

Production service systems and Smart Maintenance

Torbjörn Ylipää torbjorn.ylipaa@chalmers.se 0721-87 91 26

CHALLENGES AND OPPORTUNITIES

Need for a clear strategy to implement digitalization solutions

Cost of production disturbance ~106 Bh SEK

Overall Equipment Effectiveness (OEE) of industrial equipment ~ 50 %

PRODUCTION SERVICE & MAINTENANCE SYSTEMS

Sets the agenda for Smart Maintenance

Data-driven decisions, human capital, internal and external integration

The link between maintenance and production

Together with industry

LEARNING OBJECTIVES

After this lecture, the students should be able to:

- □ Critically discuss problems with current definitions and views of maintenance
- Argue for key solutions to future challenges related to product and production maintenance
- □ Define the concept of Smart Maintenance
- Describe how a service-oriented organization can be applied to maintain a production system over its entire life-cycle

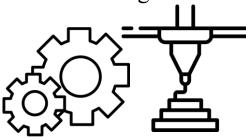
SHIFT TOWARDS A SERVICE-ORIENTED SOCIETY

What is a service?

Important components?

Impacts on a manufacturing company?

Examples?


Planning/monitoring
Training
Maintaining
Upgrading
Life-cycle responsibility
Customer orientation
New business models, e.g. leasing
...

INDUSTRIAL DIGITALIZATION – ENABLING TECHNOLOGIES

Big Data & Artificial Intelligence

Additive Manufacturing

Connectivity & 5G

Collaborative Automation

GRAND CHALLENGES

□ Automated and autonomous equipment must work!

- Even more technology to maintain
- **U**pgrading old machines

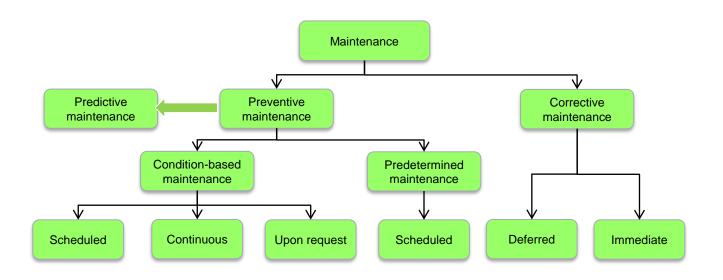
POTENTIAL WITH MODERN MAINTENANCE

Highest-ranked use cases, based on survey responses	Use case type	Impact	Data richness
Predict failure and recommend proactive maintenance for production and moving equipment	Predictive maintenance		1.3 1.0
Optimize complex manufacturing process in real time—determine where to dedicate resources to reduce bottlenecks and cycle time	Operations/logistics optimization (real time)	1.1	1.0
Predict future demand trends and potential constraints in supply chain	Forecasting	0.8	0.7
Identify design problems in pre-production to reduce ramp-up time to maximum output (i.e., yield ramp)	Predictive analytics	0.6	0.3
Identify root causes for low product yield (e.g., tool-/die-specific issues) in manufacturing	Discover new trends/ anomalies	0.5	0.7

[McKinsey, 2016]

TRADITIONAL MAINTENANCE

MAINTENANCE DEFINITION


"A combination of all technical, administrative and managerial actions during the life-cycle of an item, and intended to remain it in, or restore it to a state in which it can perform the required function."

[European Standard WI 319-003]

MAINTENANCE ACTIVITIES

MAINTENANCE GENERATIONS

Maintenance 1.0 (before 1950)

Reactive actions

Maintenance 2.0 (1950 – 1975)

- Preventive maintenance
- Maintenance department created

Maintenance 3.0 (1975 – 2000)

- Academic interest
- Prevent effects of failures
- Condition-based maintenance
- Design for maintainability
- Collaboration, e.g. TPM

Maintenance 4.0 (20??)

- Design for eliminating failures
- Even more extensive collaboration, e.g. Asset Management
- Holistic view
- IT solutions
- Smart Maintenance

OEE – OVERALL EQUIPMENT EFFECTIVENESS

Calculation of Overall Equipment Effectiveness - OEE

Planned p	roduction time				
Actual Pro	oduction time		1. Failure 2. Setup		Availability = <u>Planned Production Time – Downtime</u> * 100 <u>Planned Production Time</u>
Net Operating	time	 Idling and minor stoppage Reduced speed 			Operational Efficiency = <u>Design Cycle Time * Produced Amount</u> * 100 Actual Running Time
Valuable- operating time			- 	\rightarrow	Quality rate = <u>Produced Amount – Defect Amount</u> * 100 Produced Amount

OEE = Availability * Operational Efficiency * Quality rate

OEE FIGURES IN INDUSTRY

1990's	(Ljungberg 1998)	2006-2012 (Ylipää et al)
Planned stops	5%	6,6%
Unplanned stops	12%	9,6%
□ Set-ups	8%	11,5%
□ Availability	80%	78,9%
□ Utilization	77%	80,2%
□ Quality	99%	96,9%
	55%	51,5%

Low availability and operational efficiency are two main contributors to OEE losses

SUMMARY OF CHALLENGES FOR MAINTENANCE ORGANIZATIONS

Lack of systems perspective
Preventive instead of reactive
Quantification of maintenance effects
Need for collaboration or integration
Need for common goals
Necessity for digitalized manufacturing

Data-driven decisions

Decisions based on data

External integration

Maintenance as an actor outside the factory Smart Maintenance

Organizational design for maintenance in a digitalized manufacturing

Human Capital Resource

Maintenance practitioners' knowledge, competences and skills

Maintenance as a part of the whole factory

Data-driven decisions

- Data collection

Human capital resource

Internal integration

- Data quality
- Data analysis
- Augmenting human decision-making
- Automated decision making

Data-driven decisions

Human capital resource

Internal integration

- Adaptability
- Analysis competence
- Business competence
- Social skills
- IT competence
- Domain expertise

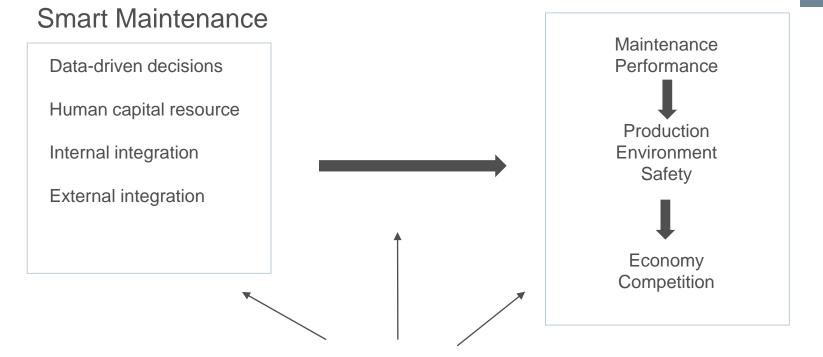
Data-driven decisions

Human capital resource

Internal integration

- Cross-functional collaboration
- Internal flow of data, information, and knowledge
- Joint decision-making

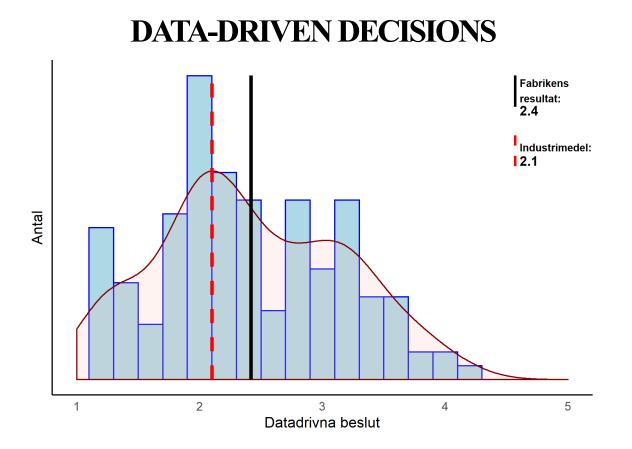
Data-driven decisions


Human capital resource

Internal integration

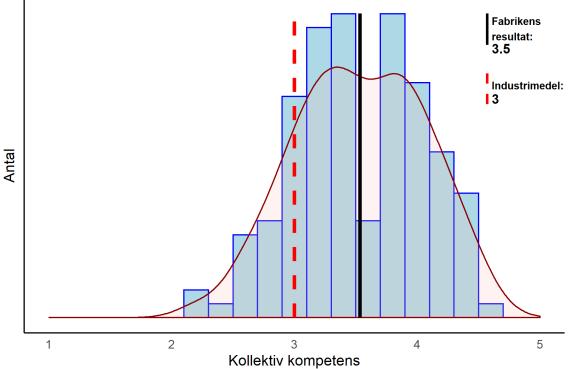
- External flow of data, information, and knowledge
- External flow of products and services
- Strategic partnerships with vendors
- Collaboration networks including different business

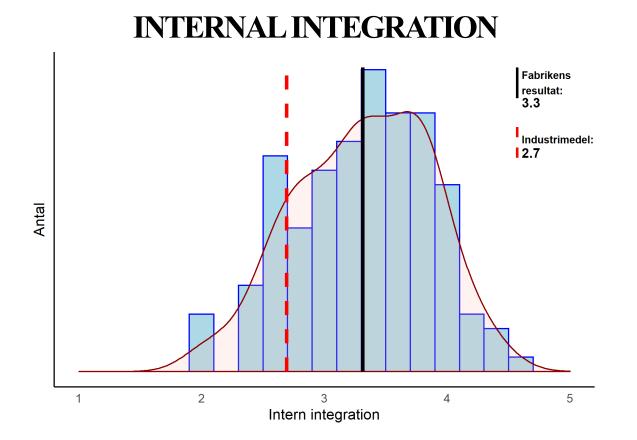
Effects



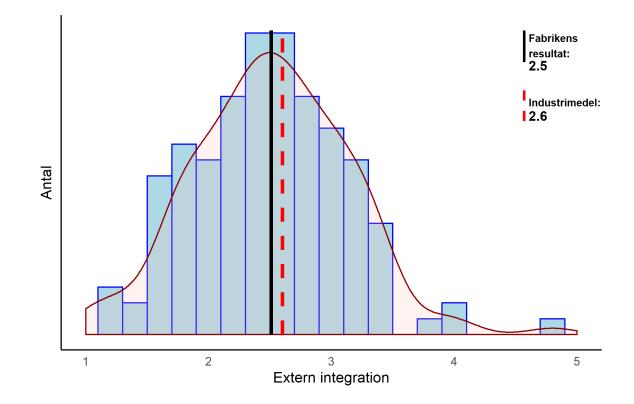
Influencing factors: education & training, corporate culture, leadership, cyber security, and etcetera

Maintenance prestanda in SMASh


- 1. Technical Availability
- 2. Mean Time Between Failure
- 3. Mean Time to Repaire
- 4. Mean Waiting Time
- 5. Un planned stopps
- 6. The number of unplanned maintenance tasks
- 7. Correctly executed both corrective and preventive maintenance
- 8. Maintenance work that caused downtime



HUMAN CAPITAL RESOURCE



EXTERNAL INTEGRATION

IMPORTANT LEARNINGS

- □ The link between performance and level of Smart Maintenance is scientifically proven
- □ Performance comes with the <u>symbiosis of all four dimensions</u>
- $\hfill\square$ One dimension cannot compensate for another
- □ Investments in a "non-bottleneck" dimension is waste of resources

NCA Resultat:

Datadrivna beslut (DDD): Kollektiv kompetens (HCR): Intern integration (INI): Extern integration (EXI): Underhållsprestanda (MAIN):

NCA Analys:

I nuläget är fabrikens flaskhalsar DDD och EXI. Dessa måste förbättras för att möjliggöra högre nivåer av MAIN. HCR och INI är inte flaskhalsar i nuläget, men deras nivåer måste bibehållas för att investeringar i DDD och EXI skall ha någon effekt.

NCA Rekommendationer:

För att förbättra DDD och EXI rekommenderas följande:

- Rekommendation #1
- Rekommendation #2
- Rekommendation #3

För att bibehålla HCR och INI rekommenderas följande:

- Rekommendation #1
- Rekommendation #2
- Rekommendation #3

MAIN	DDD	HCR	INI	EXI
0	NN	NN	NN	NN
10	NN	NN	NN	NN
20	NN	NN	NN	NN
30	8.4	NN	NN	NN
40	16.8	11.9	5.5	NN
50	25.3	24.1	15.3	6.0
60	33.7	36.3	25.0	17.7
70	42.2	48.6	34.8	29.4
80	50.6	60.8	44.5	41.1
90	59.1	73.1	54.2	52.7
100	67.5	85.3	64.0	64.4

* NN = Not Necessary ("ej nödvändigt")

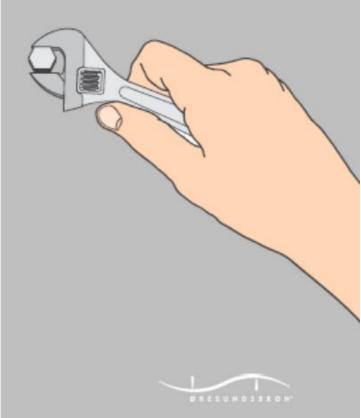
Projekt Nytt Felkodsträd

Syfte

- Få en bättre uppföljning på avhjälpande fel för att hitta rätt förebyggande åtgärder och även kunna använda underlaget vid reinvesteringar för val av maskintyper.
- Skapa förutsättningar för att med underhållsdata kunna verifiera Machine Learning modeller

Mål

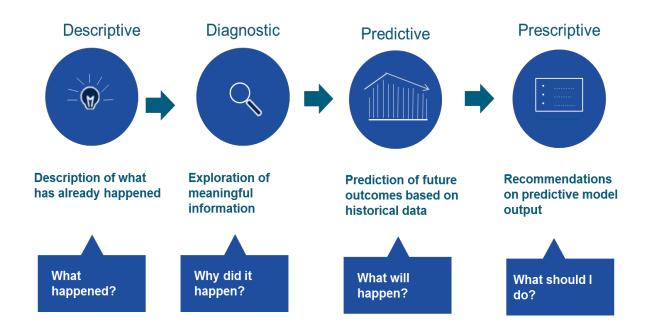
- Ta fram specifika felkoder (Problem, Orsak och Åtgärd) per Inventarietyp
- Underlätta hög kvalitet på återrapportering av avhjälpande underhåll (100% återrapportering av felkod och timmar)


Vi styr mot Smartare UH

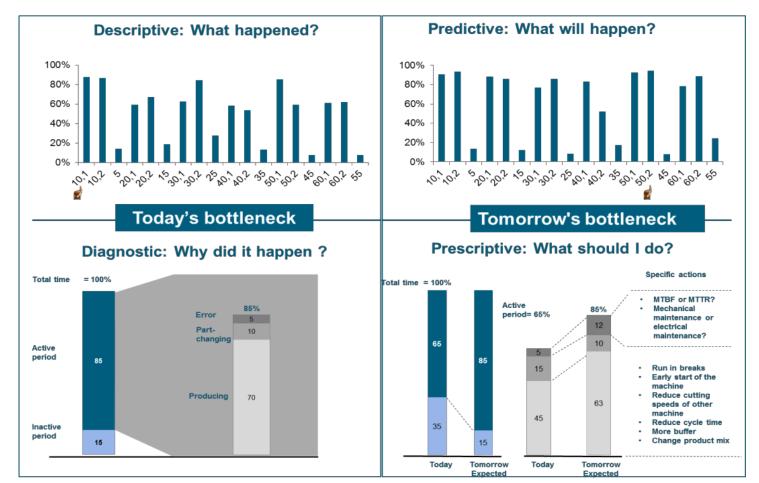
Typ av Underhåll	Undergrupp	Nytt KPI
Avhjälpande UH (AU)	Akut	
	Uppskjutet	
Förebyggande UH (FU)	Förutbestämd	
	Tillståndsbaserad, man	
	Tillståndsbaserad, data	Datadrivet UH
Prediktivt UH (PU)	Machine learning, Al	(DDUH)

Varför ändrade vi våra felkoder?

- Dålig återrapportering av felkod
- Det gamla felkodsträdet hade brister:
 - Utnyttjade inte alla nivåer i systemet
 - Alltför generella koder
 - Möjligt att ange "Null"
 - Otydligt om det var fel eller inte
- Mycket information om fel i huvudet på tekniker.
 Dålig statistik
 - Försvårar analys och långsiktiga åtgärder baserat på fakta
- ≻Omöjligt att träna algoritmer för datadrivet UH


Gammalt felkodsträd

Felkod Q	Problem Q	Orsak Q	Åtgärd
ÖSB Felkod Saknas	FH-P03 - Utebliven/obefogad/felaktig FH-P02 - Öppnar/startar/sluter inte FH-P04 - Felaktig reglering FH-P01 - Stänger/stoppar/bryter inte FH-P07 - Incident FH-P05 - Läckage FH-P06 - Jordfel FH-P10 - Smutsigt FH-P10 - Smutsigt FH-P08 - Dålig bildkvalitet FH-P11 - Väg-/järnvägshinder FH-P09 - Vilt/djur	- O-05 - Åldring/Slitage O-10 - Mjukvarufel O-02 - Miljö O-15 - Okänd O-01 - Konstruktion O-04 - Montage O-12 - Parameterfel O-09 - Handhavande O-13 - Underhåll O-14 - Följdskada O-08 - Olyckshändelse O-06 - Skadegörelse/Klotter O-03 - Tillverkning O-11 - Applikationsfel	- Å-03 - Reparerad/Justerad Å-02 - Omstartad/Återställning Å-01 - Kontrollerad Å-04 - Utbytt ny Å-10 - Annan åtgärd/beskriv i fritext Å-06 - Rengjort Å-05 - Byte likvärdig Å-09 - Ingen åtgärd/Felet försvann Å-07 - Smörjt Å-08 - Ytbehandlat Å-11 - Förbättringsförslag


Exempel på ny felkodsstruktur

Category	Class	Problem (Problem)	Cause (Orsak)	Remedy (Ätgärd)
R R R R R R R R R R R R R R R R R R R	Axelräknare Balis Befästning Brygga Circuit Breaker Earthing Gummiplattor Kontaktledning Network Device Partikelmagnet Power Supply Räl Signal Signal Signalställverk Skarv	External Mechanical	Broken Fallen cargo Foreign object Ice coating No fault Poor drainage Sabotage Snow or ice Weather Wheel flat spot Work machines Work of outsiders	Adjust Control No fault Repair Replacement Temporarily decommissioned
R	Sliper			
R	Spår			
R	Spårledning			
R	Spårväxel			
R	Övergångsrister			ORESUNDSER

LEVEL OF DATA ANALYSIS

EXEMPLE FROM SCANIA

SERVICE ORIENTED ORGANIZATIONS

THE INTEL USE CASE

[Peng 2000]

In the 1990's, Intel started a reorganization of production maintenance of a testing facility for computer processor.

High pressure on the production system due to new product launch. Traditional maintenance could not meet the challenges.

NEW VIEW OF MAINTENANCE & EXTENDED RESPONSIBILITIES

- □ Started with a highly manual ordering system between production and a traditional maintenance department
- Changed name to Equipment Engineering Service (EES)
- Grow reactive maintenance to include engineering improvements
- Service-oriented organization with equipment users as customers
- □ Maintenance shop moved to the production shop-floor
- ☐ Maintenance no longer used as a word at Intel

IT SUPPORT SYSTEMS

Developed relevant KPIs for the EES department

Developed a basic computerized order handling system

Evolved to a new Equipment Management System

- ➢ Real-time monitoring
- > Weekly reports
- Analyzed down-time trends, identified improvement projects, required resolutions from equipment vendors

Similar trends in other companies and on product monitoring

A good IT system did not solve all challenges!

ORGANIZATIONAL CHANGE

□ In late 1990's, the EES department integrated upwards in the organization

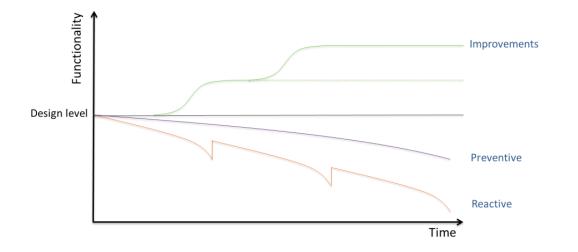
□ Turned into "Platform Engineering (PE)" together with R&D/manufacturing engineering

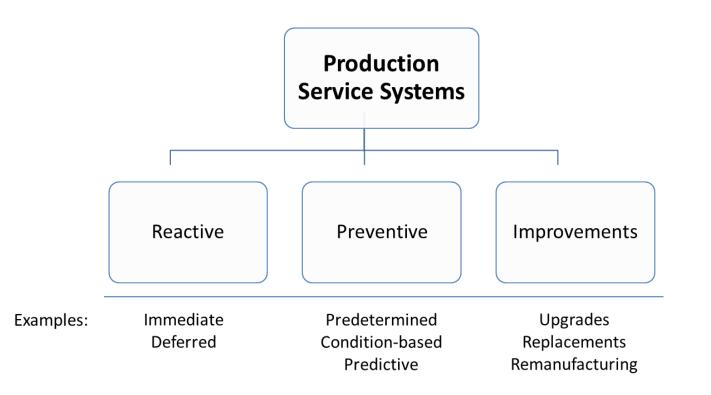
Employees at PE became equipment owners

Delivered "uptime" of the equipment

□ Substantial freedom in the way of working

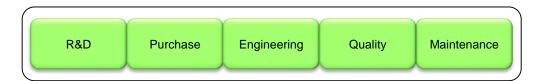
□ Examples of work-tasks:

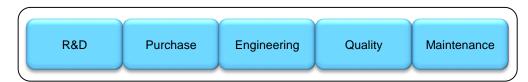

- Coordination of equipment purchase
- Equipment installation and acceptance
- Equipment support structures
- Negotiated service contracts
- Wrote repair instructions
- Trained production operators



PRODUCTION SERVICES SYSTEMS

Production service activities aim to retain, restore, and improve production systems relative inherent or agreed specifications during their entire life cycles. Reactive and preventive maintenance as well as improving activities are applied to increase system dependability and thereby economical, ecological and social sustainability.





PRODUCTION SERVICE SYSTEMS

Multi-disciplinary team delivering production of product A as a service over its entire life-cycle

Multi-disciplinary team delivering production of product B as a service over its entire life-cycle

MANAGING OPPORTUNITIES AND RISKS OVER ENTIRE LIFE-CYCLES

The Product & Production Service Systems course is about:

□ Understanding and bringing value from servitization

Understand how servitization can be appied to both product and production systems

Understand the role of maintenance in service systems

- Detecting risks
- Quantifying risks
- Predicting risks
- Preventing disturbances
- Reacting on disturbances
- Elimination of root-causes
- Provide services and added value to customers

CHALMERS