
Serik Sagitov: Statistical Inference course

Slides 15: Categorical data tests

• Small sample test for proportion

• Multinomial models for categorical data

• Chi-squared test of homogeneity

• Chi-squared test of independence

• Fisher’s exact test

• Matched-pairs design

• McNemar’s test

• Odds ratios

1



Small-sample test for proportion

Binomial model for the data value X ∼ Bin(n, p). To test H0: p = p0 for
a small n, use the exact null distribution X ∼ Bin(n, p0).

Example: extrasensory perception

A person is asked to guess the suits of 20 cards. The number of cards
guessed correctly X ∼ Bin(20, p).

For H0 : p = 0.25 and H1 : p > 0.25 the p-value is computed using
Bin(20,0.25) distribution

xobs 8 9 10 11

P(X ≥ x) .101 .041 .014 0.004

Suppose xobs = 9, then we reject H0 at α = 5% significance level.
In this case, the power function of the test is

p 0.27 0.30 0.40 0.5 0.60 0.70

P(X ≥ 9) 0.064 0.113 0.404 0.748 0.934 0.995

Question. What possible guessing strategy lies behind the one-sided
alternative H1 : p < 0.25?
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Multinomial model for categorical data

Data: n = 23480 suicides in US, 1970. Is there a seasonal variation?

Multinomial model: the observed counts ∼ Mn(n, p1, . . . , p12).
Month Oj Days poj Ej = npoj Oj − Ej
Jan 1867 31 0.085 1994 −127

Feb 1789 28 0.077 1801 −12

Mar 1944 31 0.085 1994 −50

Apr 2094 30 0.082 1930 164

May 2097 31 0.085 1994 103

Jun 1981 30 0.082 1930 51

Jul 1887 31 0.085 1994 -107

Aug 2024 31 0.085 1994 30

Sep 1928 30 0.082 1930 -2

Oct 2032 31 0.085 1994 38

Nov 1978 30 0.082 1930 48

Dec 1859 31 0.085 1994 -135

Simple H0 of no seasonal effect: H0 : (p1, . . . , p12) = (po1, . . . , p
o
12)

The χ2-test statistic: X2 =
∑

j

(Oj−Ej)
2

Ej
= 47.4.

Reject H0 for very small p-value: 1-pchisq(47.4,df=11)= 0.000002.

Question. Which months give the largest deviations from H0?
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Contingency tables

Example: marital status and educational level.
One sample of size n = 1436 is drawn from a population of married
women: 2× 2 contingency table , I = J = 2. Observed (expected) counts

Married only once Married more than once Total

College 550 (523.8) 61(87.2) 611

No college 681(707.2) 144(117.8) 825

Total 1231 205 1436

produce the chi-squared test statistic

X2 =
∑

(obs−exp)2

exp
= 16.01

Since Z ∼ N(0, 1) is equivalent to Z2 ∼ χ2
1, we get under H0

P(X2 > 16.01) ≈ P(|Z| > 4.001) = 2(1− Φ(4.001)) = 0.00006.

Reject the null hypothesis of independence. College-educated women,
once they marry, are less likely to divorce.

Question. How are the expected counts computed? Why df = 1?
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Cross-classification multinomial model

Consider a cross-classification for a pair of categorical factors A and B.

Factor A has I levels and factor B has J levels.

The joint distribution of a single cross-classification event (left table) and
the conditional distributions (right table).

b1 b2 . . . bJ Total

a1 π11 π12 . . . π1J π1·
a2 π21 π22 . . . π2J π2·
. . . . . . . . . . . . . . . . . .

aI πI1 πI2 . . . πIJ πI·
Total π·1 π·2 . . . π·J 1

b1 b2 . . . bJ

π1|1 π1|2 . . . π1|J
π2|1 π2|2 . . . π2|J
. . . . . . . . . . . .

πI|1 πI|2 . . . πI|J
1 1 . . . 1

πij = P(A = ai, B = bj), πi|j = P(A = ai|B = bj) =
πij

π·j

Hypothesis of independence H0 : πij = πi·π·j for all pairs (i, j)

Hypothesis of homegeniety H0 : πi|j = πi for all pairs (i, j)

Question. Can you prove that these two are equivalent?
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Chi-squared test of homogeneity
Consider a table of I × J observed counts obtained from J independent
samples taken from J population distributions:

Pop. 1 Pop. 2 . . . Pop. J Total

Category 1 n11 n12 . . . n1J n1·
Category 2 n21 n22 . . . n2J n2·
. . . . . . . . . . . . . . . . . .

Category I nI1 nI2 . . . nIJ nI·
Sample sizes n·1 n·2 . . . n·J n··

This model is described by J multinomial distributions

(N1j , . . . , NIj) ∼ Mn(n·j ;π1|j , . . . , πI|j), j = 1, . . . , J.

The total df = J(I − 1) for J independent samples of size I.

Under the hypothesis of homogeneity H0 : πi|j = πi for all (i, j)

MLE πi is the pooled sample proportion π̂i = ni·
n··

Expected cell counts Eij = n·j · π̂i =
ni·n·j
n··

X2 =
∑I

i=1

∑J
j=1

(
nij−

ni·n·j
n··

)2
ni·n·j
n··

with X2 H0≈ χ2
df , and df = (I − 1)(J − 1)
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Example: small cars and personality

A car company studies how customers’ attitude toward small cars relates
to different personality types.
The next table summarises the observed (expected) counts:

Cautious Middle-of-the-road Explorer Total

Favourable 79(61.6) 58(62.2) 49(62.2) 186

Neutral 10(8.9) 8(9.0) 9(9.0) 27

Unfavourable 10(28.5) 34(28.8) 42(28.8) 86

Total 99 100 100 299

The chi-squared test statistic is

X2 = 27.24 with df = (3− 1) · (3− 1) = 4.

After comparing χ2 with the table value χ2
4(0.005) = 14.86, we reject the

hypothesis of homogeneity at 0.5% significance level.

Persons who saw themselves as cautious conservatives are more likely to
express a favourable opinion of small cars.
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Chi-squared test of independence
Data: observed counts for a single cross-classifying sample

b1 b2 . . . bJ Total

a1 n11 n12 . . . n1J n1.

a2 n21 n22 . . . n2J n2.

. . . . . . . . . . . . . . . . . .

aI nI1 nI2 . . . nIJ nI.

Total n.1 n.2 . . . n.J n..

whose joint distribution is multinomial

(N11, . . . , NIJ) ∼ Mn(n··;π11, . . . , πIJ)

MLEs of πi· and π·j : π̂i· = ni·
n··

and π̂·j =
n·j
n··

Under the hypothesis of independence π̂ij =
ni·n·j
n2
··

we get the same expected cell counts as before Eij = n··π̂ij =
ni·n·j
n··

with the same X2 and the same approximate null distribution.

Test of independence df = (IJ − 1) − (I − 1 + J − 1) = (I − 1)(J − 1)

Test of homogeneity df = J(I − 1) − (I − 1) = (I − 1)(J − 1)
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Fisher’s exact test

Fisher’s exact test deals with the null hypothesis H0 : p1 = p2, when the
sample sizes are not sufficiently large for applying normal
approximations for the binomial distributions. We summarise binary
data of two independent samples in a 2× 2 table of sample counts

Sample 1 Sample 2 Total

Number of successes x y Np = x + y

Number of failures n − x m − y Nq = n +m − x − y

Sample sizes n m N = n +m

Fisher’s idea:use X as a test statistic conditionally on the total number
of successes x+ y. The null distribution of X is hypergeometric

X ∼ Hg(N,n, p)

with N = n+m being interpreted as the number of balls in an urn and
Np = x+ y as the number of black balls, meaning success as an outcome.

P(X = x) =
(Npx )( Nqn−x)

(Nn)
, max(0, n−Nq) ≤ x ≤ min(n,Np).

This distribution determines the rejection region of the test.
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Example: gender bias

Data were collected after 48 copies of the same file with 24 files labeled
as “male” and the other 24 labeled as “female” were sent to 48 experts.

Male Female Total

Promote 21 14 35

Hold file 3 10 13

Total 24 24 48

p = probability to promote file. We wish to test

H0 : p1 = p2 (no gender bias), H1 : p1 > p2 males are favoured.

Reject H0 in favour of H1 for large values of x under the null distribution

P(X = x) =

(
35
x

)(
13

24−x

)(
48
24

) =

(
35

35−x

)(
13

x−11

)(
48
24

) , 11 ≤ x ≤ 24.

This is a symmetric distribution with

P(X ≤ 14) = P(X ≥ 21) = 0.025.

so that a one-sided p-value = 0.025, and a two-sided p-value = 0.05. We
conclude that there is a significant evidence of sex bias, and reject H0.
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Case study: Hodgkin’s disease and tonsillectomy

Hodgkin disease which very low incidence of 2 in 10 000. To test a
possible influence of tonsillectomy on the onset of Hodgkin’s disease,
researchers use cross-classification data of the form

X Xc

D n11 n12

Dc n21 n22

where the four counts distinguish among sampled individual who are

either D = affected (have the Disease) or Dc = unaffected,
either X = eXposed (had tonsillectomy) or Xc = non-exposed.

Three possible sampling designs:

(1) simple random sampling: would give n11 = n12 = n21 = 0

(2) prospective study: would give n11 = n12 = 0

(3) retrospective study: take a affected-sample and a control
unaffected-sample, then find who had been exposed in the past
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Two studies gave different results

Two retrospective case-control studies had produced opposite results of
the chi-squared test of homogeneity.

Study A X Xc

D 67 34

Dc 43 64

Study B X Xc

D 41 44

Dc 33 52

Study A (Vianna, Greenwald, Davis, 1971) gave X2
A = 14.29 and the

p-value was found to be very small

P(X2
A ≥ 14.29) ≈ 2(1− Φ(

√
14.29)) = 0.0002.

Study B (Johnson and Johnson, 1972) gave X2
B = 1.53 and the p-value

was strikingly different

P(X2
B ≥ 1.53) ≈ 2(1− Φ(

√
1.53)) = 0.215.

It turned out that the study B was based on a design violating the
assumption of the chi-squared test of homogeneity.
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Matched-pairs design
In study B, the data consisted of m = 85 sibling pairs having same sex
and close age: one of the siblings was affected the other not. A proper
summary of the study B sample distinguishes among four groups of
sibling pairs: (X,X), (X,Xc), (Xc, X), (Xc, Xc)

unaffected X unaffected Xc Total

affected X m11 = 26 m12 = 15 41

affected Xc m21 = 7 m22 = 37 44

Total 33 52 85

Notice that this contingency table contains more information than the
previous one. An appropriate test in this setting is McNemar’s test (see
below). For the data of study B, the McNemar’s test statistic is

X2 =
(m12 −m21)2

m12 +m21
= 2.91,

giving the p-value of P(X2 ≥ 2.91) ≈ 2(1− Φ(
√

2.91)) = 0.09

The correct p-value is much smaller than that of 0.215 computed using
the test of homogeneity. Since there are very few informative, only
m12 +m21 = 22, observations, more data is required.
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McNemar’s test
Consider data of size m obtained by matched-pairs design from

unaffected X unaffected Xc Total

affected X p11 p12 p1.

affected Xc p21 p22 p2.

p.1 p.2 1

The null hypothesis is not the hypothesis of independence but rather

H0: p1. = p.1, or equivalently, H0: p12 = p21 = p for an unspecified p

MLEs for the population frequencies under the null hypothesis are

p̂11 =
m11

m
, p̂22 =

m22

m
, p̂12 = p̂21 = p̂ =

m12 +m21

2m
.

These yield the McNemar test statistic of the form

X2 =
∑
i

∑
j

(mij−mp̂ij)
2

mp̂ij
= (m12−m21)2

m12+m21
,

whose approximate null distribution is χ2
1. Here df = 4− 1− 2 = 1

because 2 independent parameters are estimated from the data.
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Odds ratios

Odds and probability of a random event A:

odds(A) = P(A)

P(Ā)
and P(A) = odds(A)

1+odds(A)

notice that for small P(A): odds(A) ≈ P(A). Conditional odds

odds(A|B) = P(A|B)
P(Ac|B)

= P(AB)
P(AcB)

.

Odds ratio for a pair of events defined by

∆AB = odds(A|B)
odds(A|Bc) = P(AB)P(AcBc)

P(AcB)P(ABc)
,

has the properties

∆AB = ∆BA, ∆ABc = 1
∆AB

and gives a measure of dependence between a pair of random events :

if ∆AB = 1, then events A and B are independent,
if ∆AB > 1, then P(A|B) > P(A|Bc) so that B favors A,
if ∆AB < 1, then P(A|B) < P(A|Bc) so that B hinders A.
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Odds ratios for case-control studies

Return to conditional probabilities and observed counts

X Xc Total

D P(X|D) P(Xc|D) 1

Dc P(X|Dc) P(Xc|Dc) 1

X Xc Total

D n11 n12 n1·

Dc n21 n22 n2·

The corresponding odds ratio

∆DX = P(X|D)P(Xc|Dc)
P(Xc|D)P(X|Dc) = odds(D|X)

odds(D|Xc)

quantifies the influence of eXposition to a certain factor on the onset of
the Disease in question. Estimated odds ratio

∆̂DX =
(n11/n1·)(n22/n2·)

(n12/n1·)(n21/n2·)
=
n11n22

n12n21
.

Example: Study A for Hodgkin’s disease gives the odds ratio

∆̂DX =
67 · 64

43 · 34
= 2.93

tonsillectomy increases the odds for Hodgkin’s onset by factor 2.93.
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