

PPU231 OEE & Production disturbance management

Five main tasks - Project

- 1. Maintenance Policy Selection using RCM
 - a) RCM proposition
 - b) Advantages / disadvantages
- 2. Priority-based Maintenance
 - a) Production capacity
 - b) Prioritisation of reactive maintenance
 - c) From reactive to proactive maintenance
- 3. Production service improvements and disturbance management
 - a) Comparing OEE and acive periods
 - b) Maximizing OEE
 - c) Other factors impacting OEE
- 4. Design of a Production Service System

5. Evaluation of product design changes on production performance & Circular economy solutions WS1 & WS2

Maintenance policy using RCM

Priority-based maintenance

OEE and disturbance mgmt.

	Cycle time (sec)	Set-up time (sec)	MTBF (min)	MTTR (min)	PM interval (hours)	PM time (hours)	Scrap rate
Cutter 1	240	600	100	15	60	2	1%
Cutter 2	240	600	130	17	60	2	1%
Welding 1	300	420	130	16	40	3	
Welding 2	300	420	180	20	40	3	
Painting 1	60	120	500	10	150	1	
Painting 2	60	120	650	15	150	1	
Painting 3	120	120	360	12	150	1	
Drying 1	120	0	600	15	100	1	
Drying 2	120	0	660	13	100	1	
Drying 3	120	0	560	11	100	1	
Sticker	120	240	800	10	200	2	
Heat 1	100	0			100	5	1%
Heat 2	100	0			100	5	1%

To reflect... Task 2

Qual. insp.

120

0

How can you estimate the expected production? What methods can you use?

4%

CHALMERS

How could you introduce some variability? Maybe a sensibility analysis?

Do you think the system will perform like this? Can you make other assumptions?

		5	Λ
22	K	Э.	

Design change	Cutter 1&2	Welding 1&2	Heat treatment 1	Heat treatment 2	Painting 1-3	Drying 1-3	Stickers
7005 T6 material	Increase CT 1%, Decrease MTBF 5%	Increase CT 1%, Decrease MTBF 5%, Increase MTTR 5%	Increase CT 1%	Increase CT 1%			
7075 T6 material	Increase CT 3%, Decrease MTBF 5%, Increase MTTR 5%	Increase CT 3%, Decrease MTBF 10%, Increase MTTR 10%	Increase CT 2%	Increase CT 2%			
Head angle		Increase CT 1%, Decrease MTBF 5%, Increase MTTR 5%			Decrease MTBF 5%		
Chainstay length							Increase CT 1%
Stand over height							Increase CT 1%
Reach							Increase CT 1%
Bottom bracket height							Increase CT 1%
Bottom bracket type	Increase CT 2%, Decrease MTBF 5%,			Increase CT 1%	Increase CT 1%	Decrease MTBF 2%	

Change from product A to product B / from product B to product A: 6 hours – you should decide on the size of the batch

Easier to motivate your evaluation report if:

Step 1. You can compare your max. production capacity considering the information presented in the table (previous slide) – one design change at the time, and a combination of those.

Step 2. Reflect about other impacts (than those presented on the table in the previous slide) of the changes in the production system – You can use the results of WS1 as support

Step 3: Find the individual and/or combination of design changes with lower impact on production performance.

Step 4: Construct an evaluation report (send to <u>adriana.ito@chalmers.se</u> and directly to your corresponding product group) until 26/Feb.

- Maximum 1 A4-page (take inspiration from Lean A3 sheet)

- Descriptions of the change in performance of individual machines caused by design changes (from step 1 and step 2)

- A set of recommendations for how to minimize the negative impact of product changes on production system performance

Important dates

- WS2 Thursday, 2021.02.25, 09.00-11.00 (mandatory participation!)
- Evaluation of design changes Friday, 2021.02.26 (send it to my email <u>adriana.ito@chalmers.se</u>
- Upload the draft report Thursday, 2021.03.04 at 23.55 upload in Canvas
- Upload the Power-Point presentation slides at Canvas before 2021.03.10 at 23.55.
- Upload the written opposition at Canvas before 2021.03.10 at 23.55.
- Upload the final report at Canvas before 2021.03.19 at 23.55.

PPU231 OEE & Production disturbance management

In this lecture...

CHALMERS

LO4: Interpret, describe and evaluate Production and Product Service Systems; LO6: Differentiate, select and develop actions to improve production systems or products during the whole life-cycle.

Agenda

CHALMERS

Agenda

CHALMERS

Overall equipment effectiveness (OEE) is a measure of how well a manufacturing operation is utilized compared to its full potential, during the periods when it is scheduled to run.

Original OEE definition (Nakajima)

OEE

Availability

Available production time / Planned production time

Performance

(Ideal cycle time * Number of products produced) / Planned production time

Quality

(Number of products produced – Scrap) / Number of products produced

OEE = Availability * Performance * Quality

OEE – six big losses

DUE TO DISTURBANCES WE COMPROMISED ~50% OF OUR CAPACITIES.

We could be twice as more efficient! What does that mean?

Agenda

OEE Disturbance management **Disturbance data Design of PSS** Some reflections about task 3 & 4

BIG DATA + DATA ANALYTICS Detection Diagnosis Mtigation/ correction REACTIVE

DATA ANALYTICS

<section-header>

HOW ARE COMPANIES DOING? RESULTS FROM MULTIPLE-CASE STUDY

21 FACTORS

Failure of software	Media error	Cleaning	Preventive maintenance	
Equipment failure Shortage of staff		Reprogramming	Tool change	
Speed loss	Stop in the line	Planning error	Time for change	
Incidents	Lack of material Waiting for product	Work meeting	Set up	
Scrap / quality problems	Failure of peripheral	Pause / Break	Adjustment	
			Human error	

(Bokrantz, J., Skoogh, A., Ylipää, T., & Stahre, J. (2016). Handling of production disturbances in the manufacturing industry. *Journal of Manufacturing Technology Management*, 27(8), 1054–1075.)

Agenda

OEE Disturbance management **Disturbance data Design of PSS** Some reflections about task 3 & 4

When we are analysing disturbance data...

- Methods based on statistical models
- Methods based on machine learning / Al

(https://vas3k.com/blog/machine_learning/)

CHALMERS

When we are analysing disturbance data...

CHALMERS

Questions

What disturbances have longer duration?

What are the most frequent disturbances?

When do the disturbances usually occur?

How are the disturbance varying? (SD)

Is there any correlation among disturbances?

.

There are many ways to analyse the data, be creative!

Time series

Tid

Distribution during the day

Distribution

Type of disturbance and shift

Other data set

ERS

What other data could be helpful when analysing production disturbances?

Agenda

OEE Disturbance management **Disturbance data Design of PSS** Some reflections about task 3 & 4

CHALMERS

Decision of the project groups

What if we had mixed groups?

Production + product in the

- Do you think your results would be different if you had a product someone from the product member working in your team?
- Finance? Quality? Supply? Logistics? Marketing? Continuous improvement? HR?

Types of organization **CHALMERS** Μ Μ S Μ Μ Μ Μ S С

С

Types of organization

CHALMERS

How are companies typically organized?

Do you think there is any influence of the size of the company? What about the type of industry?

Agenda

OEE Disturbance management **Disturbance data Design of PSS** Some reflections about task 3 & 4

Reflections...

Improvement action	Cost, SEK	
SMED	7500	
Maintainability project	28000	
Component upgrade	22000	
Autonomous maintenance	30000	
Condition-based maintenance	17500	
Change PM program	40000	
Educate maintenance technicians	13000	
Cycle time reduction project	58000	
Maintenance prevention project	35000	
New machine	75000	
Educate maintenance engineers in data	45000	
analytics		

Where to implement the improvement?

How great is the expected impact in the goals of the entire production line?

How could you implement the improvement? Ex. What does it take to the company to educate maintenance personnel?

Reflections...

CHALMERS

Task 3.C: Other factors impacting OEE

- Make sure you recommend actions that really eliminate the root causes!

Task 4: Design of production service system

Current state:

- * Independent maintenance department
- * Predominantly reactive maintenance, time-based preventive maintenance based on vendor recommendations
- * Close collaboration with production, but no collaboration with other departments (e.g. product development, purchasing, logistics)
- * No close collaboration with external partners (e.g. machine vendors, service providers)

"Production Service Systems" are maintenance organizations with a much broader view! (reactive, preventive, improvements / delivering production-as-a-service)

A new organizational design for maintenance is needed (How should maintenance of the plant be managed?)

Use your knowledge gained throughout the course Explain the difference of your proposal compared to current state Explain how your proposal will impact the goals fo the company

Visualize and explain:

- Organizational structure
- Key roles and responsibilities
- Internal relationships
- External relationships

Thank you!