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Chapter 7: Scalar initial value problems (summary)

February 12, 2021

Goal: Study exact solutions to particular IVPs and present Galerkin discretisations of these IVPs.

• Let f , a : (0,T ] → R be continuous and bounded for instance. Let u0 ∈ R. Consider the first order
linear DE {

u̇(t )+a(t )u(t ) = f (t ) for t ∈ (0,T ]

u(0) = u0.

The exact solution to the above IVP is given by the variation of constants formula (voc)

u(t ) = u0e−A(t ) +
∫ t

0
e−(A(t )−A(s)) f (s)ds,

where A(t ) =
∫ t

0
a(s)ds.

If a(t ) ≥ 0 for all t ∈ (0,T ], we have the following stability estimate

|u(t )| ≤ |u0|+
∫ t

0
| f (s)|ds

and the above IVP is called stable.

If a(t ) ≥α> 0 for all t ∈ (0,T ], we have the following stability estimate

|u(t )| ≤ e−αt |u0|+ 1

α
(1−e−αt ) max

0≤s≤T
| f (s)|

and the above IVP is called asymptotically stable.

If a(t ) < 0, the above IVP is called unstable.

• We define the continuous Galerkin scheme cG(1) for the following IVP{
u̇(t )+au(t ) = f (t ) for t ∈ (0,T ]

u(0) = u0.

Consider first a partition of the interval [0,T ] given by 0 = t0 < t1 < . . . < tN = T and the following
equation on the small interval [0, t1]:

Find U (t ) ∈P (1)(0, t1) s.t.∫ t1

0

(
U̇ (t )+aU (t )

)
v(t )ds =

∫ t1

0
f (t )v(t )ds for all v ∈P (0)(0, t1). (1)

By definition of these polynomial spaces, one can take v(t ) = 1 (constant) and

U (t ) = u0
t1 − t

t1
+U (t1)

t

t1
(linear).

Insert this in the equation (1) gives the following formula for the unknown U (t1):

(1+ at1

2
)U (t1) = (1− at1

2
)u0 +

∫ t1

0
f (t )dt .

Inserting the above in the definition of U (t ) provides the approximation by cG(1) on the first inter-
val [0, t1]. Repeat this procedure in the next interval.
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• The following generalisation of cG(1) is called a discontinuous Galerkin scheme. We briefly illus-
trate this procedure for a positive integer q :

For n = 1,2, . . . , N , find U (t ) ∈P (q)(tn−1, tn) such that∫ tn

tn−1

(
U̇ (t )+aU (t )

)
v(t )dt +U+

n−1v+
n−1 =

∫ tn

tn−1

f (t )v(t ),dt +U−
n−1v+

n−1 for all v ∈P (q)(tn−1, tn).

For q = 0, one gets the dG(0) scheme (defined on the interval [tn−1, tn]):

U (t ) =Un =Un−1 −kn aUn +
∫ tn

tn−1

f (t )dt ,

where kn denotes the length of the considered interval.

• We finally state some error estimates for continuous and discontinuous Galerkin schemes for IVP.

First, consider the initial value problem{
u̇(t )+a(t )u(t ) = f (t ) for t ∈ (0,T ]

u(0) = u0.

A posteriori error estimates for cG(1): Let U (t ) denote the cG(1) approximation of the exact solution
u(t ) of the above problem on a partition with time step-size k(t ) = kn = tn − tn−1 for t ∈ (tn−1, tn].
Then, one has

|u(t )−U (t )| ≤ S(T ) max
t∈[0,T ]

|k(t )2 d

dt
(a(t )U (t )− f (t ))|,

where S is some stability function, see the book for details.

A posteriori error estimates for dG(0): Let U (t ) denote the dG(0) approximation of the exact so-
lution u(t ) of the above problem on a partition with time step-size k(t ) = kn = tn − tn−1 for t ∈
(tn−1, tn]. Then, one has

|u(t )−U (t )| ≤ S(T ) max
t∈[0,T ]

|k(t )R(U (t ))|,

where R is some residual function, see the book for details.

Next, consider {
u̇(t )+au(t ) = f (t ) for t ∈ (0,T ]

u(0) = u0.

A priori error estimates for dG(0): Let U (t ) denote the dG(0) approximation of the exact solution
u(t ) of the above problem on a partition with time step-size k(t ) = kn = tn − tn−1 for t ∈ (tn−1, tn].
Under some assumptions, one has

|u(T )−U (T )| ≤ e

4
(e2|a|T −1) max

1≤n≤N
(kn max

t∈(tn−1,tn ]
|u̇(t )|).

Further results for the case a(t ) ≥ 0 or for cG(1) can be found in the book.

Further resources:

• whitman.edut’

• britannica.com
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https://www.whitman.edu/mathematics/calculus_online/section17.03.html
https://www.britannica.com/science/stability-solution-of-equations

