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Slides 6: Likelihood ratio tests

• Likelihood ratio

• Nested hypotheses

• Chi-square null distribution

• Chi-squared test of goodness of fit

• A case study

Likelihood ratio test statistic = −2 log
maxθ∈Ω0 L(θ)

maxθ∈Ω L(θ)

has χ2
df as an approximate null distribution, with

df = dim(Ω)− dim(Ω0)
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Two simple hypotheses

A general method of finding asymptotically optimal tests (having the
largest power for a given α) takes likelihood ratio as the test statistic.

Consider a parametric population distribution with a single parameter θ
and a likelihood function L(θ) = L(θ;x1, . . . , xn). For testing

H0 : θ = θ0 against H1 : θ = θ1,

use the likelihood ratio
λ =

L(θ0)

L(θ1)

as a test statistic. Large values of λ suggest that H0 explains the data set
better than H1. Therefore, the likelihood ratio test rejects H0 for small
values of the likelihood ratio.

Likelihood ratio rejection rule is {λ ≤ λα}.

Neyman-Pearson lemma: the likelihood ratio test is optimal in the case
of two simple hypothesis.

Question. How do we find the critical value λα?
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Nested hypotheses

For example, consider N(µ, σ) model with θ = (µ, σ). Instead of a pair of
two alternative hypotheses H0 : µ = µ0 against H1 : µ 6= µ0, one can
think in terms of a pair of nested hypothesis

H0 : µ = µ0, H : µ ∈ (−∞,∞).

More generally, consider

H0 : θ ∈ Ω0, H : θ ∈ Ω,

where parameter sets Ω0 ⊂ Ω are such that dim(Ω) > dim(Ω0).
Generalised likelihood ratio

λ̃ = L(θ̂0)

L(θ̂)
,

is defined in terms of two maximum likelihood estimates

θ̂0 = maximises the likelihood function L(θ) over θ ∈ Ω0,
θ̂ = maximises the likelihood function L(θ) over θ ∈ Ω.

Question. What is df = dim(Ω)− dim(Ω0) in the example above?
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Chi-square null distribution

Generalised likelihood ratio test rejects H0 for small values of λ̃ or
equivalently for large values of

− ln λ̃ = lnL(θ̂)− lnL(θ̂0).

It turns out that the test statistic −2 ln Λ̃ has a nice approximate null
distribution

−2 ln Λ̃
H0≈ χ2

df , where df = dim(Ω)− dim(Ω0).

χ2
k-distribution is the gamma distribution with α = k

2
, λ = 1

2
. If

independent Z1, . . . , Zk have the same N(0,1) distribution, then

Z2
1 + . . .+ Z2

k ∼ χ2
k.

Question. Consider N(µ, σ) model with θ = (µ, σ). With H0 : µ = µ0

against H1 : µ 6= µ0, how would you connect the corresponding likelihood
ratio test to the large sample test for the mean?
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Chi-squared test of goodness of fit

Suppose that the population distribution is discreet with probabilities
(p1, . . . , pJ). A sample of size n is summarised by the vector of observed
counts whose joint distribution is multinomial

(O1, . . . , OJ) ∼ Mn(n; p1, . . . , pJ),

P(O1 = k1, . . . , OJ = kJ) =
n!

k1! · · · kJ !
pk11 · · · p

kJ
J .

Consider a parametric model for the data

H0 : (p1, . . . , pJ) = (v1(δ), . . . , vJ(δ))

with unknown r-dimensional parameter δ = (δ1, . . . , δr).

To see if the proposed model fits the data, compute δ̂, the maximum
likelihood estimate of δ, and then the expected cell counts

Ej = n · vj(δ̂),

where ”expected” means expected under the null hypothesis model.

Question. What is Ω0 and Ω in this setting?
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In the current setting, the likelihood ratio test statistic −2 log λ̃ is
approximated by the so-called chi-squared test statistic

X2 =

J∑
j=1

(Oj − Ej)2

Ej
.

The approximate null distribution of X2 is χ2
df with df= J − 1− r, since

dim(Ω0) = r and dim(Ω) = J − 1,

where dim stands for dimension or the number of independent
parameters. A mnemonic rule for the number of degrees of freedom:

df = (number of cells)− 1

− (number of independent parameters estimated from the data).

Since the chi-squared test is approximate, all expected counts are
recommended to be at least 5. If not, then you should combine small
cells in larger cells and recalculate the number of degrees of freedom df.
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Case study: sex ratio

A 1889 study made in Germany recorded the numbers of boys
(x1, . . . , xn) for n = 6115 families with 12 children each. The general
model is described by a vector θ = (p0, p1, . . . , p12) such that

pj = P(X = j), j = 0, 1, . . . , 12.

We first test a simple null hypothesis claiming that X ∼ Bin(12, 0.5), or

H0 : pj =

(
12

j

)
· 2−12, j = 0, 1, . . . , 12.

The expected cell counts

Ej = 6115 ·

(
12

j

)
· 2−12, j = 0, 1, . . . , 12,

are summarised in the table below. The chi-squared test statistic

X2 =

12∑
j=0

(Oj − Ej)2

Ej
.
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has the observed value X2 = 249.2. We have df = 13− 1− 0 = 12.
Since χ2

12(0.005) = 28.3, we reject H0 at 0.5% level.

cell j Oj Model 1: Ej and
(Oj−Ej)

2

Ej
Model 2: Ej and

(Oj−Ej)
2

Ej

0 7 1.5 20.2 2.3 9.6

1 45 17.9 41.0 26.1 13.7

2 181 98.5 69.1 132.8 17.5

3 478 328.4 68.1 410.0 11.3

4 829 739.0 11.0 854.2 0.7

5 1112 1182.4 4.2 1265.6 18.6

6 1343 1379.5 1.0 1367.3 0.4

7 1033 1182.4 18.9 1085.2 2.5

8 670 739.0 6.4 628.1 2.8

9 286 328.4 5.5 258.5 2.9

10 104 98.5 0.3 71.8 14.4

11 24 17.9 2.1 12.1 11.7

12 3 1.5 1.5 0.9 4.9

Total 6115 6115 X2 = 249.2 6115 X2 = 110.5

Consider next a more flexible model X ∼ Bin(12, δ). Model 2 leads to a
composite null hypothesis

H0 : pj =

(
12

j

)
· δj(1− δ)12−j , j = 0, . . . , 12, 0 ≤ δ ≤ 1.
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Estimate δ using the maximum likelihood estimate of the proportion of
boys in a family

δ̂ =
number of boys

number of children
=

1 · 45 + 2 · 181 + . . .+ 12 · 3
6115 · 12

= 0.481
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The expected cell counts

Ej = 6115 ·

(
12

j

)
· δ̂j · (1− δ̂)12−j

are given in the table and the graph above.

The observed chi-squared test statistic for Model 2

X2 = 110.5

is much smaller than that for Model 1. However, with r = 1, df = 11, and
the table value χ2

11(0.005) = 26.76, we reject even Model 2 at 0.5% level.

We see that what is needed is an even more flexible model addressing
large variation in the observed cell counts.

Suggestion for Model 3: allow the probability of a male child δ to differ
from family to family. Namely, assume that for each family the value δ is
generated by a beta-distribution Beta(a, b).

Question. What is dimension r for the suggested Model 3?
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