Chapter 13: FEM for wave equations in higher dimensions (summary)

March 1, 2021

Goal: Extend some of the results from Chapter 9 to higher dimensions.

- Let $\Omega \subset \mathbb{R}^{d}$ be a nice domain with smooth boundary. Consider the homogeneous wave equation

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u=0 \text { in } \Omega \times \mathbb{R}_{+} \\
u=0 \text { on } \partial \Omega \times \mathbb{R}_{+} \\
u(\cdot, 0)=u_{0} \text { in } \Omega \\
u_{t}(\cdot, 0)=v_{0} \text { in } \Omega .
\end{array}\right.
$$

One has conservation of energy for solutions to the above PDE:

$$
\frac{1}{2}\left(\left\|u_{t}(\cdot, t)\right\|_{L^{2}(\Omega)}^{2}+\|\nabla u(\cdot, t)\|_{L^{2}(\Omega)}^{2}\right)=\frac{1}{2}\left(\left\|v_{0}\right\|_{L^{2}(\Omega)}^{2}+\left\|\nabla u_{0}\right\|_{L^{2}(\Omega)}^{2}\right)=\text { Const } \quad \forall t>0 .
$$

- The variational formulation of the inhomogeneous wave equation

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u=f \text { in } \Omega \times \mathbb{R}_{+} \\
u=0 \text { on } \partial \Omega \times \mathbb{R}_{+} \\
u(\cdot, 0)=u_{0} \text { in } \Omega \\
u_{t}(\cdot, 0)=v_{0} \text { in } \Omega .
\end{array}\right.
$$

reads:
Find $u(\cdot, t) \in H_{0}^{1}(\Omega)$, for $t>0, \quad$ such that $\quad\left(u_{t t}, \nu\right)_{L^{2}(\Omega)}+(\nabla u, \nabla \nu)_{L^{2}(\Omega)}=(f, \nu)_{L^{2}(\Omega)} \quad \forall v \in H_{0}^{1}(\Omega)$ and $u(\cdot, 0)=u_{0}, u_{t}(\cdot, 0)=v_{0}$ in Ω for the initial values.

- Let now T_{h} denotes a mesh of Ω and V_{h} the space of continuous piecewise linear functions of T_{h}. Consider the space $V_{h}^{0}=V_{h}^{0}(\Omega)=\left\{v: \Omega \rightarrow \mathbb{R}: v\right.$ continuous pw linear on T_{h} and $v=0$ on $\left.\partial \Omega\right\}$ and observe that $V_{h}^{0}=\operatorname{span}\left(\left\{\varphi_{j}\right\}_{j=1}^{n_{i}}\right)$, where n_{i} denotes the number of interior nodes. The finite element problem for the above wave equation reads

Find $\quad u_{h}(\cdot, t) \in V_{h}^{0}(\Omega)$, for $t>0, \quad$ such that $\quad\left(u_{h, t}, \chi\right)_{L^{2}(\Omega)}+\left(\nabla u_{h}, \nabla \chi\right)_{L^{2}(\Omega)}=(f, \chi)_{L^{2}(\Omega)} \quad \forall \chi \in V_{h}^{0}(\Omega)$ and $u_{h}(x, 0)=\pi_{h} u_{0}(x), u_{h, t}(x, 0)=\pi_{h} v_{0}(x)$ in Ω for the initial values.
As always, writing $u_{h}(x, t)=\sum_{j=1}^{n_{i}} \zeta_{j}(t) \varphi_{j}(x)$ and taking $\chi=\varphi_{i}$ in the FE problem gives the system of linear ODEs

$$
\left\{\begin{array}{l}
M \ddot{\zeta}(t)+S \zeta(t)=F(t) \\
\zeta(0)=\zeta_{0}, \dot{\zeta}(0)=\eta_{0} .
\end{array}\right.
$$

One has the following a priori error estimate for the FE approximation of the homogeneous wave equation
$\left\|u_{h}(\cdot, t)-u(\cdot, t)\right\|_{L^{2}(\Omega)} \leq C\left(\left|\pi_{h} u_{0}-R_{h} u_{0}\right|_{1}+\left\|\pi_{h} v_{0}-v_{0}\right\|_{L^{2}(\Omega)}\right)+C h^{2}\left(\|u(t)\|_{H^{2}(\Omega)}+\int_{0}^{t}\left\|u_{t t}(\cdot, s)\right\|_{H^{2}(\Omega)} \mathrm{d} s\right)$, where we recall that R_{h} denotes Ritz projection.

