Chapter 14: The finite element (summary)

March 4, 2021

Goal: Study the concept of finite element.

- A finite element consists of the triplet (K, P, Σ) , where
 - $K \subset \mathbb{R}^d$ is a polygon
 - *P* is a polynomial function space on *K* (of finite dimension)
 - Σ is a (unisolvent) set of linear functionals on *P*: $\Sigma = \{L_1, L_2, ..., L_n\}$, where $n = \dim(P)$.

K is the element domain: line in 1d, triangle or quadrilateral in 2d, brick in 3d, etc.

P is the space of shape functions: $P^{(1)}(K)$ the set of polynomials of degree at most 1 on *K*, $P^{(2)}(K)$ the set of polynomials of degree at most 2 on *K*, etc.

 Σ is the set of nodal variables: This set uniquely specifies the basis functions/shape functions on each polygon *K* as well as the behaviour of these functions between adjacent polygons.

- Examples of finite elements are:
 - 1*d* Lagrange $P^{(k)}$ elements: Let a < b and distinct points $x_0 = a < x_1 < ... < x_k = b$. The polygon *K* is the interval [a, b], $P = P^{(k)}(a, b)$ is the set of polynomials of degree less or equal to *k* on [a, b], and $\Sigma = \{L_0, L_1, ..., L_k\}$ with L_j defined by $L_j: P \to \mathbb{R}$ and $L_j(f) = f(x_j)$ for j = 0, 1, ..., k.
 - 2*d* linear Lagrange element: Here, *K* is the reference triangle, $P = P^{(1)}(K)$ the set of linear polynomials on *K*, and $\Sigma = \{L_1, L_2, L_3\}$ defined by $L_1(f) = f(0,0)$, $L_2(f) = f(1,0)$, and $L_3(f) = f(0,1)$ for any $f \in P$. One then determines the shape functions $\{\varphi_j\}_{j=1}^3$ by the conditions $\varphi_j(x, y) = a_j + b_j x + c_j y$ and $L_i(\varphi_j) = \delta_{ij}$. This provides the hat functions seen in earlier chapters: $\varphi_1(x, y) = 1 x y$, $\varphi_1(x, y) = x$, $\varphi_1(x, y) = y$.
- Variational crimes consist of errors done in a VF:

Consider the variational problem:

Find
$$u \in U$$
 such that $a(u, v) = \ell(v) \quad \forall v \in V$.

In reality, one works with the following finite element problem

Find $u_h \in U_h$ such that $a_h(u_h, \chi) = \ell_h(\chi) \quad \forall \chi \in V_h$,

where the index *h* denotes possible errors coming from numerical integrations, triangulations, etc. Error estimates have to be extended in this situation, doable but not easy at all.

Further resources:

- wikipedia.org
- simscale.com
- math.tamu.edu
- youtube.com