Chapter 14: The finite element (summary)

March 4, 2021

Goal: Study the concept of finite element.

- A finite element consists of the triplet (K, P, Σ), where
- $K \subset \mathbb{R}^{d}$ is a polygon
- P is a polynomial function space on K (of finite dimension)
- Σ is a (unisolvent) set of linear functionals on $P: \Sigma=\left\{L_{1}, L_{2}, \ldots, L_{n}\right\}$, where $n=\operatorname{dim}(P)$.
K is the element domain: line in $1 d$, triangle or quadrilateral in $2 d$, brick in $3 d$, etc.
P is the space of shape functions: $P^{(1)}(K)$ the set of polynomials of degree at most 1 on $K, P^{(2)}(K)$ the set of polynomials of degree at most 2 on K, etc.
Σ is the set of nodal variables: This set uniquely specifies the basis functions/shape functions on each polygon K as well as the behaviour of these functions between adjacent polygons.
- Examples of finite elements are:
- $1 d$ Lagrange $P^{(k)}$ elements: Let $a<b$ and distinct points $x_{0}=a<x_{1}<\ldots<x_{k}=b$. The polygon K is the interval $[a, b], P=P^{(k)}(a, b)$ is the set of polynomials of degree less or equal to k on $[a, b]$, and $\Sigma=\left\{L_{0}, L_{1}, \ldots, L_{k}\right\}$ with L_{j} defined by $L_{j}: P \rightarrow \mathbb{R}$ and $L_{j}(f)=f\left(x_{j}\right)$ for $j=$ $0,1, \ldots, k$.
- $2 d$ linear Lagrange element: Here, K is the reference triangle, $P=P^{(1)}(K)$ the set of linear polynomials on K, and $\Sigma=\left\{L_{1}, L_{2}, L_{3}\right\}$ defined by $L_{1}(f)=f(0,0), L_{2}(f)=f(1,0)$, and $L_{3}(f)=$ $f(0,1)$ for any $f \in P$. One then determines the shape functions $\left\{\varphi_{j}\right\}_{j=1}^{3}$ by the conditions $\varphi_{j}(x, y)=a_{j}+b_{j} x+c_{j} y$ and $L_{i}\left(\varphi_{j}\right)=\delta_{i j}$. This provides the hat functions seen in earlier chapters: $\varphi_{1}(x, y)=1-x-y, \varphi_{1}(x, y)=x, \varphi_{1}(x, y)=y$.
- Variational crimes consist of errors done in a VF:

Consider the variational problem:

$$
\text { Find } u \in U \text { such that } a(u, v)=\ell(\nu) \quad \forall v \in V \text {. }
$$

In reality, one works with the following finite element problem

$$
\text { Find } u_{h} \in U_{h} \text { such that } a_{h}\left(u_{h}, \chi\right)=\ell_{h}(\chi) \quad \forall \chi \in V_{h} \text {, }
$$

where the index h denotes possible errors coming from numerical integrations, triangulations, etc. Error estimates have to be extended in this situation, doable but not easy at all.

Further resources:

- wikipedia.org
- simscale.com
- math.tamu.edu
- youtube.com

