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Chapter 8: The heat equation in 1d (summary)

February 15, 2021

Goal: Briefly study the exact solution to some heat equations and present a numerical discretisation.

• Let us start with some stability estimates for the following heat equation
ut (x, t )−uxx (x, t ) = f (x, t ) 0 < x < 1,0 < t ≤ T

u(0, t ) = 0,ux (1, t ) = 0 0 < t ≤ T

u(x,0) = u0(x) 0 < x < 1,

where u0 and f are given functions.

The solution to the above problem statisfy the following estimates

∥u(·, t )∥L2(0,1) ≤ ∥u0∥L2(0,1) +
∫ t

0

∥∥ f (·, s)
∥∥

L2(0,1) ds.

∥ux (·, t )∥L2(0,1) ≤
∥∥u′

0

∥∥
L2(0,1) +

∫ t

0

∥∥ f (·, s)
∥∥

L2(0,1) ds.

When f = 0, one gets
∥u(·, t )∥L2(0,1) ≤ ∥u0∥L2(0,1) e−2t .

When f = 0 and some fixed ε> 0, one gets for all t ∈ (0,T ]∫ t

ε
∥ut (·, s)∥L2(0,1) ds ≤ 1

2

√
ln

(
t

ε

)
∥u0∥L2(0,1) .

• Next, we discretise the inhomogeneous heat equation with homogeneous Dirichlet boundary con-
ditions 

ut (x, t )−uxx (x, t ) = f (x, t ) 0 < x < 1,0 < t ≤ T

u(0, t ) = u(1, t ) = 0 0 < t ≤ T

u(x,0) = u0(x) 0 < x < 1,

where u0 and f are given functions.

Since it is seldom possible to find the exact solution u(x, t ) to the above problem, we need to find a
numerical approximation of it. We proceed as follows

1. To get a VF of the heat equation, consider the test/trial space

V 0 = {
v : [0,1] →R : v, v ′ ∈ L2(0,1), v(0) = v(1) = 0

}
. Then, multiply the DE by a test function

v ∈V 0, integrate over [0,1], and use integration by parts to get the VF: For all 0 < t ≤ T

Find u(·, t ) ∈V 0 s.t. (ut (·, t ), v)L2 + (ux (·, t ), vx )L2 = (
f (·, t ), v

)
L2 ∀v ∈V 0 (VF)

with the initial condition u(x,0) = u0(x).

2. To get a FE problem, we consider the following subspace of the above space V 0

V 0
h = {

v : [0,1] →R : v cont. pw. linear on unif. partition Th , v(0) = v(1) = 0
}= span(φ1, . . . ,φm),

where h = 1
m+1 and φ j are the hat functions.

The FE problem then reads: For all 0 < t ≤ T

Find U (·, t ) ∈V 0
h s.t.

(
Ut (·, t ),χ

)
L2 +

(
Ux (·, t ),χx

)
L2 =

(
f (·, t ),χ

)
L2 ∀χ ∈V 0

h (FE)

with the initial condition U (x,0) =πhu0(x) the cont. pw. linear interpolant of u0.
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3. From the above FE problem, we obtain a system of linear ODE by choosing the test functions

χ=φi for i = 1, . . . ,m and writing U (x, t ) =
m∑

j=1
ζ j (t )φ j (x) with unknown coordinates ζ j (t ).

Inserting everything in (FE), one gets the ODE

M ζ̇(t )+Sζ(t ) = F (t ) (ODE)

ζ(0),

where M is the (already seen) m×m mass matrix, S is the (already seen) m×m stiffness matrix,
F (t ) is an m ×1 vector with entries Fi (t ) = ( f (·, t ),φi )L2 for i = 1, . . . ,m, the initial condition is
given by

ζ(0) =

 u0(x1)
...

u0(xm)

 ,

and the unknown vector reads

ζ(t ) =

 ζ1(t )
...

ζm(t )

 .

4. To find a numerical approximation of ζ(t ) at some discrete time grid t0 = 0 < t1 < . . . < tN = T ,
with t j − t j−1 = k = T

N , one can for instance use backward Euler scheme which reads

ζ(0) = ζ(0)

(M +kS)ζ(n+1) = Mζ(n) +kF (tn+1) for n = 0,1,2, . . . , N −1.

Solving these linear systems at each time step provides numerical approximations ζ(n) ≈ ζ(tn)
that can be inserted in the FE solution to get approximations to the exact solution to the heat

equation
m∑

j=1
ζ j (tn)φ j (x) ≈ u(x, tn).

Further resources:

• wikipedia.org

• math.lamar.edu
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https://en.wikipedia.org/wiki/Heat_equation
https://tutorial.math.lamar.edu/classes/de/theheatequation.aspx

