Chapter 12: FEM for heat equations in higher dimensions (summary)

March 1, 2021

Goal: Study the exact solution to heat equations (stability) and derive a FE discretisation for these PDEs.

- Let $\Omega \subset \mathbb{R}^{d}$ be a nice domain with smooth boundary. The solution to the inhomogeneous heat equation

$$
\left\{\begin{array}{l}
u_{t}-\Delta u=f \quad \text { in } \quad \Omega \times \mathbb{R}_{+} \\
u=0 \quad \text { on } \quad \partial \Omega \times \mathbb{R}_{+} \\
u(\cdot, 0)=u_{0} \quad \text { in } \Omega
\end{array}\right.
$$

may be expressed thanks to Duhamel's formula/the variation of constants formula

$$
u(t)=E(t) u_{0}+\int_{0}^{t} E(t-s) f(s) \mathrm{d} s
$$

where one writes $u(t)$ for $u(\cdot, t)$ and similarly for $f(s)$. Here, $E(t)=\mathrm{e}^{\Delta t}$ denotes the solution operator to the linear part $u_{t}-\Delta u=0$.

- Since $\|E(t) v\|_{L^{2}(\Omega)} \leq\|v\|_{L^{2}(\Omega)}$ for all $t>0$, one directly gets the stability estimates

$$
\|u(t)\|_{L^{2}(\Omega)} \leq\left\|u_{0}\right\|_{L^{2}(\Omega)}+\int_{0}^{t}\|f(s)\|_{L^{2}(\Omega)} \mathrm{d} s
$$

In addition, when $f \equiv 0$ (see page 263 in the book if interested in details), one has the following estimate

$$
\int_{0}^{t}\|\nabla u(\cdot, s)\|_{L^{2}(\Omega)}^{2} \mathrm{~d} s \leq \frac{1}{2}\left\|u_{0}\right\|_{L^{2}(\Omega)}
$$

- The variational formulation of the above heat equation reads:

Find $u(\cdot, t) \in H_{0}^{1}(\Omega)$, for $t>0, \quad$ such that $\quad\left(u_{t}, v\right)_{L^{2}(\Omega)}+(\nabla u, \nabla v)_{L^{2}(\Omega)}=(f, v)_{L^{2}(\Omega)} \quad \forall v \in H_{0}^{1}(\Omega)$ and $u(\cdot, 0)=u_{0}$ in Ω for the initial value. We also denote $a(u, v)=(\nabla u, \nabla v)_{L^{2}(\Omega)}$.

- Let now T_{h} denote a mesh of Ω and V_{h} the space of continuous piecewise linear functions of T_{h}. Consider the space $V_{h}^{0}=\left\{v: \Omega \rightarrow \mathbb{R}: v \quad\right.$ continuous pw linear on T_{h} and $v=0$ on $\left.\partial \Omega\right\}$ and observe that $V_{h}^{0}=\operatorname{span}\left(\left\{\varphi_{j}\right\}_{j=1}^{n_{i}^{h}}\right)$, where n_{i} denotes the number of interior nodes. The finite element problem for the above heat equation reads

Find $\quad u_{h}(\cdot, t) \in V_{h}^{0}(\Omega)$, for $\quad t>0, \quad$ such that $\quad\left(u_{h, t}, \chi\right)_{L^{2}(\Omega)}+\left(\nabla u_{h}, \nabla \chi\right)_{L^{2}(\Omega)}=(f, \chi)_{L^{2}(\Omega)} \quad \forall \chi \in V_{h}^{0}(\Omega)$ and $u_{h}(x, 0)=\pi_{h} u_{0}(x)$ in Ω for the initial value.
As always, writing $u_{h}(x, t)=\sum_{j=1}^{n_{i}} \zeta_{j}(t) \varphi_{j}(x)$ and taking $\chi=\varphi_{i}$ in the FE gives the system of linear ODEs

$$
\left\{\begin{array}{l}
M \dot{\zeta}(t)+S \zeta(t)=F(t) \\
\zeta(0)=\zeta_{0}
\end{array}\right.
$$

One has the following a priori error estimate for the FE approximation of the heat equation

$$
\left\|u_{h}(\cdot, t)-u(\cdot, t)\right\|_{L^{2}(\Omega)} \leq\left\|\pi_{h} u_{0}-u_{0}\right\|_{L^{2}(\Omega)}+C h^{2}\left(\left\|u_{0}\right\|_{H^{2}(\Omega)}+\int_{0}^{t}\left\|u_{t}(\cdot, s)\right\|_{H^{2}(\Omega)} \mathrm{d} s\right)
$$

where we recall that $\pi_{h} u_{0}$ denotes the continuous pw linear interpolant of u_{0}.

- A useful tool in the proof of the above result, and in general, is the Ritz projection $R_{h}: H_{0}^{1}(\Omega) \rightarrow$ $V_{h}^{0}(\Omega)$. This is defined as the orthogonal projection with respect to the energy inner product: For $v \in H_{0}^{1}(\Omega)$ one has

$$
a\left(R_{h} v-v, \chi\right)=0 \quad \forall \chi \in V_{h}^{0} .
$$

Under some assumptions on the domain Ω and v, one has the estimate

$$
\left\|R_{h} v-v\right\|_{L^{2}(\Omega)} \leq C h^{2}\|\nu\|_{H^{2}(\Omega)} .
$$

Further resources:

- wikipedia.org
- pims.math.ca
- wikiversity.org
- wikiversity.org
- wikiversity.org
- fenicsproject.org
- math.uci.edu

