(0)$ scheme (defined on the interval $\left[t_{n-1}, t_{n}\right]$):

$$
U(t)=U_{n}=U_{n-1}-k_{n} a U_{n}+\int_{t_{n-1}}^{t_{n}} f(t) \mathrm{d} t
$$

where k_{n} denotes the length of the considered interval.

- We finally state some error estimates for continuous and discontinuous Galerkin schemes for IVP. First, consider the initial value problem

$$
\left\{\begin{array}{l}
\dot{u}(t)+a(t) u(t)=f(t) \quad \text { for } \quad t \in(0, T] \\
u(0)=u_{0} .
\end{array}\right.
$$

A posteriori error estimates for $\mathrm{cG}(1)$: Let $U(t)$ denote the $\mathrm{cG}(1)$ approximation of the exact solution $u(t)$ of the above problem on a partition with time step-size $k(t)=k_{n}=t_{n}-t_{n-1}$ for $t \in\left(t_{n-1}, t_{n}\right]$. Then, one has

$$
|u(t)-U(t)| \leq S(T) \max _{t \in[0, T]}\left|k(t)^{2} \frac{\mathrm{~d}}{\mathrm{~d} t}(a(t) U(t)-f(t))\right|
$$

where S is some stability function, see the book for details.
A posteriori error estimates for $\mathrm{dG}(0)$: Let $U(t)$ denote the $\mathrm{dG}(0)$ approximation of the exact solution $u(t)$ of the above problem on a partition with time step-size $k(t)=k_{n}=t_{n}-t_{n-1}$ for $t \in$ (t_{n-1}, t_{n}]. Then, one has

$$
|u(t)-U(t)| \leq S(T) \max _{t \in[0, T]}|k(t) R(U(t))|
$$

where R is some residual function, see the book for details.
Next, consider

$$
\left\{\begin{array}{l}
\dot{u}(t)+a u(t)=f(t) \quad \text { for } t \in(0, T] \\
u(0)=u_{0}
\end{array}\right.
$$

A priori error estimates for $\mathrm{dG}(0)$: Let $U(t)$ denote the $\mathrm{dG}(0)$ approximation of the exact solution $u(t)$ of the above problem on a partition with time step-size $k(t)=k_{n}=t_{n}-t_{n-1}$ for $t \in\left(t_{n-1}, t_{n}\right]$. Under some assumptions, one has

$$
|u(T)-U(T)| \leq \frac{\mathrm{e}}{4}\left(\mathrm{e}^{2|a| T}-1\right) \max _{1 \leq n \leq N}\left(k_{n} \max _{t \in\left(t_{n-1}, t_{n}\right]}|\dot{u}(t)|\right) .
$$

Further results for the case $a(t) \geq 0$ or for $\mathrm{cG}(1)$ can be found in the book.

Further resources:

- whitman.edut'
- britannica.com

