Serik Sagitov: Statistical Inference course

## Slides 3: Parametric models

- Normal distribution model
- Binomial and Hypergeometric distributions
- Gamma distribution model
- Method of moments
- Geometric distribution


Normal distribution model
Essentially, all models are wrong ... but some are useful.
A key parametric statistical model is the normal distribution $\mathrm{N}(\mu, \sigma)$ described by the probability density function

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \quad-\infty<x<\infty
$$

Parameters $\mu$ and $\sigma$ are the mean value and standard deviation of the probability distribution $\mathrm{N}(\mu, \sigma)$. All normal curves have the same shape.


Question. Additive noise model $=$ signal + noise. Why is $\mathrm{N}(0, \sigma)$ a relevant distribution for the noise part? Explain by referring to the CLT.

Test question
Using the table for $\mathrm{P}(Z \leq z)$ and $Z \sim \mathrm{~N}(0,1)$, check that $\frac{1}{\sqrt{2 \pi e}}=0.242$.

| $z$ | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
| 1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
| 1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
| 1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
| 2.0 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
| 2.1 | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |
| 2.2 | 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 |
| 2.3 | 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
| 2.4 | 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |
| 2.5 | 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |
| 2.6 | 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
| 2.7 | 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
| 2.8 | 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981 |
| 2.9 | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
| 3.0 | 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990 |
| 3.1 | 0.9990 | 0.9991 | 0.9991 | 0.9991 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9993 |
| 3.2 | 0.9993 | 0.9993 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9995 | 0.9995 | 0.9995 |
| 3.3 | 0.9995 | 0.9995 | 0.9995 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9997 |
| 3.4 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9998 |

An urn contains $N$ balls labelled as 0 or 1 . Let $p$ be the population proportion of 1's. In this case the population distribution is Bernoulli distribution with parameter $p$ denoted by $\operatorname{Bin}(1, p)$.

Draw $n$ balls from the urn, and call the sample mean a sample proportion

$$
\bar{x}=\frac{x_{1}+\ldots+x_{n}}{n}=\hat{p}
$$

For sampling with replacement, the number of 1's in the sample

$$
T=X_{1}+\ldots+X_{n} \sim \operatorname{Bin}(n, p)
$$

has a binomial distribution.
For sampling without replacement, we get a hypergeometric distribution

$$
T \sim \operatorname{Hyp}(N, n, p)
$$

Here all $X_{i} \sim \operatorname{Bin}(1, p)$ but they are dependent random variables.
Question. Why $\hat{p}$ is an unbiased and consistent estimate of $p$ in both cases?

Binomial and Hypergeometric distributions
The binomial distribution $\operatorname{Bin}(n, p)$ has mean and variance

$$
\mu=n p, \quad \sigma^{2}=n p(1-p) .
$$

The hypergeometric distribution $\operatorname{Hyp}(N, n, p)$ has mean and variance

$$
\mu=n p, \quad \sigma^{2}=n p(1-p)\left(1-\frac{n-1}{N-1}\right)
$$

Standard error of $\hat{p}$ for sampling with replacement

$$
s_{\hat{p}}=\sqrt{\frac{\hat{p}(1-\hat{p})}{n-1}}
$$

and for sampling without replacement

$$
s_{\hat{p}}=\sqrt{\frac{\hat{p}(1-\hat{p})}{n-1}} \sqrt{1-\frac{n}{N}} .
$$

Question. Course data: proportion of females was $\hat{p}=\frac{27}{94}=0.29$ yielding

$$
I_{p} \approx \hat{p} \pm 1.96 \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n-1}}=0.29 \pm 0.09=(0.20,38)
$$

What does interval $(0.20,38)$ say about the proportion $p$ ?

Gamma distribution $\operatorname{Gam}(\alpha, \lambda)$

$$
f(x)=\frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x^{\alpha-1} e^{-\lambda x}, \quad x>0
$$

is described by the shape parameter $\alpha>0$ and the rate parameter $\lambda>0$. The gamma density function involves the gamma function

$$
\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x
$$

which is an extension of the factorial to non-integer numbers, in that

$$
\Gamma(k)=(k-1)!\text { for } k=1,2, \ldots
$$

Different values of $\alpha$ bring different shapes for the gamma curve. If $\alpha=1$, then we get an exponential distribution $\operatorname{Gam}(1, \lambda)=\operatorname{Exp}(\lambda)$.

If $\alpha=k$ is integer, and $X_{i} \sim \operatorname{Exp}(\lambda)$ are independent, then

$$
X_{1}+\ldots+X_{k} \sim \operatorname{Gam}(k, \lambda)
$$

The mean and variance values of the gamma distribution

$$
\mu=\frac{\alpha}{\lambda}, \quad \sigma^{2}=\frac{\alpha}{\lambda^{2}} .
$$

Question: how to estimate unknown population parameters $(\alpha, \lambda)$ given a random sample $\left(x_{1}, \ldots, x_{n}\right)$ generated by $\operatorname{Gam}(\alpha, \lambda)$ ?
Method of moments is build around equations for the first two population moments

$$
\mathrm{E}(X)=\frac{\alpha}{\lambda}, \quad \mathrm{E}\left(X^{2}\right)=\frac{\alpha(1+\alpha)}{\lambda^{2}}
$$

Replacing the unknown $\mathrm{E}(X)$ and $\mathrm{E}\left(X^{2}\right)$ with unbiased and consistent estimates $\bar{x}$ and $\overline{x^{2}}$ we get two equations with two unknowns:

$$
\frac{\alpha}{\lambda}=\bar{x}, \quad \frac{\alpha(1+\alpha)}{\lambda^{2}}=\overline{x^{2}}
$$

or equivalently,

$$
\frac{\alpha}{\lambda}=\bar{x}, \quad \frac{1+\alpha}{\lambda}=\frac{\overline{x^{2}}}{\bar{x}}
$$

Solving these we obtain the method of moments estimates $\tilde{\alpha}$ and $\tilde{\lambda}$.

## Example: 24 heights

Since $\bar{x}=181.46, \quad \overline{x^{2}}=32964.2$, we get a pair of equations

$$
\frac{\alpha}{\lambda}=181.46, \quad \frac{1+\alpha}{\lambda}=\frac{32964.2}{181.46}=181.66
$$

which give the method of moments estimates

$$
\tilde{\lambda}=5.00, \quad \tilde{\alpha}=907.3
$$

## Example: 130 hopping birds

Numbers of hops between flights for $n=130$ birds

| Number of hops | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Tot |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | 48 | 31 | 20 | 9 | 6 | 5 | 4 | 2 | 1 | 1 | 2 | 1 | 130 |

The histogram reminds of a geometric distribution $\operatorname{Geom}(p)$


## Geometric distribution model

Geometric mean, variance, and the second moment are

$$
\mu=\frac{1}{p}, \quad \sigma^{2}=\frac{1-p}{p^{2}}, \quad \mathrm{E}\left(X^{2}\right)=\frac{1-p}{p^{2}}+\frac{1}{p^{2}}=\frac{2-p}{p^{2}} .
$$

Using the sample moments

$$
\begin{gathered}
\bar{x}=\frac{\text { total number of hops }}{\text { number of birds }}=\frac{363}{130}=2.79, \\
\overline{x^{2}}=\frac{1^{2} \cdot 48+2^{2} \cdot 31+\ldots+11^{2} \cdot 2+12^{2} \cdot 1}{130}=13.20,
\end{gathered}
$$

we can find two MM-estimates from the equations

$$
\bar{x}=\frac{1}{p}, \quad \overline{x^{2}}=\frac{2-p}{p^{2}} .
$$

The first equation gives $\tilde{p}_{1}=\frac{1}{2.79}=0.36$, while the second can be written as

$$
(13.2) \cdot p^{2}+p-2=0
$$

giving a similar answer $\tilde{p}_{2}=0.35$.
Question. Are $\tilde{p}_{1}$ and $\tilde{p}_{2}$ unbiased estimates of $p$ ? Are they consistent estimates?

