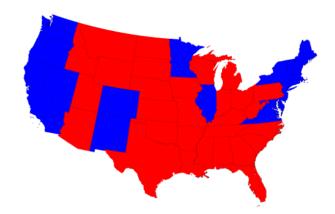
Serik Sagitov: Statistical Inference course

Slides 2: Stratified random sampling

- Stratified population
- Sample allocation
- Optimal allocation
- Proportional allocation
- Random allocation



Stratified population

Assume that a population consists of k strata with known strata fractions (w_1, \ldots, w_k) such that

$$w_1 + \ldots + w_k = 1.$$

Suppose each stratum is characterised by its mean μ_j and standard deviation σ_j . The population population mean

$$\mu = w_1 \mu_1 + \ldots + w_k \mu_k$$

is the parameter we would like to know. Denote by

$$\overline{\sigma^2} = w_1 \sigma_1^2 + \ldots + w_k \sigma_k^2$$

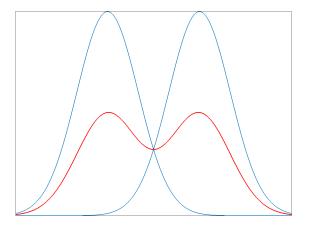
the weighted average variance. Then, the total population variance

$$\sigma^2 = \overline{\sigma^2} + \sum_{j=1}^k w_j (\mu_j - \mu)^2$$

takes into account two sources of variation: within strata variation and between strata variation.

Two equal strata

For example, a mixture of two normal distributions (k = 2) with $w_1 = w_2 = 0.5$ would result in camel-curve for the population distribution



Notice that the camel-curve has a larger standard deviation than any of the strata curves.

Question. Think of the heights of people in a population with two equally large strata (women and men). Then the population distribution will look like a camel-curve. Why the central limit theorem fails in such a setting?

Sample allocation

The random sampling of size n leads to \bar{x} as an unbiased estimate of μ with standard error $s_{\bar{x}} = \frac{s}{\sqrt{n}}$, where s is the sample standard deviation. A stratified random sampling consists of allocating n observations among k strata. A natural allocation is proportional $n_j = nw_j$ to the strata size. Assume we collected k independent random samples of sample sizes (n_1, \ldots, n_k) , and let $(\bar{x}_1, \ldots, \bar{x}_k)$ be the corresponding sample means. Define a stratified sample mean by

$$\bar{x}_{\rm s} = w_1 \bar{x}_1 + \ldots + w_k \bar{x}_k$$

Observe that for any allocation (n_1, \ldots, n_k) , the stratified sample mean is an unbiased estimate of μ since

$$E(\bar{X}_{s}) = w_1 E(\bar{X}_1) + \ldots + w_k E(\bar{X}_k) = w_1 \mu_1 + \ldots + w_k \mu_k = \mu_k$$

Question. Political polls have failed to accurately predict the USA presidential election results. What types of stratification of the USA population might improve the prediction performance of the polls?

Female heights $n_1 = 24$

 $155,\ 158,\ 160, 160, 162, 162, 162, 163, 165, 165, 168, 168,$

170,170,170,170,171,172,172,173,173,174,175,178, 180,182,188 Sample mean, standard deviation, and standard error

$$\bar{x}_1 = 169.11, \quad s_1 = 7.71, \quad s_{\bar{x}_1} = 1.48$$

Male heights $n_2 = 67$

185, 185, 185, 185, 185, 186, 186, 187, 187, 187, 187, 188, 188, 189,

Sample mean, standard deviation, and standard error

$$\bar{x}_2 = 182.58, \quad s_2 = 9.19, \quad s_{\bar{x}_1} = 0.80$$

Stratified sample mean (assuming $w_1 = w_2 = 0.5$)

$$\bar{x}_{s} = \frac{169.111 + 182.582}{2} = 175.85, \quad s_{\bar{x}_{s}} = \frac{1}{2}\sqrt{s_{\bar{x}_{1}}^{2} + s_{\bar{x}_{2}}^{2}} = 0.84$$

The expression for the variance of $\bar{X}_{\rm s}$

$$\operatorname{Var}(\bar{X}_{s}^{2}) = w_{1}^{2}\operatorname{Var}(\bar{X}_{1}) + \ldots + w_{k}^{2}\operatorname{Var}(\bar{X}_{k}) = \frac{w_{1}^{2}\sigma_{1}^{2}}{n_{1}} + \ldots + \frac{w_{k}^{2}\sigma_{k}^{2}}{n_{k}}$$

shows that the size of the random error depends on three vectors: $(w_1, \ldots, w_k), (\sigma_1, \ldots, \sigma_k), \text{ and } (n_1, \ldots, n_k).$

The last formula implies the next formula for the estimated standard error

$$s_{\bar{x}_{\mathrm{s}}} = \sqrt{\frac{w_1^2 s_1^2}{n_1} + \ldots + \frac{w_k^2 s_k^2}{n_k}},$$

as a function of the sample sizes (n_1, \ldots, n_k) . Here s_j is the sample standard deviation for strata j.

Using $(\bar{x}_s, s_{\bar{x}_s})$ we can build a 95% confidence interval for μ by the usual kind of formula

$$I_{\mu} \approx \bar{x}_{\rm s} \pm 1.96 \cdot s_{\bar{x}_{\rm s}}.$$

Question. How can you justify the use of the factor 1.96 in the stratified setting?

Optimal allocation

Optimisation problem: allocate $n = n_1 + \ldots + n_k$ observations among different strata to minimise the sampling error of \bar{x}_s .

Solution: optimal allocation

$$n_j = n \frac{w_j \sigma_j}{\bar{\sigma}}.$$

The optimal allocation assigns more observations to larger strata and strata with larger variation.

The optimal allocation gives the theoretical minimal variance

$$\operatorname{Var}(\bar{X}_{\rm so}) = \frac{\bar{\sigma}^2}{n},$$

where $\bar{\sigma}^2$ is the squared average standard deviation

$$\bar{\sigma} = w_1 \sigma_1 + \ldots + w_k \sigma_k.$$

The major drawback of the optimal allocation formula is that it requires knowledge of the standard deviations σ_j .

Question. If $\sigma_j = 0$, how large should be n_j ?

If σ_j are unknown, then a common sense approach is to allocate observations proportionally to the strata sizes, so that

$$n_1 = nw_1, \quad \dots, \quad n_k = nw_k.$$

The corresponding variance equals

$$\operatorname{Var}(\bar{X}_{\operatorname{sp}}) = \frac{w_1^2 \sigma_1^2}{n w_1} + \ldots + \frac{w_k^2 \sigma_k^2}{n w_k} = \frac{\overline{\sigma^2}}{n}$$

which is larger than $\operatorname{Var}(\bar{X}_{so}) = \frac{\bar{\sigma}^2}{n}$, because

$$\overline{\sigma^2} - \overline{\sigma}^2 = \sum w_j (\sigma_j - \overline{\sigma})^2.$$

On the other hand, $\operatorname{Var}(\bar{X}_{sp}) = \frac{\overline{\sigma^2}}{n}$ is smaller than $\operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n}$ since

$$\sigma^2 - \overline{\sigma^2} = \sum w_j (\mu_j - \mu)^2.$$

In summary, we have three unbiased estimated of μ with

$$\operatorname{Var}(\bar{X}_{\mathrm{so}}) \leq \operatorname{Var}(\bar{X}_{\mathrm{sp}}) \leq \operatorname{Var}(\bar{X}).$$

Proportional vs random allocation

Variability of σ_j across strata makes optimal allocation more effective than proportional

$$\operatorname{Var}(\bar{X}_{\mathrm{sp}}) - \operatorname{Var}(\bar{X}_{\mathrm{so}}) = \frac{1}{n} \sum w_j (\sigma_j - \bar{\sigma})^2$$

Variability in μ_j across strata makes proportional allocation more effective than the purely random sample

$$\operatorname{Var}(\bar{X}) - \operatorname{Var}(\bar{X}_{sp}) = \frac{1}{n} \sum w_j (\mu_j - \mu)^2.$$

Question. Observe that with the proportional allocation $n_i = nw_i$, we formally get

$$\bar{x}_{sp} = w_1 \bar{x}_1 + \ldots + w_n \bar{x}_k = \frac{n_1}{n} \bar{x}_1 + \ldots + \frac{n_k}{n} \bar{x}_k = \frac{x_1 + \ldots + x_n}{n} = \bar{x}.$$

However, this is not the mean of a truly random sample, since we know that usually,

$$\operatorname{Var}(\bar{X}_{\operatorname{sp}}) < \operatorname{Var}(\bar{X}).$$

Explain, what is going on here?