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Chapter 1

Introduction: every equation requires
a sound check!

1.1 Every concert, and every partial differential equation, requires
a sound check.

Have you ever noticed that at a concert, even if the band has played numerous times in the exact same venue,
they always do a sound check? The venue is the same, so why don’t they just have the same settings every
time they play that venue? The mathematical equation of sound is the wave equation, and it’s the same
mathematical equation every time the band plays. If we could develop the equation and solve it wouldn’t
sound checks be obsolete? The complexity of sound is a challenging matter. This unfortunate condition is
the reason bands do sound checks to create some certainty that they sound their best. The complexity of
sound is similarly confronted when we try to solve the mathematical equation of sound.

The mathematical equation of sound is not easy to solve, because although the equation may remain the
same, its solution changes depending on many different factors. Similarly, the way a band sounds depends on
many different factors. How many people are at the venue? Where are they standing or sitting? What are
they wearing? As I was waiting for my friend’s first performance in the heavy metal band, Sodom, watching
them do their sound check, I realized that performing sound checks at concerts is similar to solving problems
in Fourier analysis! You can see my friend rocking the stage in Figure 1.1.

1.1.1 The definition of ordinary and partial differential equations.

The mathematical equation of sound is the wave equation and is an example of a partial differential equation.

Definition 1 (Ordinary and partial differential equations). An ordinary differential equation is an equation
for an unknown function that depends on one independent real variable. Writing u for the unknown function,
an ordinary differential equation for u is an equation that u must satisfy and that contains u together with
one or more derivatives of u. The ordinary differential equation may also contain other, specified functions. A
partial differential equation is an equation for an unknown function that depends on two or more independent
real variables. Writing U for the unknown function, a partial differential equation for U is an equation that U
must satisfy and that contains U together with one or more partial derivatives of U . The partial differential
equation may also contain other, specified functions.

Example 2. Here is an ordinary differential equation: u′ − u = 0. It is common to omit the independent
variable, but if we choose to include it and call it x, then the equation looks like u′(x)− u(x) = 0. Here is a
partial differential equation: Uxx − 9Utt = 0. We have again omitted the independent variables, but we can
guess from the notation that the function U depends on two independent variables, named x and t. We could

just as well write the equation ∂2

∂2
x
U(x, t)− 9∂

2

∂2
t
U(x, t) = 0.
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Figure 1.1: On March 3, 2019, I went to see my friend play guitar in the band, Sodom, in Gothenburg. They not
only rocked, but also inspired me with the ‘sound check analogy’ comparing band sound checks to Fourier analysis
and methods. Photograph copyright Moritz ‘Mumpi’ Künster.
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The wave equation, and indeed nearly all partial differential equations are emphatically HARD to solve.
There is no single unifying theory or user manual that we can consistently follow to solve partial differential
equations. It’s like playing in a band: we have to do a sound check for each and every concert. There is
no magic pre-set we can use for all our concerts. Similarly, we have to carefully investigate each and every
partial differential equation. Many of them cannot be solved, but our focus will be on those that can be
solved with a collection of techniques known as Fourier analysis and methods.

1.2 How to read this text

What kind of music do you like? I enjoy many different genres including heavy metal and industrial. Now,
just because I have watched and listen to awesome guitarists, does this mean I can play the guitar? Hardly!
To play awesome music, one must practice! Mathematics is quite similar. One must do mathematics to learn
it. The mathematical analogue of practicing guitar is active learning. With this text, I am asking you to
read it actively. The goal is not for me to explain a bunch of math to you while you sit and read and absorb
it like a sponge. On the contrary, I invite you to think critically as you read. Be skeptical. Verify my claims
on your own terms, make sure you understand how one line in a proof follows from the hypotheses and the
preceding calculations. Most importantly: do the exercises!

1.3 Help me illustrate this text!

Do they also have the saying in Sweden that ‘a picture is worth a thousand words?’ I have included some
pictures in this text, but due to time limitations together with the fact that I suck at illustrating, it is quite
likely that this text could be improved by including further pictures and illustrations. Would you like to
help? Do you have an idea for an illustration that could help to convey a certain concept in the text? If
so, then just like that old United States Army poster in Figure 1.2, “we need you!” If you contribute a
picture, figure, graph, illustration, gif, or any other visual, your contribution will be explicitly mentioned
with your name to live in print forever. Unless you prefer to be anonymous. You may be able to contribute
to both your class as well as future generations and the international community of math students ability to
understand this subject! So, please keep this in mind as you read the text.
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Edvin Martinson contributed Figure 4.12. Joao Pedro Paulos, Erik Broback, Waldemar Hult, Anton Rosén,
Ludvig Nordqvist, Petronella Taube, Martin Jirlow, Gottfrid Olsson, Edvin Martinson, Ronja Hedberg, Erik
Levin, Sofia Wartenberg, Carl-Joar Karlsson, Samuel Winqvist, Adam Johansson, Isak Drevander, and more
people? identified typos in an early version of the text.
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Figure 1.2: Uncle Sam (note the initials U.S.) is a national personification of the United States federal government
that according to legend was named for Samuel Wilson and introduced in the War of 1812. The famous 1917 poster
by J. M. Flagg was used to recruit soldiers for the first and second world wars. Here, I am recruiting you to help me by
contributing visual aids like pictures, figures, graphs, illustrations, gifs, or any other visualization of the mathematical
content! Image license and source: Creative Commons Zero 1.0 Public Domain License openclipart.org.
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Chapter 2

Separation of variables makes the
problem ordinary; superposition turns
the ordinary extraordinary!

The first technique for solving partial differential equations is a method that enables us to turn partial
differential equations for functions that depend on several variables into ordinary differential equations
for functions that depend on only one variable. This technique is known as separation of variables. As
in the description of this chapter, we will use this technique to change the problem of solving a partial
differential equation into the problem of solving several ordinary differential equations, thereby making the
problem ordinary. Once we have obtained all solutions of the ordinary problem, we will use the second
technique, known as superposition to build a ‘supersolution,’ thereby transforming the ordinary solutions
into an extraordinary solution of the original problem. We will introduce these techniques with the help of
two fundamental examples: the wave equation that describes a vibrating string, like on that of a guitar, and
the heat equation that describes the propagation of heat.

2.1 The sound of guitars can be understood by solving the wave
equation

Without guitars, a heavy metal concert would just be an angry guy (or gal) shouting at drums. The rhythm,
lead, and bass guitars create sounds that are crucial to the music. The vibrations of a guitar string and the
sounds they make can be understood using Fourier analysis and methods. Consider a vibrating string, like
the guitar or bass strings in our metal band. The ends of the string are held fixed, so they’re not moving.
You know this if you play or watch people play guitar. Let’s mathematicize the string, by identifying it with
the interval [0, `] ⊂ R. The string length is `. Let’s define

u(x, t) := the height of the string at the point x ∈ [0, `] at time t ∈ [0,∞[.

Then, let’s just define the sitting-still height to be height 0. So, the fact that ends are sitting still means
that

u(0, t) = u(`, t) = 0 ∀t.

A positive height means above the sitting-still height, whereas a negative height means under the sitting-still
height. The wave equation (I’m not going to derive it, but maybe you clever physics students can do that?)
says that:

utt = c2uxx.

11



The constant c depends on how fast the string vibrates. The string is in some initial position with some
initial velocity at the starting time:

u(x, 0) = f(x), ut(x, 0) = g(x).

The functions f and g are called initial data. In this method, we will handle the initial data at the very end.
One way to remember this is with the acronym TIDGLAS: The Initial Data Goes LASt. The reason we do
this is because the entire method works in exactly the same way, up until the very end, for any initial data.
So, it is necessary to be patient, like waiting for an hourglass as shown in Figure 2.1, or in Swedish, timglas.
Perhaps a more suitable name for an hourglass would be a timeglass. The Swedish translation would then
be exactly tidglas.

Question 3. Is this equation a PDE or an ODE?1

2.1.1 The first technique for your toolbox: separation of variables

Separation of Variables starts like this: we assume that

u(x, t) = X(x)T (t),

that is a product of two functions, each of which depends only on one variable. Why can we do this? Who
knows, maybe it is rubbish! Maybe u is not of this form. It is a bit like the sound check: we first make a
guess for the sound levels and then play a bit to see if it sounds good. This is the same general idea.

Assuming that u is of this form, we substitute this into the PDE:

utt = c2uxx ⇐⇒ X(x)T ′′(t) = c2X ′′(x)T (t).

Now, we would like to separate variables by getting everything dependent on x to one side of the equation
and everything dependent on t to the other side. To achieve this, we divide both sides by X(x)T (t):

c2
X ′′

X
(x) =

T ′′

T
(t). (2.1.1)

Stop. Think. The left side depends only on x, whereas the right side depends only on t.

Exercise 4. Explain in your own words why if one side of an equation depends on x and the other side
depends on t, then both sides must be constant.

What should we solve for first? X or T? With this method, we will always solve for X first. The reason
we do this is because of the boundary conditions. The boundary conditions for X is that the ends of the
string do not move, so we must have

u(0, t) = X(0)T (t) = 0 for all times, and u(L, t) = X(L)T (t) = 0 for all times.

Since T does not depend on x at all, the only way to guarantee this is to demand that

X(0) = X(`) = 0.

On the other hand, the function T depends on time t ≥ 0. Time can run off to infinity, so the only boundary
for the t variable is at t = 0. The shape and velocity of the string at t = 0 is called the initial data. Our
mantra TIDGLAS reminds us that the initial data goes last. We therefore look at equation (2.1.1) and
consider what it means for X first. Both sides are equal to a constant, so

X ′′

X
(x) = constant ,

1Answer: it’s a PDE because the function depends on two independent variables: position on the string x and time t.
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Figure 2.1: An hourglass is one way to measure time by waiting until all of the sand passes from the top to the
bottom. Then it is reset by flipping it over. In Swedish an hourglass is called a ‘timglas.’ Since an hourglass does
not necessarily measure one hour, but could be made to measure many different lengths of time, why not call it a
timeglass, or TIDGLAS in Swedish instead? Then this fits with our mantra to be patient, wait for the TIDGLAS
and deal with the initial data last. Image license and source: Creative Commons Zero 1.0 Public Domain License
openclipart.org
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and the boundary condition demands that

X(0) = X(`) = 0.

Let’s give the constant a name. Call it λ. Then write

X ′′(x) = λX(x), X(0) = X(`) = 0.

Does this problem look familiar? It should have been covered in previous calculus (analysis) courses. There
are three cases to consider:

Case 1: λ = 0. This means X ′′(x) = 0. One way to solve for X is to just think about physics.
The second derivative is acceleration. This is zero. That means constant velocity. The only functions
with constant velocity are linear. So, the graph of X looks like a straight line, and we also know that
X(0) = 0 = X(L). So this straight line is horizontal, that is X = 0. Or, if you prefer to solve for X, we can
integrate twice and arrive at the same conclusion. Integrating once gives X ′(x) = constant = m. Integrating
a second time gives X(x) = mx + b. Requiring X(0) = X(`) = 0, first makes b = 0, and the second makes
m = 0. So, the solution is X(x) = 0. The 0 solution. The waveless wave. Not too interesting.

Case 2: λ > 0. The solution here will be of the form

X(x) = ae
√
λx + be−

√
λx.

Exercise 5. Show that it is equivalent to write the solution as A cosh(
√
λx)+B sinh(

√
λx), for two constants

A and B. Determine the relationship between A and B and a and b. Show that in order to guarantee that
X(0) = X(`) = 0 you need a = A = B = b = 0.

Thus, with our teamwork, (me providing hints and you doing the actual work by solving the exercise)
we have gotten the 0 solution again. The waveless wave. No fun there.

Case 3: λ < 0. Finally, we have a solution of the form

a cos(
√
|λ|x) + b sin(

√
|λ|x).

To make X(0) = 0, we need a = 0. Uh oh... are we going to get that stupid 0 solution again? Well, let’s see
what we need to make X(`) = 0. For that we just need

b sin(
√
|λ|`) = 0.

That will be true if

|λ| = k2π2

`2
, k ∈ Z.

Super! We still don’t know what b ought to be, but at least we’ve found all the possible X’s, up to constant
factors.

Just to clarify the fact that we’ve now found all solutions, we recall here a theorem from multivariable
calculus.

Theorem 6 (Second order ODEs). Consider the second order linear homogeneous ODE,

au′′ + bu′ + cu = 0, a 6= 0.

If b = c = 0, then a basis of solutions is given by

{x, 1},

so that all solutions can be expressed as a linear combination of x and 1, hence for some constants A and B

u(x) = Ax+B.

If c = 0, then a basis of solutions is {e−b/ax, 1} so that all solutions can be expressed as a linear combination
of these two functions, so we can find constants A and B such that

u(x) = Ae−bx/a +B.

If c 6= 0, then a basis of solutions is one of the following depending on whether or not b2 = 4ac:
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1. {er1x, er2x} if b2 6= 4ac, where

r1 =
−b+

√
b2 − 4ac

2a
, r2 =

−b−
√
b2 − 4ac

2a
.

2. {erx, xerx} if b2 = 4ac, with r = − b
2a .

Exercise 7. The equation we solved using separation of variables is

X ′′ = λX ⇐⇒ X ′′ − λX = 0, X(0) = X(`) = 0. (2.1.2)

So, in the language of Theorem 6, a = 1, b = 0, and c = −λ. Apply the theorem to show that up to constant
factors, all solutions to (2.1.2) are the functions

Xk(x) = sin

(
kπx

`

)
, λk = −k

2π2

`2
, k ∈ Z.

Now that we have determined the constants in (2.1.1), we can solve for the T functions as well! The
equation, for each k reads:

c2
X ′′k
Xk

= λk = −k
2π2

`2
=
T ′′

T
(t).

This is almost the same equation we had before. Here we have, re-arranging:

T ′′k = −c2 k
2π2

c2`2
Tk. (2.1.3)

Exercise 8. Use Theorem 6 to show that a basis of solutions is given by{
e
ikπct
` , e−

ikπct
`

}
.

Show that it is equivalent to use {
cos

(
kπtc

`

)
, sin

(
kπtc

`

)}
as a basis. Hint: remember eiθ = cos θ + i sin θ for i =

√
−1 for any θ ∈ R.

We have therefore found all functions of the form XT that satisfy the partial differential equation and
the boundary conditions. There are infinitely many of them, and they can be enumerated as

uk(x, t) = Xk(x)Tk(t) = Ak sin

(
kπx

`

)(
Bk cos

(
kπtc

`

)
+ Ck sin

(
kπtc

`

))
, k ∈ Z.

We do not know the values of the constant factors Ak, Bk, and Ck at this point in time. The reason is that
these will be determined by the initial conditions, and our mantra is TIDGLAS, the initial conditions go
last.

2.1.2 Superposition: building a super solution!

The next step in the method of variable separation is called superposition. The functions uk that we have
found all satisfy a homogeneous, linear, partial differential equation. To see that the equation is homogeneous,
we bring all the terms in the partial differential equation that contain the unknown function to one side:

utt − c2uxx = 0.

On the other side of the equation is zero, and it is precisely for that reason that this equation is homogeneous.
The equation is called linear because:

(u+ v)tt − c2(u+ v)xx = utt − c2uxx + vtt − c2vxx.
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In other words, if a function v also satisfies the equation:

vtt − c2vxx = 0 =⇒ (u+ v)tt − c2(u+ v)xx = 0.

Another important observation is that the problem we are solving has homogeneous boundary conditions.
The solution should satisfy

u(0, t) = u(`, t) = 0.

Figure 2.2: The process of superposition is similar to taking flowers that are the same shape but different sizes and
colors and organizing them together. Image license and source: Creative Commons Zero 1.0 Public Domain License
openclipart.org

When we used separation of variables, we guaranteed this will hold for each of the functions

Xk(x) = sin(kπx/`) =⇒ Xk(0) = Xk(`) = 0, and uk(0, t) = uk(`, t) = 0.

So, if we add two of these together, the boundary condition is still satisfied:

uj(0, t) + uk(0, t) = 0 = uj(`, t) + uk(`, t).

Whenever one has solutions to a partial differential equation that has these properties, then the sum of any
two solutions to the PDE is again a solution to the PDE, and it will again satisfy the nice homogeneous
boundary condition. Adding solutions together is called superposition. One of the interesting differences
between solving partial differential equations compared to solving ordinary differential equations is that
we often find a lot more solutions - like infinitely many - to the PDE. When solving ODEs, the standard
procedure is to find a basis of ‘general solutions’ and then use them to build a particular solution depending
on the initial conditions. Now, solving PDEs, we will do the same, except now we use infinitely many ‘general
solutions.’ We can visualize these solutions as having something in common, namely that they solve the PDE
and the boundary conditions, but also something different, because they are all different. This is similar to
the flowers in Figure 2.2 that are the same shape but different colors and sizes.

Consequently, we define

u(x, t) =
∑
k∈Z

uk(x, t).

For any finite sum,(
M∑

k=−N

uk(x, t)

)
tt

− c2

(
M∑

k=−N

uk(x, t)

)
xx

=

M∑
k=−N

∂ttuk(x, t)− c2∂xxuk(x, t) = 0.
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So, if we are lucky, then letting N and M go to infinity, the full sum will converge to define a function u(x, t)
that also satisfies the partial differential equation. The final pieces of the puzzle that we will need to find
are the unknown coefficients, since

uk(x, t) = Xk(x)Tk(t) = Ak sin

(
kπx

`

)(
Bk cos

(
kπtc

`

)
+ Ck sin

(
kπtc

`

))
, k ∈ Z.

These coefficients will be determined by the two initial conditions, the position of the string at time zero
and its velocity

u(x, 0) = f(x), ut(x, 0) = g(x).

As per our mantra of the day, TIDGLAS, these initial conditions will be dealt with last. Our focus here is
to hone the two skills: separation of variables and superposition. We will require additional techniques to
complete the last step. Bruce Lee once said that it is more effective to practice one technique a hundred
times than it is to practice a hundred techniques one time each. With this philosophy, we will remain focused
for this chapter on practicing these two techniques and postpone learning the additional techniques required
for the last step to the next chapter.

2.2 Heat flow in a circular rod

Consider a circular shaped rod, like a rod that’s been bent into a circle. Let’s mathematicize it! To specify
points on the rod, we just need to know the angle at the point. For this reason, we use the real variable x
for the position, where x gives us the angle at the point on the rod. We use the variable t ≥ 0 for time. The
function u(x, t) is the temperature on the rod at position x at time t. We could imagine that this circular
rod is like the wheel of a hot rod like in Figure 2.3 that has been racing around town and now is sitting in
the garage.

The laws of physics can be used to prove that the temperature function satisfies the heat equation, that
is the partial differential equation

ut = kuxx,

for some constant k > 0. The temperatures of the rod at the initial time are given by some function,

u(x, 0) = f(x).

Since there is no source adding heat to the rod nor sink taking heat away from the rod, the temperatures at
all later times are determined by the temperatures at time t = 0 together with the fact that u must satisfy
the heat equation. Although this may not be so obvious mathematically, it should make sense to physicists.
Now, the fact that the rod is circular means that we can define the function f(x) for all real x by simply
demanding that

f(x+ 2π) = f(x).

This is because the angles x and x + 2π correspond to the exact same point on the circular rod. Similarly,
the same is also true for the function u, that is

u(x+ 2π, t) = u(x, t),

for all x and all t > 0.
We will use our two techniques, separation of variables and superposition, and see what solutions we

obtain to this partial differential equations. We first use separation of variables. This starts by assuming
that

u(x, t) = X(x)T (t).

Next, we put this into the heat equation:

T ′(t)X(x) = kX ′′(x)T (t).
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Figure 2.3: A hot rod like the one in this picture is a colloquial term for an American car that has been rebuilt or
modified for more speed and acceleration. Often they are painted with flames. Image license and source: Creative
Commons Zero 1.0 Public Domain License openclipart.org

We want to separate variables, so we want all the t-dependent bits on the left say, and all the x-dependent
bits on the right. This can be achieved by dividing both sides by X(x)T (t),

T ′(t)

T (t)
= k

X ′′(x)

X(x)
.

We now know that both sides must be constant. Let us call the constant λ, so that

T ′

T
= λ = k

X ′′

X
.

Exercise 9. In your own words, explain why both sides of the equation must be constant.

As with the wave equation, we will solve for the function X first. The equation for X is:

X ′′(x) =
λ

k
X(x)

for a constant λ. Moreover, since we must have

u(x+ 2π, t) = X(x+ 2π)T (t) = u(x, t) = X(x)T (t) for all x and t,

this demands that
X(x+ 2π) = X(x) for all x.

So, we have the additional information that X is a periodic function of period 2π. We will solve for all
functions X and all constants λ that satisfy both the differential equation and the periodicity condition by
consider the three possible cases for λ.

Exercise 10. Case 1: Show that if λ = 0, there is no solution to X ′′(x) = 0 which is 2π periodic, other
than the constant solutions.

Case 2: If λ > 0, then a basis of solutions is,

{e
√
λx/
√
k, e−

√
λx/
√
k}.

So, we can write

X(x) = ae
√
λx/
√
k + be−

√
λx/
√
k.

For the 2π periodicity to hold, we need

X(0) = X(2π) =⇒ a+ b = ae
√
λ2π/

√
k + be−

√
λ2π/

√
k =⇒ a(e

√
λ2π/

√
k − 1) = b(1− e−

√
λ2π/

√
k)
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=⇒ a = b
(1− e−

√
λ2π/

√
k)

e
√
λ2π/

√
k − 1

.

We also need

X(−2π) = X(0) =⇒ a+ b = ae−
√
λ2π/

√
k + be

√
λ2π/

√
k =⇒ a(e−

√
λ2π/

√
k − 1) = b(1− e

√
λ2π/

√
k)

=⇒ a = b
1− e

√
λ2π/

√
k

e−
√
λ2π/

√
k − 1

.

So, we have two equations for a, therefore they should be equal:

a = b
1− e−

√
λ2π/

√
k

e
√
λ2π/

√
k − 1

= b
1− e

√
λ2π/

√
k

e−
√
λ2π/

√
k − 1

.

If b = 0 then a = 0 so the whole solution is the zero solution. If b 6= 0 then we must have

1− e−
√
λ2π/

√
k

e
√
λ2π/

√
k − 1

=
1− e

√
λ2π/

√
k

e−
√
λ2π/

√
k − 1

.

Changing the sign of the top and bottom on the right side, this is equivalent to:

1− e−
√
λ2π/

√
k

e
√
λ2π/

√
k − 1

=
e
√
λ2π/

√
k − 1

1− e−
√
λ2π/

√
k
.

Call the left side ?. Then the right side is 1
? . So the equation is

? =
1

?
=⇒ ?2 = 1 =⇒ ? = ±1.

Exercise 11. Show that ? > 0.

If
? = 1 =⇒ 1− e−

√
λ2π/

√
k = e

√
λ2π/

√
k − 1 =⇒ 2 = e

√
λ2π/

√
k + e−

√
λ2π/

√
k.

I don’t like the negative exponent thing (it is really a fraction), so I am going to multiply by e
√
λ2π/

√
k. Also,

doing this turns it into a quadratic equation:

2e
√
λ2π/

√
k = e4π

√
λ/
√
k + 1 ⇐⇒ e4π

√
λ/
√
k − 2e2π

√
λ/
√
k + 1 = 0

Now we can factor this equation because the left side is

(e2π
√
λ/
√
k − 1)2 = 0 =⇒ e2π

√
λ/
√
k = 1 ⇐⇒ 2π

√
λ/
√
k = 0 .

That  indicates a contradiction. Therefore, in the case where λ > 0, the only solution which is 2π periodic
is the zero solution.

Hence, we are left with Case 3: λ < 0. Then, a basis of solutions is

{sin(
√
|λ|x/

√
k), cos(

√
|λ|x/

√
k)}.

We need these solutions to be 2π periodic. They will be as long as
√
|λ|/
√
k is an integer. So we need

λ < 0,

√
|λ|√
k

= n ∈ Z =⇒ λn = −n2k.

Hence, we can list all solutions as

Xn(x) = an cos(nx) + bn sin(nx), n ∈ Z.
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Exercise 12. Show that allowing complex coefficients, it is equivalent to use a basis of solutions

{einx}n∈Z.

Find An and Bn in terms of an and bn so that

Xn(x) = Ane
inx +Bne

−inx.

Now, we can solve for the partner functions, Tn(t), because un(x, t) = Xn(x)Tn(t). The equation for Tn
is

T ′n(t)

Tn(t)
= λn = −n2k,

that re-arranges to

T ′n(t) = −n2kTn(t).

Consequently, from calculus, the only solutions to this equation are

Tn(t) = e−n
2kt times a constant

Putting this together, we have

un(x, t) = Xn(x)Tn(t) = e−n
2kt(an cos(nx) + bn sin(nx)), for some constants an and bn.

These solutions satisfy the heat equation

∂tun − k∂xxun = 0.

This is a linear and homogeneous partial differential equation. Consequently, we can use the superposition
principle to smash all these solutions we have found into a super solution:

u(x, t) =
∑
n∈Z

un(x, t) =
∑
n∈Z

e−n
2tk(an cos(nx) + bn sin(nx)).

The coefficients will be determined by the initial condition, because we must have

u(x, 0) = f(x) =⇒
∑
n∈Z

(an cos(nx) + bn sin(nx)) = f(x).

So, to complete the last step, we wish to find coefficients an and bn so that, given the initial data f(x) we
can express f(x) as such a series. In order to do this, we will represent functions as vectors inside infinite
dimensional vector spaces. The idea is that we will view the above sines and cosines as basis vectors, and
then we will project the initial data on these basis vectors to express it in terms of them. To be able to do
this, we need to develop theory and tools for infinite dimensional vector spaces in which the vectors will be
functions. That is just what we will do in the next chapter!

2.3 A schematic summary of using separation of variables to de-
termine what type of functions X will comprise the solution

When we solve partial differential equations using separation of variables, we will follow the same general
procedure. The first part of this procedure is to find the space-dependent part of the solution using the
boundary conditions. This process is illustrated in Figure 2.4
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Figure 2.4: When we use separation of variables to solve partial differential equations, the equation at which we
typically arrive for the space-dependent function, X(x), is that the second derivative of X is equal to a constant
times X. We follow tradition by naming the constant the Greek letter, lambda, λ, so the equation is X ′′(x) = λX(x).
There are three cases for λ: it could be positive, negative, or zero. According to these three cases, there are three
possible types of solutions X as shown above. It is crucial to use the boundary conditions to determine which values
λ guarantee that X satisfies the boundary conditions. Simply put: it is the boundary conditions that will narrow
down the possible values of λ, usually there will be infinitely many, that you can index with integers. This figure was
jointly created with Gottfrid Olsson.
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2.3.1 Indications that variable separation and superposition can help solve a
PDE.

When will the technique of separating variables and then using superposition of the solutions obtained lead
to an actual solution of the partial differential equation at hand? Here are two characteristics that indicate
separation of variables and superposition can be helpful:

• linearity in the partial differential equation as well as the methods,

• homogeneity in the partial differential equation and the boundary condition.

Linearity means for example:
d

dx
(f(x) + g(x)) =

d

dx
f(x) +

d

dx
g(x).

This means that we can add the functions first and then differentiate, or differentiate each function separately
and then add them, and the results are the same. This is also true for integration:∫

f + g =

∫
f +

∫
g.

On the other hand
d

dx
(f(x)g(x)) 6= d

dx
f(x)

d

dx
g(x),

because the product rule says that

d

dx
(f(x)g(x)) = f(x)

d

dx
g(x) + g(x)

d

dx
f(x).

So, it’s not the same to multiply the functions first and then differentiate versus differentiating first and
then multiplying. To solve a PDE using separation of variables and superposition, the partial differential
equation should be linear. This means that if we stuff (u+ v) into the PDE, the result will be equal to the
result of first stuffing u into the PDE, stuffing v into the PDE, and then adding the result together. We will
also need the PDE to be homogeneous, so that when we stuff our super solution into the PDE, each of the
individual terms satisfies PDE-of-each-term is zero. So the PDE applied to the whole supersolution-sum is
just adding up a bunch of zeros and is again equal to zero. Hence our supersolution satisfies the PDE. We
will typically need to use both of these techniques, separation of variables to obtain all possible solutions, and
then superposition, adding all of these together with their as-of-now-unknown-coefficients. The reason we
must collect them all, like Pokemon, is because we will use them all to create an orthogonal base for a Hilbert
space. We will express the initial data using this orthogonal base and thereby determine the coefficients.

Homogeneity in simple terms means ‘things are equal to zero.’ For the PDE, when we take all of the
terms involving the unknown function to one side of the equation, traditionally the left side, then right side
of the equation should equal to zero. Examples of this include

utt = uxx ⇐⇒ utt − uxx = 0,

that is the homogeneous wave equation with the constant c = 1, as well as

ut = uxx ⇐⇒ ut − uxx = 0,

that is the homogeneous heat equation with the constant k = 1. It is also important that we have ho-
mogeneous boundary conditions for the unknown function. A homogeneous boundary condition is a set of
equations for the unknown function, and possibly some of its derivatives as well, that should vanish. Exam-
ples include the Dirichlet boundary condition that demands the unknown function vanishes at the boundary,
as well as the Neumann boundary condition that demands the spatial (normal) derivative of the unknown
function vanishes at the boundary. Homogeneous boundary conditions are important for the method of
superposition, because if we add solutions that satisfy such a boundary condition, the sum will also satisfy
the boundary condition because 0 + 0 = 0.
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Figure 2.5: When we use separation of variables and superposition to solve a PDE, we will generally need to collect
all of the solutions, like collecting all Pokemon. This is a public domain image from 1899 that remarkably looks like
the Pokemon Pikachu, reminding us to collect all the solutions, because we will use them to create an orthogonal
base for a Hilbert space!
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2.4 Partial differential equations in mathematical physics

Mathematical physics is the development of mathematical methods for applications to problems in physics.
The author of this text is an active researcher in this field, working to develop mathematical methods that
apply to problems in physics. One journal that specializes in this topic is the Journal of Mathematical
Physics, that defines the field as the application of mathematics to problems in physics and the development
of mathematical methods suitable for such applications and for the formulation of physical theories. Here
we will discuss the basic partial differential equations of classical mathematical physics. One of the most
ubiquitous partial differential operators in mathematical physics is the Laplace operator, that can be defined
in Rn for all n = 1, 2, 3, . . . For functions of n real variables, this differential operator is written as ∇2, or
div ∇, or ∆. Different strokes for different folks; that is to say some people prefer a specific notation more
than another. Here we will likely use

∆ :=

n∑
k=1

∂2

∂x2
k

.

There are three important types of linear PDEs in mathematical: elliptic, parabolic, and hyperbolic.
What about nonlinear PDEs? These are notoriously difficult to solve, but one method to analyze them is to
linearize the equation, by studying a linear PDE that approximates the nonlinear one. Consequently, linear
PDEs are of fundamental importance to the study of all PDEs in mathematical physics, including nonlinear
PDEs. The PDEs which are amenable to solutions via Fourier methods are in general linear and fall into
these three classifications. We give a brief collection of the most common equations of these three types.

2.4.1 Elliptic partial differential equations in mathematical physics

∆u = 0 Laplace’s equation
∆u+ λ2u = 0 Helmholtz’s equation, also known as the Laplace eigenvalue equation
∆u = k Poisson’s equation
∆u+ k(E − V )u = 0 time independent Schrödinger’s equation

Table 2.1: The PDEs above are some of the most common elliptic PDEs in mathematical physics.

The poster child elliptic PDE is the Laplace equation

∆u = 0.

This equation is satisfied by the electrostatic potential in any region containing no electric charge as well as
by the gravitational potential in any region containing no mass. Solutions of the heat and wave equations
that are independent of time, known as steady state solutions, also satisfy this equation.

2.4.2 Parabolic partial differential equations in mathematical physics

ut = kuxx one dimensional diffusion equation (heat equation in one dimension)
ut = k∆u heat equation in Rn
ut = kuxx − hux diffusion-convection equation
ut = kuxx − ku diffusion with lateral heat-concentration loss
ut = kuxx + f(x, t) diffusion with heat source (or sink)

i~ut = − ~2

2m∆u+ V (x)u time dependent Schrödinger equation

Table 2.2: The PDEs above are some of the most common parabolic PDEs in mathematical physics.
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The poster child example of a parabolic PDE is the homogeneous heat equation

ut = k∆u.

This equation describes the diffusion of heat in a homogeneous material. Here u(t,x) is the temperature at
the point x in the material at the time t. The constant k is the thermal diffusivity of the material. The
heat equation is not a fundamental law of physics, as can be seen by the fact that if we add a constant to
a solution of the heat equation, the resulting function also satisfies the heat equation. This shows that the
heat equation cannot detect the physical fact of absolute zero temperature. Consequently, solutions of the
heat equation for extreme temperatures (very high or very low) does not give physically reliable answers.

Another interesting example from quantum mechanics is the time-dependent Schrödinger equation

i~ut = − ~2

2m
∆u+ V (x)u.

Here u is the quantum mechanical wave function for a particle of mass m moving in a potential V (x), ~ is
Planck’s constant, and i =

√
−1. The physical derivation of the Schrödinger equation is contained in books

on quantum mechanics like [15] and [10].

2.4.3 Hyperbolic partial differential equations in mathematical physics

utt = c2uxx one dimensional vibrating string (one dimensional wave equation)
utt = c2∆u wave equation in Rn
utt = c2uxx − hut vibrating string with friction
utt = c2∆u− hut wave equation with friction in Rn
utt = c2uxx − hut − ku telegraph equation (also known as transmission line equation)
utt = c2uxx + f(x, t) wave equation with forced vibrations

Table 2.3: The PDEs above are some of the most common hyperbolic PDEs in mathematical physics.

The poster child hyperbolic PDE is the homogeneous wave equation

utt = c2∆u.

The function u(t,x) depends on time, t, and x = (x1, x2, . . . , xn) ∈ Rn. It represents a wave traveling
through an n-dimensional medium. For n = 1, this could be a simplification of a string, where we view the
string as a one-dimensional object. The constant c is the speed of propagation of waves in the medium, and
u(t,x) is the amplitude of the wave at position x and time t. In the example of a vibrating string, we can
view u(t, x) as the height of the string at the point x at the time t. The wave equation is a mathematical
model for several physical phenomena including vibrating strings, drums, air, waves in water, sound waves
in air, and electromagnetic waves including light and radio waves. The wave equation can be derived from
the laws of physics; see [4, Appendix 1].

2.4.4 Don’t let the solution get away; the boundary conditions are here to stay!

When solving these and other partial differential equations of mathematical physics, there is most often a
boundary condition and an initial condition. Although it may seem strange to deal with the initial condition
last, according to our mantra TIDGLAS, it is often best to address the boundary conditions first and save
the initial conditions for the end of the solution. The boundary conditions could arise, for example with a
vibrating guitar string, due to the physical phenomena we consider, and the geometry of the problem. In
this example, the ends of the strings do not move, and that translates into the Dirichlet boundary condition,
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which requires the solution of the PDE to vanish at the boundary. The boundary conditions are an extremely
important consideration and should not be forgotten, lest your guitar strings go wild and crazy like in Figure
2.6. Here is a mnemonic to remind you to always pay attention to the boundary condition.

Don’t let the solution run away; the boundary conditions are here to stay!

Another natural boundary condition is the Neumann boundary condition, which requires the normal
derivative of the solution of the PDE to vanish at the boundary. This is the boundary condition we would
use to solve the heat equation in a bounded region that has an insulated boundary, because this condition
means precisely that there is no exchange (gain or loss) of heat across the boundary.

2.5 Exercises

1. [4, 1.1.2] Show that u(x, y, t) = t−1e−(x2+y2)/(4kt) satisfies the heat equation ut = k(uxx + uyy) for
t > 0.

2. [4, 1.2.5(c)] Show that for n = 1, 2, 3, . . . un(x, y) = sin(nπx) sinh(nπ(1− y)) satisfies

uxx + uyy = 0, u(0, y) = u(1, y) = u(x, 1) = 0.

3. [4, 1.3.1] Derive pairs of ordinary differential equations from the following partial differential equations
by separation of variables or show that it is not possible:

(a) yuxx + uy = 0

(b) x2uxx + xux + uyy + u = 0

(c) uxx + uxy + uyy = 0

(d) uxx + uxy + uy = 0.

4. [4, 1.3.6] Use separation of variables to obtain the family of solutions

u±mn(x, y, z) = sin(mπx) cos(nπy)e±
√
m2+n2πz,

to the problem
∇2u = 0, u(0, y, z) = u(1, y, z) = uy(x, 0, z) = uy(x, 1, z) = 0.

5. [4, 1.1.1] Show that for t > 0, u(x, t) = t−1/2e−x
2/(4kt) satisfies the heat equation

ut = kuxx.

6. [4, 1.2.5(a)] Show that for n = 1, 2, 3, . . . un(x, y) = sin(nπx) sinh(nπy) satisfies

uxx + uyy = 0, u(0, y) = u(1, y) = u(x, 0) = 0.

7. [4, 1.3.5] By separation of variables, derive the solutions un(x, y) = sin(nπx) sinh(nπy) of

uxx + uyy = 0, u(0, y) = u(1, y) = u(x, 0) = 0.

8. [4, 1.3.7] Use separation of variables to find an infinite family of independent solutions to

ut = kuxx, u(0, t) = 0, ux(`, t) = 0,

representing heat flow in a rod with one end held at temperature zero and the other end insulated.

9. [4, 1.1.3] Show that u(x, y) = log(x2 + y2) satisfies Laplace’s equation uxx + uyy = 0 for (x, y) 6= (0, 0).
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Figure 2.6: I cannot emphasize enough how important boundary conditions are when solving partial differential
equations! Changing the boundary conditions can completely change the problem. This figure shows a forget-me-not
fluffball, known as a katodanode, playing a guitar with forgotten boundary conditions. The strings are going wild!
This little katodanode wants you to remember: don’t let the solution run away; the boundary conditions are here to
stay! Ebba Grönfors & Alva Brycke invented these forget-me-knot-fluffballs to help remember important concepts.
That is a a clever mnemonic technique, and we are grateful to Ebba & Alva for contributing!
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10. [4, 1.1.4] Show that u(x, y, z) = (x2 + y2 + z2)−1/2 satisfies Laplace’s equation uxx + uyy + uzz = 0 for
(x, y, z) 6= (0, 0, 0).

11. [4, 1.1.5] Mathematicians often say that we can change the units of time in order to simplify the
equations we obtain from physics. Show that if we replace t with τ := kt then the heat equation
ut = kuxx becomes

uτ = uxx.

Show that if we instead replace t with τ = ct then the wave equation utt = c2uxx becomes

uττ = uxx.

12. [4, 1.1.6] The goal of this exercise is to obtain d’Alembert’s formula for the solution of the one-
dimensional wave equation utt = c2uxx. The wave operator is also often known as the d’Alembertian,
similar to how the Laplace operator (named after Pierre Simon Laplace) is called the Laplacian.

(a) Show that if u(y, z) = f(y) + g(z) where f and g are C2 functions of one variable, then uyz = 0.
Conversely, show that every C2 solution u of uyz = 0 is of this form.

(b) Let y = x− ct and z = x+ ct. Show that utt − c2uxx = −4c2uyz.

(c) Conclude that the general C2 solution of the wave equation utt = c2uxx is u(x, t) = φ(x − ct) +
ψ(x+ ct) where φ and ψ are C2 functions of one variable. Note that φ(x− ct) represents a wave
traveling to the right with speed c, and ψ(x+ct) represents a wave traveling to the left with speed
c.

(d) Show that the solution of the initial value problem

utt = c2uxx, u(x, 0) = f(x), ut(x, 0) = g(x), t > 0, x ∈ R

is

u(x, t) =
1

2
[f(x− ct) + f(x+ ct)] +

1

2c

x+ct∫
x−ct

g(y)dy.

13. [4, 1.1.7] The voltage v and current i in an electrical cable along the x-axis satisfy the equations

ix + Cvt +Gv = 0, vx + Lit +Ri = 0,

where C,G,L, and R are the capacitance, (leakage) conductance, inductance, and resistance per unit
length in the cable. Show that v and i both satisfy the telegraph equation,

uxx = LCutt + (RC + LG)ut +RGu.

14. [4, 1.2.2] Consider the nonlinear differential equation u′ = u(1− u).

(a) Show that u1(x) = ex(1 + ex)−1 and u2(x) = 1 are solutions.

(b) Show that u1 + u1 is not a solution.

(c) For which values of c ∈ R is cu1 a solution? For which values of c is cu2 a solution?
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Chapter 3

Don’t get lost in a Hilbert space; find
your way with an orthogonal base!

We still do not know how to obtain the coefficients to complete the solutions we have obtained using
separation of variables and superposition! Is the suspense killing you? I hope not, because it’s going to
last for another chapter! To obtain these coefficients and rigorously solve the wave and heat equations, and
more generally for solving partial differential equations, function spaces play a central role. These are sets of
functions that can be mathematicized as vectors in the sense that we can view a function as an element of
a vector space. These vector spaces will usually be infinite dimensional. This is beautiful because the more
dimensions one has, the greater range for creativity, and the more places one can go! For example, if you
live in a one dimensional space, you only have two directions: forwards and backwards. Imagine living in
such a space, and imagine that there are two other people who live in the same space, but you really don’t
like them. If they are on either side of you, you are stuck, with no egress! On the other hand, as soon as
we increase to a two dimensional universe, there are now infinitely many directions. However, we only need
two basis directions in order to express all directions. In three dimensions, we need three basis directions
to express all directions; two is not enough. For infinite dimensional Hilbert spaces, we will need infinitely
many basis vectors, but the fundamental idea of an orthogonal base is the same in all cases, be it finite or
infinite dimensional.

In the previous chapter, we used separation of variables and superposition to obtain solutions to the
wave and heat equations that were expressed as infinite sums of certain functions, with unknown coefficients
for the terms in the sum. To determine those unknown coefficients, we will learn how to mathematicize
functions as elements in vector spaces. Then, similar to linear algebra, we can express functions in terms
of basis vectors. This is the procedure we will use to finally complete the solutions to the wave and heat
equations.

Definition 13 (Banach space). A Banach space is a complete, normed vector space.

Recall that a vector space is a non-empty set that is closed under addition and multiplication by scalars.
If we refer to the elements of the vector space as vectors, this means that we can add two vectors, and the
result is a vector. Similarly, we can also multiply a vector by a scalar (a real or complex number), and the
result is also a vector. Finally, we can talk about the norm of a vector, that is geometrically interpreted as
its length. With this interpretation it is natural that the norm satisfies:

||v|| ≥ 0 for all vectors, with equality if and only if v=0,

||cv|| = |c|||v|| for all scalars c,

||u+ v|| ≤ ||u||+ ||v||.
The last inequality above is known as the triangle inequality. The n dimensional Euclidean space is a Banach
space, and the triangle inequality says that the sum of the lengths of two sides of a triangle is greater than
or equal to the length of the third side.
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Figure 3.1: This is a quote from Buzz Lightyear, a character in the Pixar animated film Toy Story. It is a very good
and cute film. Having more dimensions means having more directions in which one can go. With so many directions
one might be concerned about the possibility of getting lost. In a Hilbert space, one can specify when directions
are perpendicular or not. This helps one to better navigate Hilbert spaces and is one of the reasons that although
these spaces can be infinite dimensional, they are very pleasant to work within. Image license and source: Creative
Commons Zero 1.0 Public Domain License openclipart.org.

Definition 14 (Hilbert space). A Hilbert space is a Banach space that is further equipped with a scalar
product. If we denote the space by H then the scalar product takes two elements from the Hilbert space
and spits out a complex number. The scalar product of u with v is denoted by 〈u, v〉. Then,

u, v ∈ H =⇒ 〈u, v〉 ∈ C,

c ∈ C =⇒ 〈cu, v〉 = c〈u, v〉,

u, v, w ∈ H =⇒ 〈u+ w, v〉 = 〈u, v〉+ 〈w, v〉,

〈u, v〉 = 〈v, u〉,

〈u, u〉 ≥ 0, = 0 ⇐⇒ u = 0.

The norm in a Hilbert space is defined by

||u|| :=
√
〈u, u〉.

Exercise 15. Verify that Rn is a Hilbert space by defining the scalar product in the usual way. Show that
the same is true for Cn if we now define

〈u, v〉 =

n∑
k=1

ukvk, u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn).

Definition 16 (Orthonormal basis (ONB) and Orthogonal basis (OB)). A set of elements contained in a
Hilbert space, H,

{uα} ⊂ H

is an orthonormal basis (ONB) for H if for any v ∈ H there exist complex numbers (cα) such that

v =
∑

cαuα, 〈uα, uβ〉 = δα,β =

{
1 α = β

0 α 6= β.
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This is the Kronecker δ, that is defined to be

δα,β :=

{
0 α 6= β

1 α = β.

A set of elements contained in a Hilbert space H

{vα} ⊂ H

is an orthogonal basis (OB) if for any v ∈ H there exist complex numbers (bα) such that

v =
∑

bαvα, 〈vα, vβ〉 = 0 ∀α 6= β.

The difference between an orthonormal basis in comparison to an orthogonal basis is that the vectors all
have length one. Sometimes this is convenient, sometimes it is a bit of a nuisance to insist on this, hence
we are prepared to work with ONBs and OBs. Why haven’t we written an index for α? We are not just
being lazy, there is a mathematical reason: it is because we do not know how many vectors are in the basis.
There could be finitely many or infinitely many, and in fact, there could be uncountably many. For the
applications relevant to solving partial differential equations. all Hilbert spaces we shall encounter will have
at most countably many basis vectors. This means we will be able to index the elements of a basis by N
or equivalently by Z. The dimension of a Hilbert space is the number of elements in an ONB. Any finite
dimensional Hilbert space is in bijection with the standard one

Cn, u, v ∈ Cn =⇒ 〈u, v〉 = u · v.

Thus, writing
u = (u1, . . . , un), with each component uk ∈ C, k = 1, . . . , n

and similarly for v,

〈u, v〉 =

n∑
k=1

ukvk.

The bijection between any finite (n) dimensional Hilbert space and Cn comes from taking an ONB of the
Hilbert space and mapping the elements of the ONB to the standard basis vectors of Cn. Here are some
useful basic results for Hilbert spaces.

The elements of an orthonormal (or orthogonal) basis help us to navigate our way through a Hilbert
space. We will keep this in mind with the slogan for this chapter:

Don’t get lost in a Hilbert space, find your way with an an orthogonal base!

An orthogonal basis or base is a collection of elements (vectors) in a Hilbert space that are all orthogonal,
such that every vector in that Hilbert space can be expressed as a linear combination of the basis vectors.
Even though we will often be working in the rather exotic sounding infinite dimensional Hilbert spaces, let’s
just think about navigating our way around in an everyday sense, like using a compass as shown in Figure
3.2.

3.1 Cauchy-Schwarz Inequality, Triangle Inequality, and Pythagorean
Theorem

In this section we will prove several facts concerning the scalar product and the norm of vectors in Hilbert
spaces. We begin by proving a useful fact about the scalar product that we will use repeatedly.

Proposition 17. Let H be a Hilbert space. For any u and v in H,

||u+ v||2 = ||u||2 + 2 Re〈u, v〉+ ||v||2.
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Figure 3.2: Don’t get lost in a Hilbert space, find your way with an an orthogonal base! To navigate our way around
the Earth, we just need to know which way is north, because then we can deduce east, west, and south! A compass is
a light weight magnet, that is magnetized so that the southern pole of the needle is attracted to the Earth’s magnetic
north pole. Image license and source: Creative Commons Zero 1.0 Public Domain License openclipart.org.

Proof: This is a good exercise because it only requires the definitions. First, by definition:

||u+ v||2 = 〈u+ v, u+ v〉 = 〈u, u+ v〉+ 〈v, u+ v〉

= 〈u, u〉+ 〈u, v〉+ 〈v, v〉+ 〈v, u〉
= ||u||2 + 〈u, v〉+ ||v||2 + 〈u, v〉.

For any complex number z, adding z to its complex conjugate results in twice the real part of z:

z + z = 2 Re(z).

So,
〈u, v〉+ 〈u, v〉 = 2 Re〈u, v〉.

We indicate the end of a proof with a paw print, because we could all stand to be reminded of cute animals
once in a while. When you see this you can imagine it is an animal friend saying, all right, you completed
the proof, that’s enough work, now it’s time to take a break and pay attention to me! Meow! Woof! If you
also have animal friends, then this symbol indicates that you should give your animal friend a pet, you and
they deserve it, and petting animal friends has been shown to be a great stress reliever, so it’s a great way
to follow up a tough proof! For those who don’t have animal friends to pet, contributors to this text are
sharing cute animal pictures that will be included here as a virtual substitute. The first appearance is my
cat, Ada, saying hello in Figure 3.3.

The next fact is so important that it is named after not only one but two mathematicians!

Proposition 18 (Cauchy-Schwartz Inequality). For any Hilbert space, H, for any u and v in H,

|〈u, v〉| ≤ ||u||||v||.
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Figure 3.3: Ada the cat sends her catly greetings and wishes you success with this text, as does the nice man
reflected in the guitar!
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Figure 3.4: An upward quadratic function always has a unique minimum.

Proof: Assume that at least one of the two is non-zero. Let’s assume v 6= 0, because otherwise we can
just swap their names. We begin by considering the length of the vector u plus v scaled by a factor of t. If
t→ 0, the length tends to ||u||2. What happens for other values of t? We compute it:

||u+ tv||2 = ||u||2 + 2tRe〈u, v〉+ t2||v||2, t ∈ R.

This is a real valued function of t. It’s a quadratic function of t in fact. The derivative is

2t||v||2 + 2 Re〈u, v〉.

It’s an upwards shaped quadratic function, similar to the graph in Figure 3.4. As seen there, this function
has a unique minimum. Since the derivative must vanish at this minimum, we compute that the minimum
occurs when

t = −Re〈u, v〉
||v||2

.

If we then check out what happens at this value of t,

||u+ tv||2 = ||u||2 − 2
Re〈u, v〉
||v||2

Re〈u, v〉+ Re〈u, v〉2 ||v||
2

||v||4
= ||u||2 − Re〈u, v〉2

||v||2
.

We know that

0 ≤ ||u+ tv||2

so we get

0 ≤ ||u||2 − Re〈u, v〉2

||v||2
=⇒ 0 ≤ ||u||2||v||2 − Re〈u, v〉2.

This gives us

Re〈u, v〉2 ≤ ||u||2||v||2.

Well, this is annoying because of that silly Re. I wonder how we could make it turn into |〈u, v〉|? Also, we
don’t want to screw up the ||u||2||v||2 part. Well, we know how the scalar product interacts with complex
numbers, for λ ∈ C,

〈λu, v〉 = λ〈u, v〉.

So, if for example

〈u, v〉 = reiθ, r = |〈u, v〉| and θ ∈ R.

We can modify u, without changing ||u||,
||e−iθu|| = ||u||.

Moreover

〈e−iθu, v〉 = e−iθ〈u, v〉 = e−iθreiθ = |〈u, v〉| .
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So, if we repeat everything above replacing u with e−iθu we get

Re〈e−iθu, v〉2 ≤ ||e−iθu||2||v||2 = ||u||2||v||2,

and by the above calculation

〈e−iθu, v〉 = |〈u, v〉| ∈ R =⇒ Re〈e−iθu, v〉2 = |〈u, v〉|2 .

So, we have
|〈u, v〉|2 ≤ ||u||2||v||2.

Taking the square root of both sides completes the proof of the Cauchy-Schwarz inequality.

Since Hilbert spaces distinguish orthogonality between vectors, there is a triangle inequality, just like we
have in the real world. The sum of the lengths of two sides of a triangle is greater than or equal to the third
side of the triangle.

Proposition 19 (Triangle Inequality). For any u and v in a Hilbert space H,

||u+ v|| ≤ ||u||+ ||v||.

Proof: We just use the previous two results:

||u+ v||2 = ||u||2 + 2 Re〈u, v〉+ ||v||2 ≤ ||u||2 + 2||u||||v||+ ||v||2 = (||u||+ ||v||)2.

Taking the square root we obtain the triangle inequality.

We also have a Pythagorean theorem that says that the sum of the squares of the lengths of the legs of
a right triangle is equal to the square of the hypotenuse; one usually learns this as a2 + b2 = c2, as shown in
Figure 3.5.

Proposition 20 (Pythagorean theorem). If u and v are orthogonal, then

||u+ v||2 = ||u||2 + ||v||2.

Moreover, if {un}Nn=1 are orthogonal, then

||
N∑
n=1

un||2 =

N∑
n=1

||un||2.

Proof: The first statement follows from

||u+ v||2 = ||u||2 + 2 Re〈u, v〉+ ||v||2 = ||u||2 + ||v||2,

if u and v are orthogonal, because in that case their scalar product is zero. Moreover, for any collection of
orthogonal vectors {u1, . . . , un} we proceed by induction. Assume that

||u1 + . . .+ un−1||2 =

n−1∑
k=1

||uk||2.
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Figure 3.5: The Pythagorean theorem reminds us that the sum of the squares of the lengths of the two perpendicular
sides of a right triangle is equal to the the square of the length of the third (longest) side. The two perpendicular
sides of a right triangle are called legs, while the third longest side is called the hypotenuse. Thanks to Gottfrid
Olsson for contributing this nice illustration!

Then, if un is orthogonal to all of u1, . . . , un−1 we also have

〈un, u1 + . . .+ un−1〉 = 〈un, u1〉+ . . .+ 〈un, un−1〉 = 0 + . . .+ 0.

Hence un is also orthogonal to the sum,
n−1∑
k=1

uk.

By the Pythagorean theorem,

||un +

n−1∑
k=1

uk||2 = ||un||2 + ||
n−1∑
k=1

uk||2.

By the induction assumption

= ||un||2 +

n−1∑
k=1

||uk||2 =

n∑
k=1

||uk||2.

3.1.1 Continuity of the scalar product

An important fact that we will often use is that the scalar product is continuous. This means that we can
move the scalar product in and out of infinite, convergent sums.

Proposition 21. Using only the assumptions that the scalar product satisfies:

〈u, v〉 = 〈v, u〉

〈au, v〉 = a〈u, v〉
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〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉

〈u, u〉 ≥ 0, 〈u, u〉 = 0 ⇐⇒ u = 0,

then the scalar product is a continuous function from H ×H → C.

Proof: All statements except the continuity can be demonstrated using the definition of the scalar
product, so these are left as an exercise. We focus on the proof of the continuity, because at first glance, it
seems like a rather amazing statement. To prove continuity, we would like to show that if u is close to u′

and v is close to v′, then 〈u, v〉 is close to 〈u′, v′〉. Consequently, we would like to estimate.

|〈u, v〉 − 〈u′, v′〉| .

Somehow, we would like to manipulate this so that we have

u− u′ and v − v′.

We do this by the typical mathematician’s trick of adding zero in a disguised form:

〈u− u′, v〉 = 〈u, v〉 − 〈u′, v〉.

That shows that
〈u− u′, v〉+ 〈u′, v〉 = 〈u, v〉.

So, we see that
〈u, v〉 − 〈u′, v′〉 = 〈u− u′, v〉+ 〈u′, v〉 − 〈u′, v′〉

We can smash the last two terms together because −1 ∈ R so

−〈u′, v′〉 = 〈u′,−v′〉 =⇒ 〈u′, v〉 − 〈u′, v′〉 = 〈u′, v − v′〉.

Hence,
|〈u, v〉 − 〈u′, v′〉| = |〈u− u′, v〉+ 〈u′, v − v′〉| .

By the triangle inequality

|〈u− u′, v〉+ 〈u′, v − v′〉| ≤ |〈u− u′, v〉|+ |〈u′, v − v′〉| .

By the Cauchy-Schwarz inequality

|〈u− u′, v〉|+ |〈u′, v − v′〉| ≤ ||u− u′||||v||+ ||u′||||v − v′||.

We therefore see that for any fixed pair (u, v) ∈ H ×H, given ε > 0, we can define

δ := min

{
ε

2(||v||+ 1)
,

ε

2(||u||+ 1)
, 1

}
.

Then we estimate
||u− u′|| < δ =⇒ ||u′|| < ||u||+ δ ≤ ||u||+ 1,

||u− u′||||v|| ≤ ε||v||
2(||v||+ 1)

<
ε

2
.

and

||u′||||v − v′|| ≤ (||u||+ 1)ε

2(||u||+ 1)
≤ ε

2
,

so we obtain
|〈u, v〉 − 〈u′, v′〉| < ε.
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Figure 3.6: Don’t get lost in a Hilbert space, find your way with an an orthogonal base! The more dimensions,
the more vectors we need in our orthogonal base to navigate. Three dimensional space is an example of a Hilbert
space, and one navigates an airplane through this Hilbert space using an orthogonal base - and a GPS system! Image
license and source: Creative Commons Zero 1.0 Public Domain License openclipart.org.

Remark 1. This fact is useful because it allows us to bring limits inside the scalar product. You will see that
we do this many times! In particular, if one has two sequences,

{un}n≥1, {vn}n≥1 in a Hilbert space, H,

and
lim
n→∞

un = u ∈ H, lim
n→∞

vn = v ∈ H,

then the continuity of the scalar product implies that

lim
n→∞

〈un, vn〉 = 〈u, v〉.

This fact allows us to prove an infinite dimensional Pythagorean theorem!

We will often be navigating our way around infinite dimensional Hilbert spaces. To navigate around
the earth, a simple compass suffices, but to navigate an airplane, one needs more sophisticated navigational
aides like in Figure 3.6. Similarly, to navigate our way around an infinite dimensional Hilbert space, it will
be very helpful to know that the Pythagorean Theorem is true for infinite-dimensional triangles!

Theorem 22 (Infinite dimensional Pythagorean Theorem). Assume that {uk}k≥1 are in a Hilbert space,
and that ∑

k≥1

uk

converges to an element u in that Hilbert space. Further, assume that the uk are pairwise orthogonal. Then
we have

||u||2 =
∑
k≥1

||uk||2.

Proof: The meaning of ∑
k≥1

uk = u

is that

lim
n→∞

n∑
k=1

uk = u.
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This is equivalent to

lim
n→∞

||
n∑
k=1

uk − u|| = 0.

The definition of scalar product says that
||u||2 = 〈u, u〉.

Let us denote

Un :=

n∑
k=1

uk.

Since it is a finite sum of elements of the Hilbert space, this is an element of the Hilbert space, because
Hilbert spaces are vector spaces. The continuity of the scalar product shows that

lim
n→∞

〈Un, Un〉 = 〈U,U〉.

For each n, we also have

〈Un, Un〉 =

n∑
k=1

||uk||2,

by the usual (finite) Pythagorean Theorem. Hence, we have

lim
n→∞

n∑
k=1

||uk||2 = ||U ||2.

This shows that the sum on the left converges and is equal to ||U ||2.

3.2 Let’s build an infinite dimensional Hilbert space!

To get a sense of infinite dimensional Hilbert spaces, let’s build one. I am not very creative, so I am simply
going to take Cn and let n→∞. In Cn, the elements of this Hilbert space are vectors, that are represented
by a list of n complex numbers. So, if I just let n→∞, then my elements of this C∞ Hilbert space will be
a list of infinitely many complex numbers. They are in an order (c1, c2, c3, c4, . . .). What else do you call
an ordered list of infinitely many complex numbers? That’s right, it’s a sequence! So, the elements in my
Hilbert space are sequences of complex numbers, which we can write more succinctly as (cn)n≥1. I am still
not very creative, so I will define the scalar product of two sequences in the same way that we define it in
Cn, that is

〈(an)n≥1, (bn)n≥1〉 :=
∑
n≥1

anbn.

The norm according to this scalar product will then be

||(an)n≥1|| :=
√
〈(an)n≥1, (an)n≥1〉 =

√∑
n≥1

|an|2.

The geometric meaning of the norm of an element of a Hilbert space is that is its length. All elements in
a Hilbert space must have finite length. Consequently, we require that all elements of this Hilbert space
satisfy: √∑

n≥1

|an|2 <∞ ⇐⇒
∑
n≥1

|an|2 <∞.
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Then we can check that all of the conditions the scalar product and norm are required to satisfy are met,
and consequently, the scalar product satisfies the Cauchy-Schwarz inequality

|〈(an)n≥1, (bn)n≥1〉| ≤ ||(an)n≥1||||(bn)n≥1|| <∞.

It turns out that this rather intuitive Hilbert space has a name: it is called ‘little ell two’ and written `2.
Intuitively, `2 consists of all infinite dimensional vectors that have a finite length. An orthonormal basis for
`2 looks just like an orthonormal basis for Cn if we let n→∞. In particular, the nth element in the standard
orthonormal basis for `2 is the sequence such that the nth component is equal to one, and all others are
equal to zero. In other words, it is the sequence in which all elements, save the nth one, are equal to zero.
If we denote these basis vectors by en, then just as with the standard unit vectors in Cn, we can write any
element of `2 in terms of these as:

(an)n≥1 =
∑
n≥1

anen.

By the definition of the scalar product, these vectors en are orthogonal and normalized, because

〈en, em〉 =

{
1 n = m

0 n 6= m.

Exercise 23. Find an example of infinitely many vectors in `2 that are orthogonal to each other and nor-
malized, but are not an orthonormal basis, in the sense that not all vectors in `2 can be expressed as a linear
combination of your example.

In order to complete the last step of solving the wave and heat equations, we will represent functions as
vectors contained in infinite dimensional Hilbert spaces. For example, with the initial value problem for the
heat equation on a circular rod, we wished to express the initial data f(x) as a series:

u(x, 0) = f(x) =⇒
∑
n∈Z

(an cos(nx) + bn sin(nx)) = f(x).

The function f(x) is 2π periodic, and so it is enough to prove that we can express f as such a series for
x ∈ [−π, π]. If we can ascertain that the functions sin(nx) and cos(nx) create an orthogonal basis for all
functions defined on [−π, π], then we will be able to use Hilbert space theory to determine the required
coefficients. Essentially what we will do is to project f onto these basis functions and express f in terms of
this orthogonal basis. So, we would like to understand if and when collections of functions, like these sines
and cosine functions, are orthogonal vectors in a Hilbert space, and if so, do they span the space, that is can
we make an orthonormal basis out of them somehow?

3.3 A Hilbert space of functions

Motivated by the preceding discussion, we would like to consider functions defined on an interval, for now
we take [−π, π], and interpret them as elements of a Hilbert space. Consequently, we need a way of taking
in two functions, doing something to them, and obtaining a number. For example, if we have f and g,
just multiplying them together will not work, because that will result in another function. It will give us a
number at each point, not just one number for the whole interval. Now, we could try something like∑

f(x)g(x),

but then we would have to sum over all points between −π and π, and there are uncountably many such
points. So this is not going to work either. However, a process that is quite similar to a sum, that we can
do over this whole interval is... integrate! Consequently, we will define the scalar product as

〈f, g〉 :=

π∫
−π

f(x)g(x)dx.
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Doing this, the length of f will be equal to

√
〈f, f〉 =

√√√√√ π∫
−π

|f(x)|2dx.

We demand that this is finite, because all elements in a Hilbert space need to have finite length:

√
〈f, f〉 <∞ ⇐⇒

π∫
−π

|f(x)|2dx <∞.

Consequently, our next example of a Hilbert space is the set of all functions defined on [−π, π] that have
finite length according to this definition. It turns out that this Hilbert space has a name: L2(−π, π). The
part in parentheses indicates the interval on which our functions are defined. We can analogously study
L2(a, b) for an interval (a, b) with real numbers a < b. This Hilbert space consists of all functions f that
satisfy

b∫
a

|f(x)|2dx <∞,

and the scalar product is

〈f, g〉 =

b∫
a

f(x)g(x)dx.

A word of caution: these definitions of L2 are what we shall call working definitions. They are sufficient to
solve problems and for many purposes, but a truly rigorous mathematical definition invokes some measure
theory.

Definition 24 (Rigorous L2). For a bounded real interval (a, b), the Hilbert space L2(a, b) consists of the
equivalence classes of Lebesgue measurable functions, f such that

b∫
a

|f(x)|2dx <∞,

where f and g are in the same equivalence class if and only if

b∫
a

|f(x)− g(x)|2dx = 0.

Please do not be disconcerted by this definition. Every function you have ever encountered in your
mathematical education up to this point - unless you have taken a full course on measure theory - is
measurable. So one can happily ignore the requirement of ‘Lebesgue measurable.’ One can quite simply
assume that every function is measurable, so the key question is whether the result of squaring the function
and integrating from a to b is finite? If so, your function is in (an equivalence class) of L2(a, b). If not,
then it’s not. What about this ‘equivalence class’ terminology? To be considered equivalent, if we subtract
the two functions, take the absolute value of the difference, square it and integrate, the result should be
zero. Now let’s just think about that. |f(x) − g(x)|2 ≥ 0 is always true. Consequently, if the result of
integrating this is zero, then it pretty much means that |f(x) − g(x)|2 is equal to zero on pretty much the
entire interval. There is a mathematically precise expression for this: it is zero almost everywhere. Note
further that |f(x) − g(x)|2 = 0 if and only if f(x) = g(x). Consequently, in the Hilbert space L2(a, b) we
consider two functions to be equivalent if they are equal almost everywhere. Mathematically, this means
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that the set at which f and g are not equal has no length, or in precise terms, Lebesgue measure zero. A
point has no length. Two points have no length. But any open non-empty interval does have a length. For
working purposes, it suffices to just think about L2(a, b) as functions that are ‘square integrable,’ meaning
that the integral of the function squared over the interval on which we are working is finite. The scalar
product of two such functions is

〈f, g〉 =

b∫
a

f(x)g(x)dx.

Since we will need to know that the
∫ b
a
|f(x)|2dx < ∞ to conclude that f is in L2(a, b), the following

estimate will be useful.

Proposition 25 (The Standard Estimate). Assume f is defined on some interval [a, b]. Assume that f
satisfies a bound of the form |f(x)| ≤M for x ∈ [a, b].1 Then,∣∣∣∣∣∣

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ (b− a)M.

Proof: Standard estimate!∣∣∣∣∣∣
b∫
a

f(x)dx

∣∣∣∣∣∣ ≤
b∫
a

|f(x)|dx ≤
b∫
a

Mdx = M(b− a).

Exercise 26. An example of a function that is not in L2(−π, π) is the function

f(x) :=

{
1
x x 6= 0

0 x = 0
.

The reason is because if we square f(x) and try to integrate it, the integral tends to infinity. Use this
function for inspiration to find other functions that are not in L2(−π, π). Then, prove that any function that
is bounded on [−π, π] is in L2(−π, π). If a function is continuous on [−π, π] can you conclude that it is in
L2(−π, π)? Prove or give a counterexample.

We would like to understand orthonormal bases for these Hilbert spaces. Since it works in the same way
for all Hilbert spaces, we develop the theory for Hilbert spaces in general, and then we will apply the theory
to study the specific Hilbert spaces that are useful for solving problems.

3.4 Bessel’s inequality and orthonormal sets

Bessel’s inequality is very useful. Heuristically, what it says is that first of all, if you have an orthonormal
set in a Hilbert space, and you project a vector onto the span of this set, then the projected vector’s length
is not any longer than the original vector. Geometrically, this should jive with your intuition. Let’s do a
finite dimensional example. Consider the vector v = (1, 2, 3) in the Hilbert space C3. It has length equal to√

1 + 4 + 9 =
√

14. Let’s consider the projection onto the span of e1 and e2. The projection is defined to be

〈v, e1〉e1 + 〈v, e2〉e2 = (1, 2, 0).

1We actually only need this for “almost every” x, where this ‘almost every’ has a precise measure theoretic meaning. Please
be patient - when I find time - I will write an appendix containing all this measure theory. For now, please just accept this,
thanks!
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The length of this vector is
√

5. It is shorter than the length of v because the two vectors e1 and e2 are not
an orthogonal basis for the Hilbert space. If we instead project v onto the span of e1, e2, and e3 the result
is

〈v, e1〉e1 + 〈v, e2〉e2 + 〈v, e3〉e3 = v.

Now let’s do an infinite dimensional example with the Hilbert space `2. Consider the element

x =

(
1

n

)
n≥1

.

We first check to make sure this is indeed in `2:

||x||2 =
∑
n≥1

1

n2
<∞.

Interestingly, using techniques from this course and indeed this chapter you will learn how to compute this
series! We have a similar set of basis vectors for `2, just infinitely many of them, {en}n≥1. Now, let’s see
what happens if we project x onto all of these except the first one. The result is∑

n≥2

〈x, en〉en = (0, 1/2, 1/3, 1/4, . . .).

The length of this new vector is √∑
n≥2

1

n2
<

√∑
n≥1

1

n2
.

So, again we see that if we project onto the span of all basis vectors except one, the resulting vector is shorter
than the original vector. Bessel’s inequality summarizes this observation: the length of the projection of a
vector onto the span of an orthonormal set is less than or equal to the length of the original vector.

Theorem 27 (Bessel’s Inequality for Hilbert spaces). Let {φn}n∈N be an orthonormal set in a Hilbert space
H. Then if f ∈ H,

g :=
∑
n∈N
〈f, φn〉φn ∈ H,

and we have the inequality

||g||2 =
∑
n∈N
|〈f, φn〉|2 ≤ ||f ||2.

Proof: It is tempting, and indeed I nearly fell for it, to use the infinite dimensional Pythagorean theorem.
We are not allowed to do that, however, because although each term 〈f, φn〉φn ∈ H, we do not know from
the start that this entire infinite sum converges to an element of H. We must prove that. So, to prove that,
we will first prove the inequality ∑

n∈N
|〈f, φn〉|2 ≤ ||f ||2.

Now, for each finite sum, it’s just a finite sum so it’s an element of the Hilbert space, and the Pythagorean
theorem says that

FN :=

N∑
n=1

〈f, φn〉φn ∈ H =⇒ ‖
N∑
n=1

f̂nφn‖2 =

N∑
n=1

|f̂n|2.

Above, we have used the convenient notation

f̂n := 〈f, φn〉.

We will say more about this later. To proceed we look at the distance between FN and f . This distance
squared is

||FN − f ||2 = 〈FN − f, FN − f〉 = ||FN ||2 − 〈f, FN 〉 − 〈FN , f〉+ ||f ||2.
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We just need to figure out those middle terms. The first one is

−〈f, FN 〉 = −〈f,
N∑
n=1

f̂nφn〉 = −
N∑
n=1

f̂n〈f, φn〉 = −
N∑
n=1

|f̂n|2.

We have used the properties of the scalar product together with the definition of f̂n. If you don’t see how
this works, please review the properties of the scalar product until you understand these manipulations.
Next we compute

−〈FN , f〉 = −〈
N∑
n=1

f̂nφn, f〉 = −
N∑
n=1

f̂n〈φn, f〉 = −
N∑
n=1

f̂nf̂n = −
N∑
n=1

|f̂n|2.

We have again used the properties of the scalar product together with the definition of f̂n. If you don’t see
how this works, please review the properties of the scalar product until you understand these manipulations.
Consequently, we have

||FN − f ||2 =

N∑
n=1

|f̂n|2 − 2

N∑
n=1

|f̂n|2 + ||f ||2 = −
N∑
n=1

|f̂n|2 + ||f ||2.

The two terms have opposite signs. Let us think about the meaning of the left side. Or just look at it
naively and say ‘it is stuff squared.’ Yes, more precisely, it is real stuff squared. Real stuff squared is always
greater than or equal to zero. If we think geometrically, it is the distance (squared) between two vectors,
and distances are always greater than or equal to zero. So we have

0 ≤ ||FN − f ||2 = −
N∑
n=1

|f̂n|2 + ||f ||2 =⇒
N∑
n=1

|f̂n|2 ≤ ||f ||2.

The right side is fixed and finite. So, we can let N →∞ on the left side, and that right side just stays put,
so we arrive at ∑

n≥1

|f̂n|2 ≤ ||f ||2.

We can now use this to prove that the sequence {FN}N≥1 is a Cauchy sequence. Then the fact that
Hilbert spaces are complete implies that the sequence has a limit that is an element of the Hilbert space, so
we will have that

lim
N→∞

FN =
∑
n≥1

f̂nφn = g ∈ H.

To prove that the sequence is Cauchy, we start with ε > 0, an arbitrary small number that is handed to
us. Since we have proven that

∞∑
1

|f̂n|2 <∞,

there exists N ∈ N such that
∞∑
N

|f̂n|2 < ε2.

This is because the tail of any convergent series can be made as small as we like. So, now if we have
N1 ≥ N2 ≥ N , we estimate

||FN1
− FN2

||2 = ||
N1∑
N2+1

f̂nφn||2 =

N1∑
N2+1

|f̂n|2
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≤
∞∑

N2+1

|f̂n|2 ≤
∞∑
N

|f̂n|2 < ε2.

Consequently we have that for all N1 ≥ N2 ≥ N ,

||FN1
− FN2

|| < ε.

This is the definition of being a Cauchy sequence. Every Cauchy sequence in a complete space has a limit
in that space (this is the definition of being complete!). Consequently, we obtain that

lim
N→∞

N∑
n=1

f̂nφn = g ∈ H.

It is only now that we can invoke the infinite dimensional Pythagorean Theorem! Knowing that this sum is
an element of the Hilbert space and that φn are orthonormal, we also have that f̂nφn ∈ H are orhthogonal
to each other. We therefore have

||g||2 =
∑
n≥1

||f̂nφn||2 =
∑
n≥1

|f̂n|2||φn||2 =
∑
n≥1

|f̂n|2 ≤ ||f ||2.

3.5 The 3 equivalent conditions to determine if an orthonormal
set in a Hilbert space is in fact an orthonormal basis

Perhaps what makes the following theorem so nice is the pleasant setting of a Hilbert space, or translated
directly from German, a Hilbert room. Hilbert rooms are cozy. The reason is because there is a notion of
orthogonality, so it is very easy to find one’s way around, much like the grid-like streets in the USA. We use
the elements of an orthogonal base to navigate our way through a Hilbert space. We can think of them as
road signs that guide our way, with our slogan:

Don’t get lost in a Hilbert space, find your way with an an orthogonal base!

An orthogonal basis or base is a collection of elements (vectors) in a Hilbert space that are all orthogonal,
like the streets in the USA as in Figure 3.7, such that every vector in that Hilbert space can be expressed
as a linear combination of the basis vectors. This is useful for many purposes including solving partial
differential equations, computing seemingly impossible sums, and determining best approximations. For
finite dimensional Hilbert spaces, like Cn, if we have n vectors that are all orthogonal then we immediately
know that they are an orthogonal basis. It is not so simple for infinite dimensional Hilbert spaces, but we
will manage nonetheless!2

For infinite dimensional Hilbert spaces, we cannot just say ‘infinitely many’ orthogonal vectors is enough
to be a basis. Recall the example of `2. The vectors {en}n≥2 are not a basis, because there is no way to
write the vector x = (1/n)n≥1 in terms of only these. We need e1. Moreover, we saw that when we project x
onto {en}n≥2, the projected vector is shorter than x. It turns out that this is one way to ascertain whether
or not an orthonormal set is a basis. If Bessel’s inequality is in fact an equality, that is if the length of
the projected vector is equal to that of the original vector, then the set is a basis. There are in total three
equivalent ‘checks’ one can perform to determine whether or not an orthonormal set in a Hilbert space is a
bases.

2Anecdote alert! I traveled alone to France when I was 15. I spoke pretty good French. Landed in Paris, figured out the
Metro, made it out to the street. Where the F were the street signs??? It took me a while to figure out that in France, they
put street signs on buildings. It was a bit of a funny logic puzzle, standing there thinking, the French people must have the
names of the street somewhere, because they have to navigate. Where the heck are they? Looking looking until aha! On the
buildings! Rather space-saving and clever.
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Theorem 28 (The 3 equivalent conditions for an ONS to be an ONB). Let {φn}n∈N be orthonormal in a
Hilbert space, H. The following are equivalent:

(1) f ∈ H and 〈f, φn〉 = 0∀n ∈ N =⇒ f = 0.

(2) f ∈ H =⇒ f =
∑
n∈N
〈f, φn〉φn.

(3) ||f ||2 =
∑
n∈N
|〈f, φn〉|2 .

The last of these is known as Parseval’s equation. If any of these three equivalent conditions hold, then we
say that {φn} is an orthonormal basis of H.

Proof: We shall proceed in order prove (1) =⇒ (2), then (2) =⇒ (3), and finally (3) =⇒ (1). Stay
calm and carry on.

First we assume statement (1) holds, and then we shall show that (2) must hold as well. Bessel’s Inequality
Theorem says that

g :=
∑
n∈N
〈f, φn〉φn ∈ H.

So, we would like to prove that in fact g = f , somehow using the fact that statement (1) holds true.

Idea!

let’s try to show that f − g = 0. This will imply that f = g. To use (1) we should compute then

〈f − g, φn〉.

Let’s do this.
〈f − g, φn〉 = 〈f, φn〉 − 〈g, φn〉.

We insert the definition of g as the series,

〈g, φn〉 = 〈
∑
m≥1

〈f, φm〉φm, φn〉 =
∑
m≥1

〈f, φm〉〈φm, φn〉 = 〈f, φn〉.

Above, we have used in the second equality the linearity of the inner product and the continuity of the inner
product. In the third equality, we have used that 〈φm, φn〉 is 0 if m 6= n, and is 1 if m = n. Hence, only the
term with m = n survives in the sum. Thus,

〈f − g, φn〉 = 〈f, φn〉 − 〈g, φn〉 = 〈f, φn〉 − 〈f, φn〉 = 0, ∀n ∈ N.

By (1), this shows that f − g = 0 =⇒ f = g.
Next, we shall assume that (2) holds, and we shall use this to demonstrate (3). By (2),

f =
∑
n∈N

f̂nφn, f̂n := 〈f, φn〉.

To obtain (3), we can simply apply our infinite dimensional Pythagorean theorem, which says that

||f ||2 =
∑
n∈N
||f̂nφn||2 =

∑
n∈N
|f̂n|2||φn||2 =

∑
n∈N
|f̂n|2.

Finally, we assume (3) holds and use it to show that (1) must also hold. This is pleasantly straightforward.
We assume that for some f in our Hilbert space, 〈f, φn〉 = 0 for all n. Using (3), we compute

||f ||2 =
∑
n∈N
|〈f, φn〉|2 =

∑
n∈N

0 = 0.

The only element in a Hilbert space with norm equal to zero is the 0 element. Thus f = 0.
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Figure 3.7: Don’t get lost in a Hilbert space, find your way with an orthogonal base! The elements of an orthonormal
(or just orthogonal but not normalized) basis are like street signs that help us navigate the Hilbert space. They help
us to see the Hilbert space like an infinite dimensional version of the grid-like structure of streets in the US as shown
here. Image license and source: Creative Commons Zero 1.0 Public Domain License openclipart.org.

3.6 Fourier series on Hilbert spaces are the best approximations!

We have been discussing the projection of vectors in a Hilbert space onto the span of sets of orthonormal
vectors. This in fact has a name.

Definition 29. The Fourier series of an element f of a Hilbert space, H, with respect to an orthonormal
set {φn} is defined to be ∑

n

〈f, φn〉φn.

The coefficients are known as Fourier coefficients, and are often denoted

f̂n = 〈f, φn〉.

If the set is orthogonal, but not normalized, then the Fourier coefficients are defined to be

f̂n =
〈f, φn〉
||φn||2

,

and the Fourier series is also defined as above, ∑
n

f̂nφn.

Exercise 30. Use the theorem on the 3 equivalent conditions for an ONS to be an ONB to show that the
Fourier series of f is actually equal to f if and only if the orthonormal set satisfies one of the three conditions
of the theorem.

47

openclipart.org


3.6.1 The Best Approximation!

Although the Fourier series of f might not be equal to f , it is the best approximation to f in the following
sense.

Theorem 31 (Best Approximation). Let {φn}n∈N be an orthonormal set in a Hilbert space, H. If f ∈ H,
and ∑

n∈N
cnφn ∈ H,

then
||f −

∑
n∈N
〈f, φn〉φn|| ≤ ||f −

∑
n∈N

cnφn||,

and equality holds ⇐⇒ cn = 〈f, φn〉 is true ∀n ∈ N.

Proof: We make a few definitions: let

g :=
∑

f̂nφn, f̂n = 〈f, φn〉,

and
ϕ :=

∑
cnφn.

Idea!

||f − ϕ||2 = ||f − g + g − ϕ||2 = ||f − g||2 + ||g − ϕ||2 + 2 Re〈f − g, g − ϕ〉.

Idea!

〈f − g, g − ϕ〉 = 0.

Just write it out (stay calm and carry on):

〈f, g〉 − 〈f, ϕ〉 − 〈g, g〉+ 〈g, ϕ〉

=
∑

f̂n〈f, φn〉 −
∑

cn〈f, φn〉 −
∑

f̂n〈φn,
∑

f̂mφm〉+
∑

f̂n〈φn,
∑

cmφm〉

=
∑
|f̂n|2 −

∑
cnf̂n −

∑
|f̂n|2 +

∑
f̂ncn = 0,

where above we have used the fact that φn are an orthonormal set. Then, we have

||f − ϕ||2 = ||f − g||2 + ||g − ϕ||2 ≥ ||f − g||2,

with equality iff
||g − ϕ||2 = 0.

Let us now write out what this norm is, using the definitions of g and ϕ. By their definitions,

g − ϕ =
∑

(f̂n − cn)φn.

By the Pythagorean theorem, due to the fact that the φn are an orthonormal set, and hence multiplying

them by the scalars, f̂n − cn, they remain orthogonal, we have

||g − ϕ||2 =
∑∣∣∣f̂n − cn∣∣∣2 .
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This is a sum of non-negative terms. Hence, the sum is only zero if all of the terms in the sum are zero. The
terms in the sum are all zero iff ∣∣∣f̂n − cn∣∣∣ = 0∀n ⇐⇒ cn = f̂n∀n ∈ N.

Corollary 32. Assume that {φn} is an OS in a Hilbert space H. Then the best approximation to f ∈ H of
the form

N∑
n=1

cnφn

is given by taking

cn =
〈f, φn〉
||φn||2

.

Exercise 33. Prove this corollary using the best approximation theorem.

3.7 Orthogonal bases for the Hilbert space L2(−π, π)
We will compute that the functions einx are orthogonal, and if we divide by their norm, then we obtain an
orthonormal set.

Proposition 34. On the interval [−π, π], the functions

φn(x) =
einx√

2π

are an orthonormal set with respect to the scalar product,

〈f, g〉 =

π∫
−π

f(x)g(x)dx.

Proof: By definition, we consider
π∫
−π

einx√
2π

eimx√
2π
dx.

We bring the constant factor out in front of the integral the constant factor, and we recall that eimx = e−imx,
so we are computing

1

2π

π∫
−π

einxe−imxdx.

Exercise 35. Why is
eimx = e−imx?

Explain in your own words or prove it algebraically.

So, we compute,
π∫
−π

eix(n−m)dx =

2π m = n
eix(n−m)

n−m

∣∣∣π
x=−π

n 6= m
.
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Now, we know that

eiπ(n−m) =

{
1 n−m is even

−1 n−m is odd.
.

To see this, I just imagine where we are on the Liseberghjul... Or you can write this out as

eiπ(n−m) = cos(π(n−m)) + i sin(π(n−m)).

The sine term is always zero since n and m are integers, and the cosine is either 1 or −1. Similarly,

e−iπ(n−m) =

{
1 n−m is even

−1 n−m is odd.
.

So in all cases, when n 6= m,
eiπ(n−m) − e−iπ(n−m) = 0.

Hence,

1

2π

π∫
−π

einxe−imxdx =

{
2π
2π = 1 n = m

0 n 6= m
.

This is precisely what it means to be orthonormal!

Exercise 36. Show that the set of functions{
1√
2π
,

sin(nx)√
π

,
cos(nx)√

π

}
n≥1

is also an orthonormal set in the Hilbert space L2(−π, π).

We will frequently use, but not prove the following theorem.

Theorem 37 (Orthogonal bases of complex exponentials and trigonometric functions). The set of functions{
einx√

2π

}
n∈Z

is an orthonormal basis for the Hilbert space L2(−π, π). The set of functions{
1√
2π
,

sin(nx)√
π

,
cos(nx)√

π

}
n≥1

is an orthonormal basis for the Hilbert space L2(−π, π).

We can effectively use this theorem without proof, but we explain roughly why the theorem is analogous
to the spectral theorem for hermitian matrices. The functions in Theorem 37 all satisfy a certain differential
equation:

f ′′n (x) = −n2fn(x), fn(x) ∈
{
einx, sin(nx), cos(nx)

}
, ∀n ∈ Z.

For this reason, we consider the differential operator d2

dx2 . It is linear because for any functions f and g and
constants a and b,

d2

dx2
(af(x) + bg(x)) = af ′′(x) + bg′′(x).
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This linear differential operator acts on the Hilbert space L2(−π, π). The functions fn above are eigenfunc-
tions with eigenvalues −n2. These functions all satisfy periodic boundary conditions:

fn(−π) = fn(π), f ′n(−π) = f ′n(π).

As a consequence, the differential operator (with these boundary conditions) satisfies a condition that is like
an analogue to the assumption that the matrix in the spectral theorem is hermitian. Consequently, there is
a spectral theorem for this operator that says that for the Hilbert space, there is an orthogonal basis that
consists of eigenfunctions. Since

sin(nx) =
einx − e−inx

2i
, cos(nx) =

einx + e−inx

2
, (3.7.1)

two orthogonal bases are {
einx

}
n∈Z and {1, sin(nx), cos(nx)}n≥1 .

3.8 Trigonometric Fourier series

Since two orthogonal bases for the Hilbert space L2(−π, π) are{
einx

}
n∈Z and {1, sin(nx), cos(nx)}n≥1 ,

we can express all functions that satisfy
π∫
−π

|f(x)|2 <∞

as Fourier series on this interval!

Definition 38 (Trigonometric Fourier series). Assume f is defined [−π, π]. The Fourier coefficients of f
with respect to the basis functions einx are defined to be

cn :=
〈f, einx〉
||einx||2

=

∫ π
−π f(x)einxdx∫ π
−π |einx|2dx

=
1

2π

π∫
−π

f(x)e−inxdx.

The Fourier series of f with respect to this basis is∑
n∈Z

cne
inx.

The Fourier coefficients of f with respect to the basis functions {1, cos(nx), sin(nx)}n≥1 are defined to be

an :=
〈f, cos(nx)〉
|| cos(nx)||2

=
1

π

π∫
−π

f(x)cos(nx)dx, n ≥ 1,

bn :=
〈f, sin(nx)〉
|| sin(nx)||2

=
1

π

π∫
−π

f(x)sin(nx)dx, n ≥ 1.

The Fourier series of f with respect to the basis functions {1, cos(nx), sin(nx)}n≥1 is

c0 +
∑
n≥1

an cos(nx) + bn sin(nx).
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Figure 3.8: Here is a little katodanode fluffball finding its way around the Hilbert space, L2(−π, π) with help of
the orthogonal base {1, cos(nx), sin(nx)}n≥1. Thanks to Ebba Grönfors for this cute mnemonic illustration!

52



3.8.1 Computing trigonometric Fourier series: an example

Let’s start with the function f(x) = |x|. By definition, the Fourier coefficients with respect to the orthogonal
basis functions einx are:

cn =
1

2π

π∫
−π

|x|e−inxdx, c0 =
1

2π

π∫
−π

|x|dx =
2π2

2(2π)
=
π

2
.

Since

|x| =

{
−x x < 0

x x ≥ 0

we compute:
0∫

−π

−xe−inxdx,
π∫

0

xe−inxdx.

We do substitution in the first integral to change it:

0∫
−π

−xe−inxdx =

π∫
0

xeinxdx =
xeinx

in

∣∣∣∣π
0

−
π∫

0

einx

in
dx

=
πeinπ

in
− einπ

(in)2
+

1

(in)2
.

Similarly we also use integration by parts to compute

π∫
0

xe−inxdx =
xe−inx

−in

∣∣∣∣π
0

−
π∫

0

e−inx

(−in)
dx

=
πe−inπ

−in
− e−inπ

(−in)2
+

1

(−in)2
.

Adding them up and using the 2π periodicity, we get

2einπ

n2
− 2

n2
=

2(−1)n − 2

n2
.

OBS! We need to divide by 2π to get

cn =
(−1)n − 1

πn2
, n ∈ Z \ {0}.

The Fourier series is therefore
π

2
+

∑
n∈Z, odd

einx
(
− 2

πn2

)
.

Exercise 39. Use these calculations to compute the series

c0 +
∑
n≥1

an cos(nx) + bn sin(nx)

and to show that all of the bn are equal to zero.
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3.9 Trigonometric Fourier series to compute sums and π falling
out of the sky

In mathematics and its applications, there are many infinite series that nobody in the world knows how to
compute analytically. For example, if I just make up a sum that I know converges, like∑

n≥1

1

2n2 + 3n3 + 4n4
. (3.9.1)

I honestly have no idea how to compute that sum analytically. We could approximate it by computing up
to the millionth term with a computer, and the result would be fairly close to the value of the sum. For
example, we can estimate the tail of the series∑

n≥N

1

2n2 + 3n3 + 4n4
≤
∑
n≥N

1

2n2
.

The series ∑
n≥1

1

2n2
=
π2

12
.

Why on earth does π2 appear on the right side? We will see exactly why and how this happens by using
a Fourier series to compute the sum! So, in fact, Fourier series can be useful because we can use them
to compute series that we can in turn use to estimate the tails of other series that we cannot compute
analytically! This is awesome, because we can then obtain a rigorous, analytical estimate for the tail of the
unknown series. Consequently, we can rigorously compute the value of the series (3.9.1) up to any accuracy
we desire! It is a clever mathematical trick to do the seemingly impossible!

3.9.1 The Basel problem

To compute the sum ∑
n≥1

1

n2

the first step is to search for a function whose Fourier series bears some resemblance to the sum. This is
a famous series, so famous that its computation has a name and a history. It is called the Basel problem
and was posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734. Euler generalized the
problem considerably, and his ideas helped to inspire Bernhard Riemann’s 1859 paper On the Number of
Primes Less Than a Given Magnitude, [20] in which he defined the zeta function that is now known as the
Riemann zeta function. The original hand-written script is found here http://www.claymath.org/sites/

default/files/riemann1859.pdf. Riemann’s zeta function is defined and briefly explored in exercise 17
of this chapter. One of the most famous unsolved math problems is Riemann’s hypothesis, and concerns the
locations of the zeros of the Riemann zeta function. It can be equivalently formulated to be a remainder
estimated in the Prime Number Theorem. This exemplifies how seemingly different areas of mathematics are
connected. Moreover, Riemann’s zeta function is a particular example of a spectral zeta function, and these
are quite important in physics. This will be further explored in §4.8. For now, let us return to computing
the sum 1

n2 .
We will do this using a Fourier series, somehow. Let’s start with the simplest function ever, 1. Well, its

Fourier series is just that, 1, so that won’t help us. Next, perhaps, we could try the function x. We compute
using integration by parts that

n 6= 0 =⇒
π∫
−π

xe−inxdx =
xe−inx

−in

∣∣∣∣π
−π
−

π∫
−π

e−inx

−in
dx =

2π(−1)n

−in
− 1

−in
e−inx

−in

∣∣∣∣π
−π

=
2π(−1)n

−in
.
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Figure 3.9: To help you remember this useful fact, here is a picture created by Gottfrid Olsson!

We have used the fact that e±inπ = (−1)n. I remember this using the unit circle, or Lisebergs ferris wheel;
see the rather barebones illustration in Figure 3.9. When n is even, the point e±inπ is sitting at 1, whereas
when n is odd, the point e±inπ is sitting at −1. The value of the ± does not matter!

Since it is an odd function, the zeroth Fourier coefficient is zero:

π∫
−π

xdx = 0.

So, we therefore have computed the Fourier coefficients for f(x) = x on the interval (−π, π) are

cn =

{
1

2π
2π(−1)n

−in n 6= 0

0 n = 0.
.

The Fourier series is therefore ∑
n∈Z\{0}

(−1)neinx

−in
.

We see that if we take the coefficients |cn|2 the result is... 1
n2 . So, we can use this Fourier series to solve the

famous Basel problem! Parseval’s equality tells us that if we use the orthonormal basis{
einx√

2π

}
n∈Z

=⇒ f̂n :=

π∫
−π

f(x)
einx√

2π
dx =

1√
2π

π∫
−π

f(x)e−inxdx

=⇒ ||f ||2 =

π∫
−π

|f(x)|2dx =
∑
n∈Z
|f̂n|2.

Since

cn =
f̂n√
2π

=⇒
√

2πcn = f̂n
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Figure 3.10: Having solved Basel’s problem, we have earned ourselves some pie, as we have also seen the reason
that π would rather surprisingly appear in the calculation of the series

∑
n−2. Intuitively, the reason is that using

a Fourier series to compute the sum of the Fourier coefficients of a polynomial function on (−π, π), by Parseval’s
equality, the sum is related to the L2 norm of the polynomial. That is equal to the integral of the polynomial squared
on (−π, π). If we think about integrating polynomials, the result is another polynomial, which we evaluate at the
endpoints. Stuffing ±π into a polynomial, we’ll get powers of π. For this reason, even though it is not obvious, now
we see why we can expect that evaluating sums like

∑
n≥1

1
p(n)

for polynomials p(n), we can actually expect πs to
come flying out! Image license and source: Creative Commons Zero 1.0 Public Domain License openclipart.org.

this tells us that
π∫
−π

|f(x)|2dx =
∑
n∈Z
|f̂n|2 =

∑
n∈Z
|
√

2πcn|2.

On the left side we compute
π∫
−π

x2dx =
x3

3

∣∣∣∣π
−π

=
2π3

3
.

On the right side we compute ∑
n∈Z
|
√

2πcn|2 =
∑

n∈Z\{0}

2π

n2
= 4π

∑
n≥1

1

n2
.

We therefore have
2π3

3
= 4π

∑
n≥1

1

n2
=⇒ π2

6
=
∑
n≥1

1

n2
.

This is a beautiful fact! If I were to look at the sum on the right of 1
n2 for natural numbers n, I would not

really guess that the result would involve π. However, from the perspective of trigonometric Fourier series,
it is quite natural, because the L2 norm of a polynomial on the interval (−π, π) will have a lot of π in it.
Speaking of π, see Figure 3.10.

3.9.2 Parseval’s equality to compute another series

We have computed the Fourier series for the function |x| on the interval (−π, π) with respect to the orthogonal
basis, and it is

π

2
+

∑
n∈Z, odd

einx
(
− 2

πn2

)
.
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To apply the Parseval equality, we would like to express f(x) = |x| as∑
n∈Z

f̂nφn(x), f̂n = 〈f, φn〉.

So, let’s see how to obtain these f̂n from the coefficients we computed:

π

2
=
π
√

2π

2

1√
2π

=
π
√

2π

2
φ0 =⇒ f̂0 =

π
√

2π

2
.

Next,

− 2

πn2
einx = −2

√
2π

πn2

einx√
2π

=⇒ f̂n =

{
0 n even

− 2
√

2π
πn2 n odd.

So, the Parseval equation states that

||f ||2 =

π∫
−π

|x|2dx =
∑
n∈Z
|f̂n|2 =

π2(2π)

4
+

∑
n≥1 odd

4(2π)

π2n4
=
π3

2
+

∑
n≥1 odd

8

πn4
.

On the other hand,
π∫
−π

|x|2dx = 2

π∫
0

x2dx = 2
π3

3
.

So we have obtained the equality

2
π3

3
=
π3

2
+

∑
n≥1 odd

8

πn4
.

We can re-arrange this equality to compute the sum∑
n≥1 odd

1

n4
=
π

8
π3

(
2

3
− 1

2

)
=
π4

48
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It is again not entirely obvious from looking at the left side that one should expect the sum to involve π,
but indeed, we see that π again falls out of the sky!

3.10 Computing best approximations

Can we find the four numbers {cn}3n=0 that minimize the integral

π∫
−π

|f −
3∑
j=0

cne
inx|2dx,

for

f(x) =

{
0 −π < x < 0

1 0 ≤ x ≤ π
?

Yes, we can, and the method is to apply the best approximation theorem! The functions einx are orthogonal
on L2(−π, π), so we can apply the best approximation theorem! It says that the best approximation is to
set

cn =
f̂n

||einx||2
=
〈f, φjn〉
||φn||2

, φn(x) = einx.
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We therefore compute

cn =
1

2π

π∫
−π

f(x)e−inxdx =

{
1
2 n = 0
(−1)n−1
−2πin j = 1, 2, 3

3.11 Hilbert spaces in mathematical physics

The concept of a Hilbert space offers one of the best formulations of quantum mechanics that was developed
by John von Neumann [22]. The pure states of a quantum mechanical system are represented by unit vectors,
known as state vectors, that sit inside a separable Hilbert space, known as the state space. A Hilbert space
is called separable if and only if it has a finite or countable orthonormal basis; this is investigated further
in exercise 19 of this chapter. For example, the position and momentum states for a single non-relativistic
spin zero particle is an element of a certain L2 space. The states for the spin of a single proton are unit
elements of the two-dimensional complex Hilbert space C2. The elements of this space are called spinors.
Each observable is represented by a self-adjoint linear operator acting on the state space. If we denote such
an operator by L then it satisfies

L : H → H, L(af + bg) = aL(f) + bL(g), a, b ∈ C, f, g ∈ H

for the Hilbert space H, and

〈Lf, g〉 = 〈f, Lg〉.

The eigenstates of an observable correspond to the eigenvectors of the operator, that are the elements of
H such that there is λ ∈ C with L(f) = λf . The associated eigenvalue λ corresponds to the value of the
observable in that eigenspace. An example is shown in Figure 3.11. Note that by the definition of the scalar
product and its properties, this immediately implies that the eigenvalues are in fact in R.

The scalar product between two state vectors is a probability amplitude. During an ideal measurement
of a quantum mechanical system, the probability that a system collapses from a given initial state to a
particular eigenstate is equal to the square of the absolute value of the probability amplitudes between the
initial and final states. For a general system, states are typically represented as statistical mixtures of pure
states. Mathematically, this means that the pure states are our orthonormal base, and general states are
expressed in terms of this orthonormal base. Hilbert spaces are not only useful for quantum mechanics, but
they can also be used to describe classical mechanics and dynamical systems. Learning about Hilbert spaces
from a general mathematical perspective, as we take here, prepares you to be able to use them to describe
a myriad of physical systems!

3.12 Exercises

1. Show that for v,w in Cn, then |〈v,w〉| = ||v||||w|| if and only if v and w are scalar multiples of each
other. Show that ||v + w|| = ||v|| + ||w|| if and only if v and w are positive scalar multiples of each
other.

2. [4, 3.3.2] Show that for all f , g in a Hilbert space one has

|||f || − ||g||| ≤ ||f − g||.

3. [4, 3.3.9] Suppose {φn} is an orthonormal basis for a Hilbert space. Show that for any f, g in the
Hilbert space

〈f, g〉 =
∑
〈f, φn〉〈g, φn〉.
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Figure 3.11: Here are the first few hydrogen atom orbitals. These are the cross-sections of the probability density
that are color-coded with dark corresponding to zero density and light corresponding to highest density. The angular
momentum quantum number, `, is denoted in each column using the spectroscopic letter code (s means ` = 0; p
means ` = 1; d means ` = 2). The main quantum number n = 1, 2, 3, . . . is marked on the right side of each row. For
all pictures the magnetic quantum number m = 0, and the cross-sectional plane is in the x− z plane. Image source:
https://en.wikipedia.org/wiki/File:HAtomOrbitals.png and license https://creativecommons.org/licenses/

by-sa/3.0/deed.en.
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4. Here, the elements of our Hilbert space are functions that are defined on (0, 1). We would like to define
the scalar product as follows

〈f, g〉 =

1∫
0

f2(x)g2(x)dx.

Why will this definition fail to satisfy the requisite properties of the scalar product?

5. [4, 3.4.3] Let D be the unit disk {x2 + y2 ≤ 1} and let fn(x, y) = (x+ iy)n. Show that {fn}n≥0 is an
orthogonal set in L2(D), and compute ||fn|| for all n.

6. [4, 3.3.10.c] Evaluate the following series by applying Parseval’s equation to one of the Fourier expan-
sions in Table 3.1 ∑

n≥1

n2

(n2 + 1)2
.

7. [4, 3.3.10.b] Evaluate the following series by applying Parseval’s equation to one of the Fourier expan-
sions in Table 3.1 ∑

n≥1

1

(2n− 1)6
.

8. Determine coefficients c0, c1, c−1 that minimize

π∫
−π

|ex − c0 − c1eix − c−1e
−ix|2dx.

9. Show that for all v,w ∈ Cn we have

||v + w||2 + ||v −w||2 = 2(||v||2 + ||w||2).

10. [4, 3.3.1] Show that if {fn}n≥1 are elements of a Hilbert space, H, and we have for some f ∈ H that

lim
n→∞

fn = f,

then for all g ∈ H we have

lim
n→∞

〈fn, g〉 = 〈f, g〉.

11. Let f(x) = 1 + ix and g(x) = 2 + ix2. Calculate the scalar products 〈f, g〉 and 〈g, f〉 on L2(0, 1).

12. [4, 3.4.1] Show that {e2πi(mx+ny)}n,m∈Z is an orthogonal set in L2(R) where R is any square whose
sides have length one and are parallel to the coordinate axes.

13. Evaluate the following series by applying Parseval’s equation to one of the Fourier expansions in Table
3.1 ∑

n≥1

1

n4
.

14. [4, 3.3.10.d] Evaluate the following series by applying Parseval’s equation to one of the Fourier expan-
sions in Table 3.1 ∑

n≥1

sin2(na)

n4
.
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15. Determine coefficients c0, c1, c−1 that minimize

π∫
−π

| cosh(x)− c0 − c1eix − c−1e
−ix|2dx.

16. [4, 3.3.9] Assume that {φn}n≥1 is an orthonormal basis for L2(a, b). Show that for any f, g ∈ L2(a, b)

〈f, g〉 =
∑
n≥1

〈f, φn〉〈g, φn〉.

17. Assume that f is continuously differentiable, 2π periodic, and real-valued. Is f ∈ L2(−π, π)? Is f ′ in
L2(−π, π)? Can you use the assumptions on f to deduce anything about 〈f, f ′〉?

18. This is something I never figured out, but admittedly did not spend a ton of time trying to solve. Can
you find a Fourier series that can be used to compute∑

n≥1

1

n3
?

19. In this exercise we will prove that a Hilbert space H is separable if and only if it has an orthonormal
basis that is finite or countable. Separable means that there is a countable subset {qn}n∈N such that
for any x ∈ H and any ε > 0, there is some m ∈ N such that ||qm − x|| < ε. This property is called
dense. One of the ways the real numbers are often defined is that it is the smallest well-ordered set that
contains the rational numbers and has the property that every non-empty subset of the real numbers
that is bounded above has a least upper bound contained in the real numbers. For more about this,
see [21, Chapter 3].

(a) The rational numbers Q are dense in the set of real numbers; that is given any ε > 0 and real
number x there is a rational number q such that |x− q| < ε. Use this to prove that the set

Q + iQ = {z ∈ C : z = q + ir, i =
√
−1, q, r ∈ Q}

is dense in the Hilbert space C.

(b) Use the preceding exercise to prove that every finite dimensional Hilbert space is separable. Note
here that you may use the fact that a finite union of countable sets is countable.

(c) Assume that a Hilbert space is separable. Denote the countable dense subset as {qn}n∈N above.
Discard any elements of this set that are equal to zero. Here, we will use this set to build a
countable orthonormal basis. Define

v1 :=
q1

||q1||
.

If q2 is equal to a scalar multiple of v1, then we throw it away and replace it by q3. Define
inductively in this way

vn+1 =
qn+1 −

∑n
j=1〈qn+1, vj〉vj

||qn+1 −
∑n
j=1〈qn+1, vj〉vj ||

.

Prove by induction that the set {vn}n≥1 is orthonormal. Why is this set either finite or countable?

(d) To prove that the set {vn}n≥1 is a basis, assume that some x ∈ H satisfies 〈x, vn〉 = 0 for all n.
Show first that this implies that 〈x, qn〉 = 0 for all n. Next, show that for any ε > 0, ||x|| < ε. Use
this together with the three equivalent conditions to be an orthonormal basis to conclude that
{vn}n≥1 is an orthonormal basis for H.
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(e) Assume now that a Hilbert space has a countable orthonormal basis. Denote this basis by {en}n∈N.
Consider sets of the form

QN := {
N∑
n=1

qnen : qn ∈ Q + iQ}.

Why are these sets countable? Using the fact that a countable union of countable sets is countable,⋃
N∈N

QN = Q ⊂ H is countable.

Prove that Q is also dense in H and thereby conclude that H is separable.

20. We can define the Hilbert space L2 for unbounded intervals as well, like3

L2(0,∞) = {f : (0,∞)→ C,
∞∫

0

|f(x)|2dx <∞}

Can you find a sequence of functions {fn} in L2(0,∞) such that for all x > 0 we have limn→∞ fn(x) = 0,

but the L2 norms, ||fn|| =
√∫∞

0
|fn(x)|2dx 6→ 0?

3Of course, this is a ‘working definition,’ whereas the concise definition is almost-everywhere equivalence classes of measurable
functions.
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1. f(x) = x 2
∑∞
n=1

(−1)n+1

n sin(nx).

2. f(x) = |x| π
2 −

4
π

∑
n≥1

cos((2n−1)x)
(2n−1)2

3. f(x) =

{
0 −π < x < 0

x 0 < x < π
π
4 −

2
π

∑
n≥1

cos((2n−1)x)
(2n−1)2 +

∑
n≥1

(−1)n+1

n sin(nx)

4. f(x) = sin2(x) 1
2 −

1
2 cos(2x)

5. f(x) =

{
−1 −π < x < 0

1 0 < x < π
4
π

∑
n≥1

sin((2n−1)x)
2n−1

6. f(x) =

{
0 −π < x < 0

1 0 < x < π
1
2 + 2

π

∑
n≥1

sin((2n−1)x)
2n−1

7. f(x) = | sin(x)| 2
π −

4
π

∑
n≥1

cos(2nx)
4n2−1

8. f(x) = | cos(x)| 2
π −

4
π

∑
n≥1

(−1)n cos(2nx)
4n2−1

9. f(x) =

{
0 −π < x < 0

sin(x) 0 < x < π
1
π −

2
π

∑
n≥1

cos(2nx)
4n2−1 + 1

2 sin(x)

10. f(x) = x2 π2

3 + 4
∑
n≥1

(−1)n cos(nx)
n2

11. f(x) = x(π − |x|) 8
π

∑
n≥1

sin((2n−1)x)
(2n−1)3

12. f(x) = ebx sinh(bπ)
π

∑
n∈Z

(−1)n

b−in e
inx

13. f(x) = sinhx 2 sinh(π)
π

∑
n≥1

(−1)n+1n
n2+1 sin(nx)

Table 3.1: Here is a small collection of trigonometric Fourier expansions for the functions defined on (−π, π). The
series on the right are all 2π periodic functions, so the graph of these functions looks like the graph of f(x) on (−π, π),
and then copy-pasted repeatedly over the rest of the real line. Here we collect expansions of functions in L2(−π, π)
in terms of the orthogonal basis {1, cos(nx), sin(nx)}n≥1.
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Chapter 4

Trigonometric Fourier series and their
applications: rock and roll, hot rods,
and π falling out of the sky!

Let’s go back to the beginning and recall our very first example: a vibrating string of length ` whose ends
are held fixed. Now we can really rock and roll!

4.1 Rock and roll for real: completing the solution to the vibrating
string problem

The string length is `. We defined

u(x, t) := the height of the string at the point x ∈ [0, `] at time t ∈ [0,∞[.

The sitting-still height to be height 0, so if the string is not moving at all, then we would just have u(x, t) = 0
for all points x and all times t. To distinguish between up and down, we use positive and negative numbers.
So a height u(x, t) > 0 is above the sitting-still position, whereas a height u(x, t) < 0 is below the sitting-still
position.

The fact that ends are sitting still means that

u(0, t) = u(`, t) = 0 ∀t.

The wave equation according to the laws of physics says that:

utt = c2uxx.

We used separation of variables to obtain a solution of the form

u(x, t) =
∑
k∈Z

uk(x, t) =
∑
k∈Z

Ak sin

(
kπx

`

)(
Bk cos

(
kπtc

`

)
+ Ck sin

(
kπtc

`

))
.

We said that these coefficients will be determined by the two initial conditions, the position of the string at
time zero and its velocity

u(x, 0) = f(x), ut(x, 0) = g(x).

Now we can finally do the last step: TIDGLAS (the initial data goes last). We begin with a simplification
by observing that since sine is odd, and cosine is even, we can combine the terms with ±k together:

Ak sin

(
kπx

`

)(
Bk cos

(
kπtc

`

)
+ Ck sin

(
kπtc

`

))
+A−k sin

(
−kπx
`

)(
B−k cos

(
−kπtc
`

)
+ C−k sin

(
−kπtc
`

))
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= sin

(
kπx

`

)[
(AkBk −A−kB−k) cos

(
kπtc

`

)
+ (AkCk +A−kC−k) sin

(
kπtc

`

)]
.

So, if we just use new coefficients

ak := (AkBk −A−kB−k) , bk = (AkCk +A−kC−k) ,

then our solution is equal to

u(x, t) =
∑
k≥1

sin

(
kπx

`

)(
ak cos

(
kπtc

`

)
+ bk sin

(
kπtc

`

))
.

The first initial condition is that we wish
u(x, 0) = f(x).

We set t = 0 in the series, so we wish that∑
k≥1

sin

(
kπx

`

)
ak = f(x).

The functions sin
(
kπx
`

)
are an orthogonal basis! The reason for this is because they are all of the solutions

to the eigenvalue problem, that is to find all λ and all X that satisfy

X ′′(x) = λX(x), X(0) = X(`) = 0.

This problem was the result of separating variables. This is an example of a regular Sturm-Liouville problem,
that we will study in more detail and generality in chapter 6 For now, it suffices to know that the solutions we
found and enumerated as sin(nπx/`) are an orthogonal basis for the L2(0, `). Consequently, we can express
every other member of this Hilbert space in terms of this basis!

If the function f(x) represents the initial positions of the string at time t = 0, then it must be continuous,
because the string is connected, not broken apart presumably. So, since f is continuous, it is also bounded
on the interval [0, `] and is a proud member of the Hilbert space L2(0, `). So f can be expressed in terms of
this orthogonal basis! The coefficients are therefore:

ak =
〈f, sin(kπx/`)〉
|| sin(kπx/`)||2

=

∫ `
0
f(x)sin(kπx/`)dx∫ `
0

sin2(kπx/`)dx
.

When you have a specific f , you can solve for these coefficients by integrating. For general f , it suffices to
specify these coefficients in this way. We use a similar procedure to find the coefficients bk. Taking the time
derivative and setting t = 0, we wish that

ut(x, 0) = g(x) ⇐⇒
∑
k≥1

sin

(
kπx

`

)
bk
kπc

`
= g(x).

If g(x) is the velocity along the string at time t = 0, then by the same physical reasoning (no crazy ass string
action!) this function should also be continuous, hence bounded, and a proud member of the Hilbert space
L2(0, `). We can therefore expand g in terms of this orthogonal basis as

∑
k≥1

ĝk sin

(
kπx

`

)
, ĝk =

〈g, sin(kπx/`)〉
|| sin(kπx/`)||2

=

∫ `
0
g(x)sin(kπx/`)dx∫ `
0

sin2(kπx/`)dx
.

Consequently, we obtain the coefficients bk via:

bk
kπc

`
= ĝk =⇒ bk =

ĝk`

kcπ
.

We have therefore solved the problem and can enjoy the rock and roll like in Figure 4.1.
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Figure 4.1: Here is my friend playing with the band Sodom. There is a whole lot of sound due to vibrating strings!
Photograph copyright Moritz ‘Mumpi’ Künster.

4.2 It’s getting hot in here: completing the solution for heat flow
on a circular rod

It is finally time for the initial data that we have been saving until last: The Initial Data Goes LASt. We
consider the flow of heat, corresponding to an initial temperature distribution on a circular rod. In mathe-
matical terms, we are solving the initial value problem for the homogeneous heat equation. The temperature
of a circular rod is initially given by

u(x, 0) = f(x),

and for times t > 0 the temperature function satisfies the heat equation, that is the partial differential
equation

ut = kuxx,

for a constant k > 0. The fact that the rod is circular means that we can define the function f(x) for all
real x by simply demanding that

f(x+ 2π) = f(x).

This is because the angles x and x + 2π correspond to the exact same point on the circular rod. Similarly,
the same is also true for the function u, that is

u(x+ 2π, t) = u(x, t),

for all x and all t > 0. We used the two methods: separation of variables and superposition to obtain

u(x, t) =
∑
n∈Z

un(x, t) =
∑
n∈Z

e−n
2tk(an cos(nx) + bn sin(nx)).

Our mantra was TIDGLAS: the initial data goes last.
Now it is time to determine these coefficients! First we make a simplification using the facts that cosine

is even and sine is odd, as well as the fact that (−n)2 = n2:

e−n
2tk(an cos(nx) + bn sin(nx)) + e−(−n)2tk(a−n cos(−nx) + b−n sin(−nx))

= e−n
2tk [(an + a−n) cos(nx) + (bn − b−n) sin(nx)] .

If we then define new coefficients αn = an + a−n, βn = bn − b−n, then our solution takes the form

u(x, t) =
∑
n≥0

e−n
2tk(αn cos(nx) + βn sin(nx)).
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Figure 4.2: There is a bit of magic surrounding Fourier series and their applications. These series were introduced
by Joseph Fourier as a method for solving the heat equation [5]. The solution is expressed as a series of trigonometric
functions. Fourier did not have the mathematical tools to prove that these trigonometric series could represent any
arbitrary function; that is what Hilbert provided with the development of Hilbert spaces in general and L2 spaces in
particular. It does not seem obvious that any arbitrary function on a bounded interval can be expressed as a series
of trigonometric facts, and many scientists were sceptical that Fourier’s method would be able to solve our ‘hot rod’
problem for arbitrary initial data. So, it’s a bit like the cow jumping over the moon, the miraculous fact that we
can express all square integrable functions on bounded interval as trigonometric Fourier series and thereby solve the
‘hot rod’ problem for arbitrary initial data! Image license and source: Creative Commons Zero 1.0 Public Domain
License openclipart.org.

.
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We would like this to equal f(x) when t = 0, so we would like to choose αn and βn so that

u(x, 0) =
∑
n≥0

(αn cos(nx) + βn sin(nx)) = f(x).

The function f is the initial temperature of the rod. If there is no freaky weird quantum stuff happening,
then this should be a continuous function. Consequently, it is bounded and therefore a proud member of
the Hilbert space L2(−π, π), so we can express it in terms of the orthogonal basis {1, cos(nx), sin(nx)}n≥1.
The coefficients are:

α0 =

∫ π
−π f(x)

2π
, αn =

〈f, cos(nx)〉
|| cos(nx)||2

=

∫ π
−π f(x)cos(nx)dx∫ π
−π | cos(nx)|2dx

,

βn =
〈f, sin(nx)〉
|| sin(nx)||2

=

∫ π
−π f(x)sin(nx)dx∫ π
−π | sin(nx)|2dx

.

In this way, we can solve the hot rod problem, that is the initial value problem for the homogeneous heat
equation on a circular rod, for any continuous (or even just L2) initial data! That is rather miraculous, like
the cow jumping over the moon with a hot rod in Figure 4.2.

Figure 4.3: Berlioz the cat friend of Eric Lindgren is also a contributor to this text.

4.2.1 Visualization of the solution to the heat equation on a rod

For practical applications, one may compute the solution as a series, and if the series converges quickly,
approximate the solution using the first several terms in the series. Here we show the graphs of the truncated
series corresponding to solving the heat equation on a circular rod with different choices of initial data. These
figures and the python script used to create them were contributed by Eric Lindgren, with help from his
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distinguished cat Berlioz. The python script used to create these simulations and figures is contained in
§B.2.
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Figure 4.4: The heat equation on a ‘hot rod’ with initial data f(x).

The figures here show the numerical approximation of the solution of the heat equation on a circular rod
with initial data f(x). The approximation is obtained by taking the first ten terms in the series expansion of
the solution. As time goes on, just as physics predicts, the heat within the rod disperses evenly throughout
the rod.
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Figure 4.5: The heat equation on a ‘hot rod’ with initial data f(x).

4.3 What happens to trigonometric Fourier series outside (−π, π)?
The sets of functions {einx}n∈Z and {1, cos(nx), sin(nx)}n≥1 are two orthogonal bases for the Hilbert space
L2(−π, π). We have used them to express elements of this Hilbert space as trigonometric series, either of
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the form ∑
n∈Z

cne
inx

or of the form
c0 +

∑
n≥1

an cos(nx) + bn sin(nx),

depending on the context. For an f ∈ L2(−π, π), the coefficients are

cn =
1

2π

π∫
−π

f(x)einxdx,

and

an =
1

π

π∫
−π

f(x)cos(nx)dx, n ≥ 1,

bn =
1

π

π∫
−π

f(x)sin(nx)dx, n ≥ 1.

Then the series is equal to f as an element of the Hilbert space L2(−π, π). This is only looking within the
interval (−π, π). What happens if we plug in points x to the series∑

n∈Z
cne

inx, c0 +
∑
n≥1

an cos(nx) + bn sin(nx),

for x outside this interval? Well, these series are 2π periodic because

ein(x+2π) = einxein2π = einx, cos(n(x+ 2π)) = cos(nx), sin(n(x+ 2π)) = sin(nx).

So, outside the interval, these series converge to the function that is equal to f in (−π, π) and is extended
to the rest of the real line to be 2π periodic. To visualize this function, take the graph of f in (−π, π) and
copy-paste it left and right, on (−3π,−π) and (π, 3π). Keep copy-pasting. What happens if f(−π) 6= f(π)?
There will be a jump in the graph. It’s not super obvious to what the Fourier series will converge, and the
theorem that reveals the answer takes quite a lot of work to prove. One ingredient in the proof is a general
property of periodic functions given in Lemma 41.

Definition 40. A function f : R → R is periodic with (minimal) period p if and only if for all x ∈ R,
f(x + p) = f(x), and moreover, p > 0 is the smallest real number for which this is true. Then, such a
function is also np for any positive integer n, but for n > 1, np is no longer the minimal period.

For example, sin(x) is periodic with minimal period 2π. Our heat equation examples, fn(x) = an cos(nx)+
bn sin(nx) are periodic with minimal period 2π/n. They are also 2π periodic, it’s just that this is not the
minimal period. We shall prove a super useful little lemma about periodic functions and their integrals.

Lemma 41 (Integration of periodic functions lemma). If f is p periodic then for any a ∈ R

a+p∫
a

f(x)dx

is the same.

Exercise 42. Give an example for how this fails to be true if the function f is not periodic. That is, take
some non-periodic function and show that integrating it from say a to a+ p is not the same as integrating it
from c to c+ p.
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Proof: If we think about it, we want to show that the function

g(a) :=

a+p∫
a

f(x)dx

is a constant function. This looks awfully similar to the fundamental theorem of calculus. Now, this statement
above is not true for non-periodic functions. So, we’re going to need to use the assumption that f is periodic
with period p. This tells us that f has the same value at both endpoints of the integral, so

f(a) = f(a+ p) =⇒ f(a+ p)− f(a) = 0.

Now, since we want to consider a as a variable, we don’t want it at both the top and the bottom of the
integral defining g. Instead, we can use linearity of integration to write

g(a) =

a+p∫
0

f(x)dx−
a∫

0

f(x)dx.

Then, using the fundamental theorem of calculus on each of the two terms on the right,

g′(a) = f(a+ p)− f(a) = 0.

Above, we use the fact that f is periodic with period p. Hence, g′(a) ≡ 0 for all a ∈ R. This tells us that g
is a constant function, so its value is the same for all a ∈ R.

4.3.1 Pointwise convergence of Fourier Series: don’t let your work go to waste,
with Fourier series just copy-paste!

A trigonometric Fourier series will always converge to a 2π periodic function, because the terms in the series
are all 2π periodic. We can expand any arbitrary function in L2(−π, π) in a Fourier series on that interval.
Super. It is crucial to remember that if we start looking at the series outside that interval it will be a 2π
periodic function; that is it will look like the graph of f on (−π, π) has been copied and pasted all across
the real line; see Figure 4.6!

We will prove the pointwise convergence of Fourier series for functions that are:

1. continuous on (−π, π) with the exception of at most finitely many points at which there is a jump
discontinuity (the left and right limits both exist and are finite, just not equal);

2. differentiable on (−π, π) with the exception of at most finitely many points at which there is a jump
discontinuity (the left and right limits both exist and are finite, just not equal).

Functions which satisfy these two conditions are called piecewise C1. More generally, we can define piecewise
Ck functions in an analogous way.

Definition 43. A function is piecewise Ck on a bounded interval, I, if there is a set S ⊂ I such that f is
Ck on I \ S, and the set S is either empty or contains finitely many points. Moreover, at each of the points
in S the left and right limits of f (j) exist and are finite for all j = 0, 1, . . . , k.

The theorem on the pointwise convergence of Fourier series states that for a function f that is piecewise
C1 on [−π, π], the series converges to a function that is 2π periodic on R. Within the interval [−π, π], the
series converges to f(x) if f is continuous at x, or to the average of the left and right sided limits at x, if f
has a jump discontinuity there.
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Theorem 44 (Pointwise convergence of Fourier series). Assume that f is piecewise C1 on [−π, π]. Then,
copy-paste to the rest of R so that f satisfies f(x + 2π) = f(x) for all x; more precisely extend f to a 2π
periodic function on R. Denote the left limit at x by f(x−) and the right limit by f(x+), so that for each
x ∈ R,

f(x−) := lim
t→x,t<x

f(t), f(x+) := lim
t→x,t>x

f(t).

Let

cn =
1

2π

π∫
−π

f(x)e−inxdx.

Then

lim
N→∞

N∑
−N

cne
inx =

1

2
(f(x−) + f(x+)) , ∀x ∈ R.

A visualization of the theorem

One says that a picture is worth a thousand words. Perhaps a simulation accompanied by a picture is equally
valuable! When we create a Fourier series of a function on the interval, like for example |x| on the interval
(−π, π), the series is of the form∑

n∈Z
cne

inx or equivalently
∑
n≥0

an cos(nx) + bn sin(nx).

Note that the terms in the sum all satisfy:

cne
in(x+2π) = cne

inx, an cos(n(x+ 2π)) = an cos(nx), bn sin(n(x+ 2π)) = bn sin(nx).

So, adding 2π to x does not change the series. This means that the series, that converges to |x| for |x| < π,
will not converge to |x| for |x| > π. Instead, it will converge to a zig-zag function as illustrated in Figure
4.6. Don’t let your work go to waste; with Fourier series just copy-paste!

Aided by the visualization, we will now proceed with the proof of the theorem of pointwise convergence
of Fourier series.

Proof of the theorem on pointwise convergence of Fourier series

Proof: This is a big theorem, because it requires several clever ideas in the proof. Smaller theorems can
be proven by just “following your nose.” So, to try to help with the proof, we’re going to highlight the big
ideas. To learn the proof, you can start by learning all the big ideas in the order in which they’re used. Once
you’ve got these down, then try to fill in the math steps starting at one idea, working to get to the next
idea. The big ideas are like light posts guiding your way through the dark and spooky math.

Idea!

Fix a point x ∈ R. This first step is more getting into a frame of mind. Think of x as fixed. Then the
numbers f(x−) and f(x+) are just the left and right limits of f at x, so these are also fixed. Our goal is to
prove that:

lim
N→∞

N∑
−N

cne
inx =

1

2
(f(x−) + f(x+)) .
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Figure 4.6: The Fourier series of the function |x| on the interval (−π, π) is shown here, together with the function
|x|. Note that |x| keeps climbing up to the left and the right outside the interval, whereas the Fourier series does a
zig-zag pattern. The reason is because trigonometric Fourier series is 2π periodic. Don’t let your work go to waste;
with Fourier series just copy-paste! Thanks to Anton Rosén for contributing this figure as well as the matlab code!
to create it in §B.1

This is completely equivalent to proving

lim
N→∞

N∑
−N

cne
inx − 1

2
(f(x−) + f(x+)) = 0.

Let us call

? =

N∑
−N

cne
inx − 1

2
(f(x−) + f(x+)) .

Idea!

The main idea is to try to make the two things look like each other, that is we want to make
∑
cne

inx look
like the average of the left and right limits of f . To get

∑
cne

inx looking more like f , we write out what
each term in this sum really is:

cne
inx =

1

2π

π∫
−π

f(y)e−inyeinxdy.

We must use a different variable for integration because x is a fixed point.

Idea!
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We want to get some x inside of f to be able to relate to f(x+)+f(x−)
2 . Make a change of variables to do this:

y = t+ x, dy = dt =⇒ cne
inx =

1

2π

π+x∫
−π−x

f(t+ x)e−intdt.

Idea!

Slide the integral back to being from −π to π because the integrand is 2π periodic, so the integral over any
interval of length 2π is the same. Then we have

cne
inx =

1

2π

π∫
−π

f(t+ x)e−intdt.

Idea!

Investigate the sum, because

? =

N∑
−N

cne
inx − 1

2
(f(x−) + f(x+)) =

N∑
−N

1

2π

π∫
−π

f(t+ x)e−intdt− 1

2
(f(x−) + f(x+))

=
1

2π

π∫
−π

f(t+ x)

N∑
−N

eintdt− 1

2
(f(x−) + f(x+)) .

So, let us see what we can say about
N∑
−N

eint.

Idea!

Use the fact that

eint + e−int = 2 cos(nt) =⇒
N∑
−N

eint = 1 + 2

N∑
1

cos(nt)

to compute

1

2
=

1

2π

0∫
−π

N∑
−N

eintdt,
1

2
=

1

2π

π∫
0

N∑
−N

eintdt.

Idea!
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Use this to express

1

2
f(x−) =

1

2π

0∫
−π

f(x−)

N∑
−N

eintdt,
1

2
f(x+) =

1

2π

π∫
0

f(x+)

N∑
−N

eintdt,

so that we can equivalently write

? =
1

2π

π∫
−π

f(t+ x)

N∑
−N

eintdt− 1

2π

0∫
−π

f(x−)

N∑
−N

eintdt− 1

2π

π∫
0

f(x+)

N∑
−N

eintdt

=
1

2π

 0∫
−π

(f(t+ x)− f(x−))

N∑
−N

eintdt+

π∫
0

(f(t+ x)− f(x+))

N∑
−N

eintdt

 .

Idea!

Return to that sum to see if we can simplify it somehow:
∑N
−N e

int. This is like a geometric series, that can
be explicitly computed

N∑
−N

eint = e−iNt
2N∑
0

eint = e−iNt
ei(2N+1)t − 1

eit − 1
=
ei(N+1)t − e−iNt

eit − 1
,

having used the fact about geometric series that if z 6= 1 then

M∑
0

zm =
zM+1 − 1

z − 1
.

So,

? =
1

2π

 0∫
−π

(f(t+ x)− f(x−))
ei(N+1)t − e−iNt

eit − 1
dt+

π∫
0

(f(t+ x)− f(x+))
ei(N+1)t − e−iNt

eit − 1
dt

 .

Idea!

Collect everything except the ei(N+1)t and e−iNt and use it to define a new function

g(t) :=

{
f(t+x)−f(x−)

eit−1 −π < t < 0
f(t+x)−f(x+)

eit−1 0 < t < π

Check to see that this does not do anything terrible at t = 0 by evaluating its left and right limits. Note
that at all other points in [−π, π] g inherits the properties of f because the denominator is non-zero. We
use l’hopital’s rule to compute

lim
t→0−

g(t) =
f ′(x−)

i
, lim

t→0+
g(t) =

f ′(x+)

i
.

These are just the left and right limits of f ′ at x which both exist since f is piecewise C1. So g is also
piecewise C1 and therefore bounded and therefore also in L2(−π, π).
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Idea!

Recognize

? =
1

2π

π∫
−π

g(t)(ei(N+1)t − e−iNt)dt =
1

2π

π∫
−π

g(t)ei(N+1)tdt− 1

2π

π∫
−π

g(t)e−iNtdt

are Fourier coefficients of g, specifically

? = ĝ−N−1 − ĝN .

Idea!

Since g is in L2, we have the equality for the ONB {einx/
√

2π}

||g||2 =
∑
Z

∣∣∣∣〈g, einx√2π
〉
∣∣∣∣2 =

1

2π

∑
Z
|〈g, einx〉|2.

The norm on the left is finite, so this series converges, and so the individual terms tend to zero as |n| → ∞.
Consequently

ĝ−N−1 =
〈g, e−i(N+1)x〉

2π
→ 0, ĝN =

〈g, eiNx〉
2π

→ 0

as N →∞, thereby guaranteeing that ?→ 0 and completing the proof!

As a corollary to the theorem on the pointwise convergence of Fourier series, we obtain that piecewise C1

functions that have the same Fourier series are equal.

Corollary 45. Assume that f and g are piecewise C1 on [−π, π]. Assume that at any point at which f is
discontinuous, it satisfies

f(x) =
f(x+) + f(x−)

2
,

and the same is true for g. If f and g have the same Fourier coefficients, then f(x) = g(x) for all x ∈ (−π, π).
Moreover, the extensions of f and g that are equal to f and g on (−π, π) and extended to be 2π periodic on
R are equal on R.

Proof: By assumption, f and g have the same Fourier series. Let us write the partial series

SN (x) =

N∑
−N

cne
inx.

By the theorem on the pointwise convergence of Fourier series,

lim
N→∞

SN (x) =
f(x+) + f(x−)

2
=
g(x+) + g(x−)

2
, ∀x ∈ R. (4.3.1)
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Figure 4.7: To illustrate what happens when we expand a function defined on an interval in a trigonometric Fourier
series, I used Microsoft Word. I drew a little squiggly curve and set it on coordinate axes. Then, I selected my squiggly
curve and copy+pasted it two times. This is exactly what happens mathematically when we expand an arbitrary
function into a trigonometric Fourier series. The resulting series converges to our squiggle inside the interval. To
obtain what happens outside the interval, we must copy and paste the picture inside the interval. This is an improved
version of my original figure, thanks to Gottfrid Olsson.

Now, at a point where f is continuous,

f(x+) + f(x−)

2
= f(x).

Similarly, at a point where g is continuous

g(x+) + g(x−)

2
= g(x).

So, by the assumptions on f and g, we have for all x ∈ (−π, π)

f(x) =
f(x+) + f(x−)

2
, g(x) =

g(x+) + g(x−)

2
.

Thus, by (4.3.1),
f(x) = g(x) ∀x ∈ (−π, π).

Consequently, their 2π periodic extensions are also equal on all of R.

Don’t let your work go to waste; with Fourier series just copy-paste!

To what does the Fourier series of ex converge when x is not in the interval (−π, π)? We build a Fourier
series for a function defined on the interval (−π, π) of the form:∑

n∈Z
cne

inx.

Each of the terms einx is a 2π periodic function. Hence the Fourier series is also a 2π periodic function. So,
for x = 2π, the series does not converge to e2π. Rather, it converges to e0 because, writing

S(x) =
∑
n∈Z

cne
inx, S(x+ 2kπ) = S(x) ∀k ∈ Z.
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Figure 4.8: Here is a katodanode fluffball reminding us not to let our work go to waste; with Fourier series just
copy-paste! Thanks to Ebba Grönfors for this contribution!

For x ∈ (−π, π), by the Theorem we proved, we have that S(x) = ex. However, for x outside this interval,
the series converges to the function which is equal to ex on (−π, π) and is extended to be 2π periodic. Hence
the series converges to the value at 0 since 2π = 0 + 2π, and the series is 2π periodic. This is a really
important subtlety. This phenomenon is depicted in Figure 4.7, that I created using Microsoft Word and
quite literally copy and pasting! The original figure has been improved by Gottfrid Olsson, but it conveys
the same message:

Don’t let your work go to waste; with Fourier series just copy-paste!

4.4 Applying the pointwise convergence of Fourier series to com-
pute sums and catch more π falling out of the sky!

We wish to compute the sum
∞∑
n=0

1

1 + n2
.

It is not immediately obvious how to compute the sum above using a Fourier series, because there is the
1 + n2 downstairs, so somehow we need to get a one added downstairs. Moreover, this does not look like
|cn|2, because that would require cn = 1√

1+n2
, and it is not very obvious how we could obtain such a square

root in a Fourier coefficient. So, this indicates that to compute this series, we may seek to apply the theorem
on the pointwise convergence. To find a function whose Fourier series will help us to compute the series, we
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should ponder the expression
π∫
−π

f(x)e−inxdx.

Let us again start with the most simple function f(x) as possible, and then increase complexity as needed.
For starters, if f(x) were equal to just one, then we would be integrating e−inx. For n 6= 0, a function whose
derivative is e−inx is

e−inx

−in
.

When we compute the integral, we evaluate at the two end points, so what we would get is 1
−in times some

stuff involving n and π. That is close to what we want. However there is the +1 in the denominator. So,
how can we get something more like n+ 1 downstairs? Well, we can put a +1 upstairs into our exponential
function. That is, we integrate

π∫
−π

exe−inxdx =
e(1−in)x

1− in

∣∣∣∣π
x=−π

.

See, we end up with 1 − in downstairs! For this reason, we choose the function f(x) = ex to expand in a
Fourier series. We compute:

π∫
−π

exe−inxdx =
ex(1−in)

1− in

∣∣∣∣x=π

x=−π
=
eπe−inπ

1− in
− e−πeinπ

1− in
= (−1)n

2 sinh(π)

1− in
.

Hence, the Fourier coefficients are
1

2π
(−1)n

2 sinh(π)

1− in
,

and the Fourier series for ex on this interval is

ex =

∞∑
−∞

(−1)n sinh(π)

π(1− in)
einx, x ∈ (−π, π).

We can pull out some constants,

ex =
sinh(π)

π

∞∑
−∞

(−1)neinx

1− in
, x ∈ (−π, π).

In the series we wish to evaluate, there is no (−1)n. We would like this to go away. We can achieve that by
selecting a value of x so that

(−1)neinx = 1 for all n, with a wisely chosen x.

Recall Figure 3.9. If we choose x = π or x = −π, then einx = (−1)n. So, we make the choice say, x = π.
Then the series is ∑

n∈Z

1

1− in
.

To what does this converge? The series is the trigonometric Fourier series expansion of the function ex

on the interval (−π, π). We are looking at the value of the series at the point π. What happens here?
Remember the copy-past procedure like in Figure 4.7. At the point π, we must copy-paste the graph of ex

on the interval (−π, π). So, from the left as we approach π, we are approaching eπ. However, when we go
past π, we jump down to the left of the graph on (−π, π), and hence the graph jumps down to e−π. The
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Figure 4.9: We have computed another series of the form
∑
n

1
p(n)

where p(n) is a polynomial function of the integer
n. Again, it does not seem obvious that π would appear out of such a series, but indeed it does. This times it comes
with an added topping of hyperbolic trigonometric functions, which we visualize as whipped cream on top of a piece
of pumpkin pie. Image license and source: Creative Commons Zero 1.0 Public Domain License openclipart.org.

Theorem on Pointwise Convergence of Fourier Series therefore tells us that the Fourier series converges to
the average of these two limits, that is ∑

n∈Z

1

1− in
=
eπ + e−π

2
.

We now consider the sum, and we pair together ±n for n ∈ N, writing

∞∑
−∞

1

1− in
= 1 +

∑
n≥1

1

1− in
+

1

1 + in
= 1 +

∑
n≥1

2

1 + n2
.

Hence we have found that

eπ + e−π

2
=

sinh(π)

π

∞∑
−∞

(−1)neinπ

1− in
=

sinh(π)

π

1 +
∑
n≥1

2

1 + n2

 .

Now, we just need to re-arrange. On the left we have the definition of cosh(π). So, moving over the sinh(π)
we have

π cosh(π)

sinh(π)
= 1 + 2

∑
n≥1

1

1 + n2
=⇒

(
π cosh(π)

sinh(π)
− 1

)
1

2
=
∑
n≥1

1

1 + n2
,

and thus ∑
n≥0

1

1 + n2
=

(
π cosh(π)

sinh(π)
− 1

)
1

2
+ 1.

Interestingly, in this sum we are not only treated with another appearance of π, but also with hyperbolic
trigonometric functions, check out Figure 4.9!
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4.4.1 Practice makes perfect: applying trigonometric series to compute another
sum and catch some more π!

Let us do another example. We wish to use a Fourier series to compute∑
n≥1

(−1)n

n2 + b2
.

Since we had a similar series with b replaced by 1 for the function ex, a natural function to try here is ebx.
We compute the Fourier coefficients with respect to the orthogonal basis {einx}n∈Z on (−π, π).

cn =
1

2π

π∫
−π

ebxe−inxdx =
1

2π(b− in)
e(b−in)π − 1

2π(b− in)
e(b−in)(−π).

As in Figure 3.9 that shows the values of e±inπ for n even and odd, we can simplify,

cn =
1

2π(b− in)
(−1)nebπ − 1

2π(b− in)
(−1)ne−bπ =

(−1)n

2π(b− in)

(
ebπ − e−bπ

)
=

(−1)n

π(b− in)
sinh(bπ).

The Fourier series is therefore
1

π
sinh(bπ)

∑
n∈Z

(−1)n

b− in
einx.

In this case, we want to keep the (−1)n, that is we do not want einx to screw it up. So, what value of x can
we stuff into the series so that we preserve (−1)n for all n? We want x = 0. The series is at this point

1

π
sinh(bπ)

∑
n∈Z

(−1)n

b− in
.

Let us re-arrange things a wee bit:

1

π
sinh(bπ)

∑
n∈Z

(−1)n

b− in
=

sinh(bπ)

πb
+

1

π
sinh(bπ)

∑
n≥1

(−1)n

b− in
+

1

π
sinh(bπ)

∑
n≤1

(−1)n

b− in
.

Let us re-write
1

π
sinh(bπ)

∑
n≤1

(−1)n

b− in
=

1

π
sinh(bπ)

∑
n≥1

(−1)n

b+ in
,

with the observation that
(−1)n = (−1)−n.

Consequently the series is:

sinh(bπ)

πb
+

1

π
sinh(bπ)

∑
n≥1

(
(−1)n

b− in
+

(−1)n

b+ in

)

=
sinh(bπ)

πb
+

1

π
sinh(bπ)

∑
n≥1

(−1)n
b+ in+ b− in
(b− in)(b+ in)

=
sinh(bπ)

πb
+

1

π
sinh(bπ)

∑
n≥1

(−1)n
2b

b2 + n2
.

The Theorem on Pointwise Convergence of Fourier Series to say that at the point x = 0 the Fourier series
of this function converges to

f(0+) + f(0−)

2
, f(x) = ebx
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Figure 4.10: Having computed yet another series of the form
∑

1
p(n

for a polynomial function of the integer n,
we have yet again seen the result containing... π. We further have hyperbolic trigonometric functions, and a great
generality because the value of b is arbitrary. So, we’ve earned a piece of cherry pie, representing the π that seemingly
miraculously appears, together with the topping of hyperbolic trig function whipping cream, and a b-shaped cherry
on top! Image license and source: Creative Commons Zero 1.0 Public Domain License openclipart.org.

because 0 ∈ (−π, π). The function is continuous here, with left and right limits both equal to its value at
x = 0, and that is one. The series therefore converges to 1, and so

1 =
sinh(bπ)

πb
+

1

π
sinh(bπ)

∑
n≥1

(−1)n
2b

b2 + n2
.

Re-arranging, we get

1− sinh(bπ)

πb
=

2b sinh(bπ)

π

∑
n≥1

(−1)n

b2 + n2
=⇒ π

2b sinh(bπ)
− 1

2b2
=
∑
n≥1

(−1)n

b2 + n2
.

Having computed these seemingly impossible series, all of which involved some π, let’s treat ourselves to a
wacky educational video about π here: https://www.youtube.com/watch?v=XanjZw5hPvE. Warning: that
video is an artefact of its time and may be considered offensive or inappropriate in current society. For a
more wholesome reward, check out Figure 4.10.

4.5 Differentiating and integrating trigonometric Fourier series

If we take a function and obtain its Fourier series in terms of the bases {einx}n∈Z or equivalently {1, cos(nx), sin(nx)}n∈N
on L2(−π, π), the series we obtain is a 2π periodic function that is defined on all of R. For this reason,
when we study and demonstrate results about Fourier series, we may often assume that the function is 2π
periodic to begin with. If we were only interested in the interval (−π, π), then this extension does not change
anything about our original function defined on (−π, π). The reason for the 2π periodicity is simply because
the Fourier series, while it may be equal to our function defined on (−π, π) in that interval, will be equal to
its 2π periodic extension outside that interval; keep in mind Figure 4.7!

Under certain assumptions there is a relationship between the Fourier coefficients of a function and the
Fourier coefficients of its derivative. If the function fails to satisfies all of the assumptions of Theorem 46,
then the conclusion need not be true.
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Theorem 46. Assume that f is 2π periodic, continuous, and piecewise C1. Let an, bn, and cn be the Fourier
coefficients as we have defined them previously, and let a′n, b′n, c′n be the Fourier coefficients of f ′ according
to the same definition. Then we have

a′n = nbn, b′n = −nan, c′n = incn.

Proof: DO NOT DIFFERENTIATE THE FOURIER SERIES TERMWISE. To do this, you would need
to prove that the series can be differentiated termwise, which at this point we do not have the techniques to
demonstrate. So, it will be an incomplete and incorrect proof. Not a good thing.

Instead, we will use the definition of Fourier coefficients and integration by parts:

c′n =
1

2π

π∫
−π

f ′(x)e−inxdx =
1

2π
f(x)e−inx

∣∣x=π

x=−π −
1

2π

π∫
−π

f(x)(−ine−inx)dx

=
in

2π

π∫
−π

f(x)e−inxdx = incn.

Above, we have used the fact that f is 2π periodic, and e−inx is also 2π periodic so

1

2π
f(x)e−inx

∣∣x=π

x=−π = 0.

In the last step we use the definition of cn. Recall that

an = cn + c−n, an =
1

π

π∫
−π

f(x) cos(nx)dx, ∀n ∈ N≥1,

and

bn = i(cn − c−n), bn =
1

π

π∫
−π

f(x) sin(nx)dx, ∀n ∈ N≥1,

with

a0 = c0 =
1

2π

π∫
−π

f(x)dx,

and the same relationship holds true for a′n, b′n, c′n. We therefore compute

a′n = c′n + c′−n = incn − inc−n = in(cn − c−n) = nbn,

b′n = i(c′n − c′−n) = i(incn + inc−n) = −n(cn + c−n) = −nan.

Now, using the theorem we have just proven, we obtain

Corollary 47. Assume that f is 2π periodic, continuous, piecewise C1, and assume that f ′ is also piecewise
C1. Then, if

∞∑
−∞

cne
inx

is the Fourier series for f , we have that ∑
n∈Z

incne
inx

is the Fourier series for f ′.
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Theorem 48. Assume that f is 2π periodic, continuous, and piecewise C1. Then the Fourier series of f
converges absolutely uniformly to f on all of R.

Proof: By assumption, f ′ is piecewise continuous. Bessel’s inequality tells us that∑
Z
|c′n|2 <∞.

We use the preceding theorem to say that for all n 6= 0,

|cn| =
∣∣∣∣c′n 1

n

∣∣∣∣ .
Hence we can estimate ∑

n∈Z
|cneinx| =

∑
n∈Z
|cn| = |c0|+

∑
n∈Z\0

|c′n|
|n|

.

By Bessel’s inequality ∑
n∈Z
|c′n|2 <∞,

and we know very well that ∑
n∈Z\0

|n|−2 <∞.

So, using the Cauchy-Schwarz inequality on `2, we have∑
n∈Z
|cn| = |c0|+

∑
n∈Z\0

|c′n|
|n|
≤ |c0|+

√ ∑
n∈Z\0

|c′n|2
√ ∑
n∈Z\0

|n|−2 <∞.

Therefore the Fourier series converges absolutely, and uniformly for all x ∈ R, because we see that the
convergence estimates are independent of the point x. Since the function is continuous, the limit of the
series is, by the Theorem on the pointwise convergence of Fourier series

f(x+) + f(x−)

2
= f(x).

We can repeat this idea to show that the more differentiable a function is, the faster its Fourier series
converges.

Theorem 49. Let f be 2π periodic, and assume that f is Ck−1, and f (k−1) is piecewise C1, and f is piecewise
Ck. Then the Fourier coefficients of f satisfy∑

|nkan|2 <∞,
∑
|nkbn|2 <∞,

∑
|nkcn|2 <∞.

If |cn| ≤ c|n|−k−α for some c > 0 and α > 1, for all n 6= 0, then f ∈ Ck.

Proof: We apply the theorem relating the Fourier coefficients of f to those of the derivatives of f . We
do it k times. We get

c(k)
n = (in)kcn.

Next, we apply Bessel’s inequality to conclude that since f is piecewise Ck, f (k) is bounded on the interval
hence it is in L2 on the interval, and so ∑

|c(k)
n |2 <∞.
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Since
|c(k)
n | = |n|k|cn|

this shows that ∑
|nkcn|2 <∞.

We have similar estimates for an and bn using the same theorem, specifically

|a(k)
n | = |nkan|, |b(k)

n | = |nkbn|.

Hence, ∑
|nkan| <∞,

∑
|nkbn| <∞.

Now we demonstrate the result which says that if the Fourier coefficients are sufficiently rapidly decaying,
then the function f is actually in Ck. Let

g(x) := f (k−1)(x).

Then g is continuous and by assumption it is piecewise C1. Therefore, by the theorem on the pointwise
convergence of Fourier series, the Fourier series of g converges to g(x) for all x in R. Next, we use the
assumption and the fact that the Fourier coefficients of g are

c(k−1)
n = (in)k−1cn.

Therefore ∑
n∈Z
|c(k−1)
n einx| =

∣∣∣c(k−1)
0

∣∣∣+
∑
n 6=0

|nk−1||cn| ≤
∣∣∣c(k−1)

0

∣∣∣+ c
∑
n 6=0

|n|k−1−k−α <∞.

Hence, the series converges absolutely and uniformly in R. Moreover, differentiating the series termwise is
legitimate, because the result ∑

n∈Z
inc(k−1)

n einx

also converges absolutely and uniformly in R:∑
n∈Z
|inc(k−1)

n | ≤
∑
n 6=0

|n||c(k−1)
n | ≤ c

∑
n 6=0

|n||n|k−1−k−α <∞

because α > 1. Since the series is equal to g(x) = f (k−1)(x) for all x ∈ R, and the series is a differentiable
function for all x ∈ R, this shows that g is differentiable for all x ∈ R. Moreover, g′ is continuous on R,
because the series defines a continuous function.1 This is the case because the series defining g′ converges
absolutely and uniformly for all of R. Hence, f (k−1) is in C1 on all of R, and therefore f is in Ck on all of R.

We will prove a theorem about integrating Fourier series. To get warmed up, here is an exercise.

Exercise 50. Show that if you compute the indefinite integrate∫
einxdx, n ∈ Z \ {0},

the result is also a 2π periodic function. What happens in the case n = 0?

1This is true because the series should really be viewed as the limit of the partial series, and each partial series defines a
smooth, thus also continuous, function. The uniform limit of continuous functions is itself a continuous function.
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Theorem 51. Let f be a 2π periodic function which is piecewise continuous. Define

F (x) :=

x∫
0

f(t)dt.

If c0 = 0, then

F (x) = C0 +
∑
n 6=0

cn
in
einx, C0 =

1

2π

π∫
−π

F (x)dx.

Similarly,

F (x) =
1

2
A0 +

∑
n≥1

an
n

sin(nx)− bn
n

cos(nx).

Proof: We first note that F is continuous and piecewise C1, because it is the integral of a piecewise
continuous function. Moreover, assuming c0 = 0, we see that

F (x+ 2π)− F (x) =

x+2π∫
0

f(t)dt−
x∫

0

f(t)dt =

x+2π∫
x

f(t)dt =

π∫
−π

f(t)dt = 2πc0 = 0.

Above we have used the nifty lemma that allows us to slide around integrals of periodic functions. So,
F satisfies the assumptions of the theorem on pointwise convergence of Fourier series. We therefore have
pointwise convergence of the Fourier series of F . Moreover, applying the theorem relating the Fourier
coefficients of F ′ = f to those of F , we have

Cn =
cn
in

n 6= 0.

The reason is because cn = C ′n, and the theorem says C ′n = inCn which shows cn = inCn, which we can
re-arrange as above. The formula for C0 is just the usual formula for it, because we can’t say anything more
specific without knowing more information on f . The re-statement in terms of a and b follows from the
relationship between these and the cn Fourier coeffiients.

Remark 2. If c0 6= 0, then define a new function

g(t) := f(t)− c0.

Since f is 2π periodic, so is g. Then, apply the theorem above to g. Note that

G(x) =

x∫
0

g(t)dt = F (x)− c0x.

Moreover, the Fourier coefficients of g,

1

2π

π∫
−π

(f(x)− c0)e−inxdx = cn =
1

2π

π∫
−π

f(x)e−inxdx, ∀n 6= 0.

So, the series for G(x) from the theorem is

C̃0 +
∑
n 6=0

cn
in
einx,
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with

C̃0 =
1

2π

π∫
−π

(F (x)− c0x) dx = C0.

So, in fact, it is the same C0, where we have used the oddness of the function x above. Then, we get
something of a corollary which says that in general, the series in the theorem,

C0 +
∑
n 6=0

cn
in
einx, C0 =

1

2π

π∫
−π

F (x)dx

converges to F (x)− c0x.

4.5.1 Computing a sum using the Integration Theorem for Fourier Series

In general, this is a more complicated way to compute series, so if there is an alternative method, like
Parseval’s equality, that would most likely be easier. However, this is a useful technique, and so we proceed
with an example, by computing ∑

n≥1

1

n4
.

Since we used f(x) = x to compute the series
∑
n−2 it is a reasonable guess that f(x) = x2 could be used

to compute this series. To practice a different, but equivalent technique, we shall use the orthogonal basis
{1, cos(nx), sin(nx)}n∈N to expand this function on (−π, π). Since x2 is even, and sin(nx) is odd for all
n ≥ 1, the integrals

π∫
−π

x2 sin(nx)dx = 0 ∀n ≥ 1.

We compute the cosine terms,

an =
1

π

π∫
−π

x2 cos(nx)dx =
2

π

π∫
0

x2 cos(nx)dx.

We do this integral:

π∫
0

x2 cos(nx)dx =

∫
x2

(
sin(nx)

n

)′
dx = x2 sin(nx)

n

∣∣∣∣π
0

−
π∫

0

2x
sin(nx)

n
dx.

Above we did integration by parts. The first part vanishes. The second term we handle with integration by
parts again,

π∫
0

x sin(nx)dx =

π∫
0

x (− cos(nx)/n)
′
dx = −x cos(nx)

n

∣∣∣∣π
0

+

π∫
0

cos(nx)/ndx.

Now this time the second term vanishes because integrating gives us a sine which is 0 at 0 and at π. So,
recalling the constant factors, we get

π∫
0

x2 cos(nx)dx =
2π cos(πn)

n2
=

2π(−1)n

n2
.

Hence our coefficients,

an =
2(2)(−1)n

n2
.
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Moreover, we also compute the term

a0 =
1

π

π∫
−π

x2dx =
2π3

3π
=

2π2

3
.

Hence, the Fourier series expansion of x2 is

π2

3
+ 4

∑
n≥1

(−1)n cos(nx)

n2
.

Let x = π. Since our periodically extended function, x2 is continuous on all of R, the Fourier series converges
to its value at x = π which means

π2 =
π2

3
+ 4

∑
n≥1

(−1)n(−1)n

n2
=⇒ π2

6
=
∑
n≥1

1

n2
.

To get up to summing n−4 we will use Theorem 51. We see that

c0 =
π2

3
.

We also see that for f(t) = t2,

F (x) :=

x∫
0

f(t)dt =
x3

3
.

The series from the theorem is

C0 + 4
∑
n≥1

(−1)n sin(nx)

n3
.

The term

C0 =
1

2π

π∫
−π

F (x)dx = 0,

because F (x) above is odd. Hence, the theorem together with the remark after it says that

4
∑
n≥1

(−1)n sin(nx)

n3
=
x3

3
− π2x

3
, x ∈ [−π, π].

To proceed, we’re going to need to use the theorem once more to get n4 in the denominator. Before we
do this, let’s multiply everything by 3 to make it nicer. Then

x3 − π2x = 12
∑
n≥1

(−1)n sin(nx)

n3
, x ∈ [−π, π].

So, here we have

f(t) = t3 − π2t =⇒ F (x) =

x∫
0

f(t)dt =
x4

4
− π2x2

2
.

We see also that

c0 =
1

2π

π∫
−π

f(t)dt = 0.
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Hence, we apply the theorem directly to F . The theorem says

F (x) = C0 + 12
∑
n≥1

− (−1)n cos(nx)

n4
.

We compute

C0 =
1

2π

π∫
−π

F (x)dx =
1

π

π∫
0

x4

4
− π2x2

2
dx =

π4

20
− π4

6
.

Therefore

F (x) =
x4

4
− π2x2

2
=
π4

20
− π4

6
− 12

∑
n≥1

(−1)n cos(nx)

n4
, x ∈ [−π, π].

We do the same trick now of choosing

x = π =⇒ cos(nx) = cos(nπ) = (−1)n, (−1)n(−1)n = 1∀n.

Hence,

F (π) =
π4

4
− π4

2
=
π4

20
− π4

6
− 12

∑
n≥1

1

n4
.

Re-arranging things ∑
n≥1

1

n4
=

1

12

(
π4

20
− π4

6
+
π4

2
− π4

4

)
.

Just for fun, we determine what this is...

π4

20
− π4

6
+
π4

2
− π4

4
=
π4

2

(
1

10
− 1

3
+

1

2

)
=
π4

2

(
3− 10 + 15

30

)

=
π4

2

(
8

30

)
=

2π4

15
.

So, recalling the factor of 1
12 , we see that

∑
n≥1

1

n4
=

2π4

(12)(15)
=

π4

6(15)
=
π4

90
.

We have again earned ourselves some pie. To honor the esteemed mathematical physicist, Stephen
Hawking, this time we shall a mincemeat pie as in Figure 4.11.

4.6 Fourier sine and cosine series: even and odd extensions

In the preceding example, we were able to express x2 as a Fourier series that only required cosines. We may
wish to be able to do that in general, for functions that from the start might not be even or odd. One way
to do this is to start with our function on an interval, and then extend it to twice that interval evenly or
oddly. To show how this is done, we consider the interval (0, π). Assume that we have some arbitrary L2

function f(x) defined on this interval. First, we define its odd extension:

fo(x) :=

{
f(x) x ∈ [0, π]

−f(−x) x ∈ (−π, 0).
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Figure 4.11: We have managed to compute yet another seemingly impossible sum, and again we have seemingly
magically appearing πs. To celebrate, here we have a piece of mincemeat pie. According to my English friends, this
is not a pie involving meat, but rather a sweet pie that is filled with a mixture of dried fruits and spices, traditionally
served during the Christmas season. Image license and source: Creative Commons Zero 1.0 Public Domain License
openclipart.org.

In the exercises of this chapter, we will prove that for the odd extension fo, the an Fourier coefficients
coefficients are all zero, and the bn coefficients are

bn =
1

π

π∫
−π

f(x) sin(nx)dx =
2

π

π∫
0

f(x) sin(nx)dx.

Here we used the fact that sine is also an odd function, and therefore the product of fo and sin(nx) is an
even function for all n. In this way we can obtain a Fourier series for f that contains only sine terms! This
is pretty awesome, because we do not need f to be an odd function.

On the other hand, if we wish to obtain a Fourier cosine series for f , we extend it evenly, defining

fe(x) :=

{
f(x) x ∈ [0, π]

f(−x) x ∈ (−π, 0).

In the exercises of this chapter, we will prove that for the even extension fe, the bn Fourier coefficients all
vanish, and the an coefficients are

an =
1

π

π∫
−π

f(x) cos(nx)dx =
2

π

π∫
0

f(x) cos(nx)dx, n ≥ 0.

Above we used the fact that cosine is even, and so its product with fe is also even. In this way, we may
define Fourier sine and cosine series for functions defined on [0, π]. The Fourier sine series is defined to be

∑
n≥1

bn sin(nx), bn =
2

π

π∫
0

f(x) sin(nx)dx

whereas the Fourier cosine series is

c0 +
∑
n≥1

an cos(nx), c0 =
1

π

π∫
0

f(x)dx, an =
2

π

π∫
0

f(x) cos(nx)dx, n ≥ 1.
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More generally, we can do the same procedure on any interval of the form [0, `] to obtain sine and cosine
series.

Theorem 52. Let f be a function which is piecewise C1 on [0, π]. Then the Fourier sine and cosine series
converge to f(x) for all x ∈ (0, π) at which f is continuous. For other points, they converge to

1

2
(f(x−) + f(x+)) .

More generally, for a function that is piecewise C1 on [0, `], the Fourier sine and cosine series are defined to
be ∑

n≥1

bn sin(nπx/`), bn =
2

`

`∫
0

f(x) sin(nπx/`)dx,

and

c0 +
∑
n≥1

an cos(nπx/`), c0 =
1

`

`∫
0

f(x)dx, an =
2

`

`∫
0

f(x) cos(nπx/`)dx, n ≥ 1.

These series converge to f(x) at all points x ∈ (0, `) at which f is continuous, and for other points in the
same interval they converge to the average of the left and right sided limits.

Proof: First, we extend the function either evenly or oddly. Next, we extend it to all of R to be 2π
periodic. Like Riker in Star Trek the Next Generation, we just make it so. We’re only proving a statement
about points in (0, π). So, what happens outside of this set of points, well it don’t matter. We apply the
theorem on pointwise convergence of Fourier series now. In the case where the interval is (0, `), we note that
the function

g(t) := f(xπ/`), t =
xπ

`
=⇒ x ∈ (0, `) ⇐⇒ t ∈ (0, π)

is defined on (0, π) for f defined on (0, `). We therefore therefore apply the theorem from the interval (0, π)
obtain its series for g, and then use a change of variables to obtain that for f .

4.7 Fourier trigonometric series on an arbitrary interval

We can obtain a Fourier series for a function f defined on any interval. It is convenient to write the interval
as [a− `, a+ `] for some a ∈ R, and some ` > 0. To do this we define

g(t) := f

(
t`

π
+ a

)
= f(x).

Then when t ∈ [−π, π], the corresponding x ∈ [a− `, a+ `], that is

t`

π
+ a = x, t =

(x− a)π

`
.

So, we use the standard procedure to compute expand g into a Fourier series of the form∑
n∈Z

cne
int,
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Figure 4.12: The same function is expanded in a sine series and a cosine series on the interval (0, π). The function
is equal to x from 0 to π

2
and π − x from π

2
to π. Both the sine and cosine series converge to the function on this

interval, but then outside the interval, the sine series is odd whereas the cosine series is even. This figure was created
by Edvin Martinson; thank you!

with coefficients

cn =
1

2π

π∫
−π

g(t)e−intdt =
1

2π

π∫
−π

f

(
t`

π
+ a

)
e−intdt.

Substituting in the integral,

x =
t`

π
+ a, dx =

`dt

π

the coefficients become:

cn =
1

2π

π

`

a+`∫
a−`

f(x)e−in(x−a)π/`dx =
1

2`

a+`∫
a−`

f(x)e−in(x−a)π/`dx.

Then, we get by substituting for t in terms of x the Fourier series for f ,∑
n∈Z

cne
in( (x−a)π

` ).

A similar relationship holds for the Fourier cosine and sine coefficients:

an =
1

`

a+`∫
a−`

f(x) cos(n(x− a)π/`)dx, bn =
1

`

a+`∫
a−`

f(x) sin(n(x− a)π/`)dx,

and the Fourier series has the form

c0 +
∑
n≥1

an cos(n(x− a)π/`) + bn sin(n(x− a)π/`).

This series will converge to f on the interval [a− `, a+ `], and to the 2` periodic extension of f on the rest
of R.
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Theorem 53. Assume that f is defined on an interval [a− `, a+ `] for some a ∈ R, and some ` > 0, such
that f is piecewise C1 on this interval. Then the Fourier series for f , defined by

∑
n∈Z

cne
in( (x−a)π

` ), cn =
1

2`

a+`∫
a−`

f(x)e−in(x−a)π/`dx,

or equivalently the series

c0 +
∑
n≥1

an cos(n(x− a)π/`) + bn sin(n(x− a)π/`)

converges to f(x) for all x ∈ (a− `, a+ `) at which f is continuous. At a point x ∈ (a− `, a+ `) where f is
not continuous, the series converges to

f(x+) + f(x−)

2
. (4.7.1)

Exercise 54. Prove the theorem. As a hint: apply the Theorem on Pointwise Convergence of Fourier Series
to the function g above.

4.8 Fourier series in mathematical physics

The historical origin of Fourier series is their application to solving the heat equation [5]. We will continue
to use Fourier series to solve partial differential equations in the following chapter. Another application of
Fourier series is to compute seemingly incomputable series. For example, we can compute a series of the
form ∑

n≥1

a(n)

as long as we can obtain an estimate for the terms of the form

|a(n)| ≤ C 1

n2
, ∀n ≥ N, for some constant N .

The way this works is that we can exactly compute

∞∑
n=N

C

n2
=
Cπ2

6
− C

N−1∑
n=1

1

n2
.

Then, taking N sufficiently large, we can make the right side above as small as we wish. Consequently, since
the tail of the series satisfies ∣∣∣∣∣∣

∑
n≥N

a(n)

∣∣∣∣∣∣ ≤
∞∑
n=N

C

n2
=
Cπ2

6
− C

N−1∑
n=1

1

n2
,

we can calculate the value of the series by summing a(n) from 1 up to N , and then estimating the tail as
above. We can make this tail as small as we want, and therefore compute the series

∑
n≥1 a(n) to any level

of accuracy we wish!

4.8.1 Zeta functions in mathematical physics and number theory

The series that we use above has further connections to physics and number theory via a mathematical
function known as a zeta function. Riemann’s zeta function is

ζ(s) =
∑
n≥1

1

ns
.
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Figure 4.13: Stephen Hawking lived from 1942 until 2018. He was a theoretical physicist and worked as both a
professor of physics as well as a professor of mathematics. In spite of significant physical challenges, including the loss
of speech, he made tremendous contributions to mathematical physics in particular, science in general, and society
at large. I really enjoyed his book ‘A brief history of time.’ Image license and source: Creative Commons Zero 1.0
Public Domain License openclipart.org.
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This will be investigated in the exercises. This is one particular example of a more general spectral zeta
function that appears in mathematical physics. On the mathematical side, we study spectral zeta functions
that are defined by the eigenvalues of a differential operator. In case zero is an eigenvalue, we exclude it from
the sum. As an example, let’s consider the vibrating string with fixed ends. Part of our solution involved
finding all solutions X to:

X ′′(x) = λX(x), X(0) = X(`) = 0, for some constant λ ∈ R.

We found that the only possible values of the constant λ are λn = −n
2π2

`2 for n ∈ N, and the corresponding
function Xn(x) are constant multiples of sin(nπx/`). The physical interpretation of the values of |λn| is that
they are frequencies, but frequencies are positive quantities. So, the spectral zeta function corresponding to
this problem is therefore

ζ[0,`](s) =
∑
n≥1

`2s

(nπ)2s
=
`2s

π2s

∑
n≥1

1

n2s
.

Here we used ζ[0,`] to indicate that the zeta function is for the interval [0, `]. For the sake of clarity, let us
write the Riemann zeta function as

ζR(s) =
∑
n≥1

n−s,

then we have

ζ[0,`](s) =
`2s

π2s
ζR(2s).

This zeta function will be further explored in the exercises. In particular, although it is only apparently well
defined for values of s such that the series converges, there is a way to meromorphically extend it to the
entire complex plane. Furthermore, we will show that this extension is holomorphic in a neighborhood of
the point s = 0. For a moment, let us throw mathematical rigour to the wind, and compute

d

ds
ζR(s)

∣∣∣∣
s=0

=
∑
n≥1

− log(n)n0 = −
∑
n≥1

log(n),

and so

e−ζ
′
R(0)“ =′′ e

∑
n≥1 log(n) =

∏
n≥1

n.

Well, the right side is pure nonsense, so why are we doing this? Our differential operator provides us with
an orthogonal basis for the infinite dimensional Hilbert space L2(0, `). Note that it consists of sines, and
this fits with our ability to expand functions in Fourier sine series, if we would like to do that! If we view
the differential operator acting on the Hilbert space as an infinite dimensional matrix, then this orthogonal
basis of sines diagonalizes the operator. The determinant of the operator should be equal to the product of
all of its eigenvalues. Now, this product cannot be defined, because it is infinite. However, in the exercises
we will prove that ζ ′R(0) is well-defined, and so it allows us to define the determinant of the operator as
exp(−ζ ′[0,`](0)). This procedure is known as zeta function regularization. According to Stephen Hawking,
shown in Figure 4.13, this method allows one to obtain “an energy momentum tensor which is finite even on
the horizon of a black hole” [8]. In the language of physics, the zeta regularization is a technique for obtaining
finite values to path integrals for fields (including the gravitational field) on a curved spacetime background.
In the language of mathematics, this is a technique for evaluating the determinants of differential operators.
As I like to say ‘physics is just mathematics in cooler words.’

It may be interesting to note that in [1], we proved that the zeta-regularized determinant, defined in
this way, for the analogous problem on a rectangle of side lengths L and 1/L (thus normalized to have area
equal to one) is uniquely minimized by the square, and it tends to zero if the rectangle collapses, that is if
L→ 0. To prove this result, we used classical number theoretic equalities of Hardy and Ramanujan, as well
as modern analytic number theory estimates for the partition function.

96



4.8.2 The Gibbs phenomenon

Assume that a function f is discontinuous at a point x0 ∈ (−π, π). Then, the Fourier series for f on any
interval containing x0 does not converge uniformly. The reason is that the Fourier series is comprised of
continuous functions, and the uniform limit of continuous functions is continuous. Since the limit function,
f , is not continuous, the convergence therefore cannot be uniform. If we compute the partial Fourier series of
such a function, as shown in Figures 4.14a and 4.14b we will see high frequency oscillations; these oscillations
demonstrate the lack of uniformity of the convergence. This is known as the Gibbs phenomenon.
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(a) Initial data equal to the Heavyside function.
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(b) Initial data equal to x.

Figure 4.14: The heat equation on a ‘hot rod’ with initial data that has discontinuities and therefore we observe
the non-uniform convergence of the Fourier series to the initial data, known as the Gibbs phenomenon.

Figures 4.14a and 4.14b show the numerical approximation of the solution of the heat equation on a
circular rod with initial data equal to the Heavyside function, and the function x, respectively. These figures
were generously created by Eric Lindgren using the python code contained in §B.2. The Heavyside function
is equal to one for x > 0 and equal to zero for x < 0. The heavyside function is discontinuous at zero, and
when we extend it as a periodic function, it has discontinuities at all integer multiples of π. So, at all of
these points, the Fourier series converges to the average of the left and right sided limits. Moreover, the
series oscillates wildly and exhibits the Gibbs phenomenon; it does not converge uniformly to the initial
data. Similarly, in Figure 4.14b, the initial data x, extended to a 2π periodic function has discontinuities at
odd integer multiples of π. So, at all of these points, the Fourier series converges to the average of the left
and right sided limits. Due to these discontinuities, we also see the Gibbs phenomenon occurring here; the
Fourier series does not converge uniformly to the initial data.

4.9 Exercises

1. Compute the Fourier series of the function defined on (−π, π)

f(x) :=

{
0 −π < x < 0

cos(x) 0 < x < π
.

2. Compute the Fourier series of the function defined on (−π, π)

f(x) := cosh(x).
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3. Compute the Fourier series of the function defined on (−π, π)

f(x) :=


1 −a < x < a

−1 2a < x < 4a

0 elsewhere in (−π, π).

.

Here one ought to assume that 0 < a < π for this to make sense.

4. Compute the Fourier series of the function defined on (−π, π)

f(x) = cos2(x).

5. Use the Fourier series of the function f(x) = x(π − |x|), defined on (−π, π) and extended to be 2π
periodic on R, to compute the sums:∑

n≥1

1

n2
=
π2

6
,
∑
n≥1

(−1)n+1

n2
=
π2

12
.

6. Use the Fourier series of the function f(x) = ebx, defined on (−π, π) and extended to be 2π periodic
on R, to compute the sum: ∑

n≥1

1

n2 + b2
=

π

2b
coth(bπ)− 1

2b2
.

7. [4, 2.5.4] Consider a vibrating string of length `. Suppose that the string is plucked in the middle such
that its initial displacement is

u(x, 0) =

{
2mx
` 0 ≤ x ≤ `

2
2m(`−x)

`
`
2 ≤ x ≤ `,

for some m > 0. Assume that its initial velocity is zero. Find the displacement u(x, t) for subsequent
times.

8. [4, 2.5.5] Suppose now that the initial displacement is mx
a for 0 ≤ x ≤ a and m(`−x)

`−a for a ≤ x ≤ ` for
some a ∈ (0, `). Find the displacement u(x, t) assuming the initial velocity is zero.

9. Use the Fourier series for the function f(x) = | sin(x)| to compute the sum

∞∑
n=1

1

4n2 − 1
=

1

2
,

∞∑
n=1

(−1)n+1

4n2 − 1
=
π − 2

4
.

10. Use the Fourier series for the function f(x) = x(π − |x|) to compute the sum

∞∑
n=1

(−1)n+1

(2n− 1)3
=
π3

32
.

11. [4, 2.3.5] Let f(x) be the periodic function such that f(x) = ex for x ∈ (−π, π), and extended to be
2π periodic on the rest of R. Let ∑

n∈Z
cne

inx

be its Fourier series. Therefore, by the Theorem on Pointwise Convergence of Fourier Series

ex =
∑
n∈Z

cne
inx, ∀x ∈ (−π, π).
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If we differentiate this series term-wise then we get
∑
incne

inx. On the other hand, we know that
(ex)′ = ex. So, then we should have∑

incne
inx =

∑
cne

inx =⇒ cn = incn ∀n.

This is clearly wrong. Where is the mistake?

12. Determine the Fourier sine and cosine series of the function

f(x) =

{
x 0 ≤ x ≤ π

2

π − x π
2 ≤ x ≤ π

13. Expand the function

f(x) =

{
1 0 < x < 2

−1 2 < x < 4

in a cosine series on [0, 4].

14. Expand the function ex in a series of the form∑
n∈Z

cne
2πinx, x ∈ (0, 1).

Hint: the functions {e2πinx}n∈Z are an orthogonal basis for (0, 1). Use the standard formula for cn on

this interval: cn = 〈ex,e2πinx〉
||e2πinx||2 .

15. Define

f(t) =


t 0 ≤ t ≤ 1

1 1 < t < 2

3− t 2 ≤ t ≤ 3

and extend f to be 3-periodic on R. Expand f in a Fourier series. Determine, in the form of a Fourier
series, a 3-periodic solution to the equation

y′′(t) + 3y(t) = f(t).

16. [4, 2.5.1] A rod 100 cm long is insulated along its length and at both ends. Assume that its initial
temperature is u(x, 0) = x, such that x is measured in cm, u in centigrade, t in seconds, and 0 ≤ x ≤
100. Assume that the diffusivity coefficient k = 1.1 (this is about right if the rod is made of copper!).
Find the temperature u(x, t) for t > 0. What happens to u(x, t) as t→∞?

17. Consider a rod also 100 cm long with k = 0.1 (this is about right if the rod is ceramic). Now the
rod is initially at temperature 100 degrees and the ends are subsequently put into an ice bath at 0
degrees. Assume that there is no heat loss along the length of the rod. Find the temperature u(x, t)
at subsequent times. What happens to u(x, t) as t→∞?

18. [4, 2.5.6] Consider a vibrating string of length `. The string is struck in the middle, so that its initial
displacement is zero but its initial velocity is ut(x, 0) = 1 for |x − `/2| < δ and 0 elsewhere, for some
δ > 0. Find u(x, t) for t > 0.

19. [4, 2.5.7] Suppose that the temperature at time t at a point on the surface of the earth is given by

u(0, t) = 10− 7 cos(2πt)− 5 cos(2π365t).

Here u is measured in centigrade, t is in years, and the coefficients are roughly correct for Seattle,
Washington. Suppose that the diffusivity coefficient of the earth k = 9.46m2 per year. Find u(x, t) for
t > 0. At what depth x do the daily variations in the temperature become less than one unit? What
about the annual variation?
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20. [4, 2.3.7] How many derivatives can you guarantee that the following functions have?

(a)
∑
n∈Z

einx

n13.2+2n6−1

(b)
∑
n≥0

cos(nx)
2n

(c)
∑
n≥0

cos(2nx)
2n

21. This exercise is about the Riemann zeta function and the zeta regularization process. To quote Stephen
Hawking,

The zeta function can be applied to calculate the partition functions for thermal gravitons
and matter quanta on black holes.

Moreover, the Riemann zeta function is the central object in one of the most famous long-standing
open problems in number theory in particular and mathematics in general: the Riemann hypothesis.

(a) The Riemann zeta function is defined for s ∈ C to be:

ζ(s) :=
∑
n≥1

1

ns
.

For which values of s ∈ C does this series converge? Explain how you can use Fourier series to
compute ζ(s) when s is a positive even integer.

(b) One of the most special functions in mathematics is the Gamma function, written using the
capitalized Greek letter Γ,

Γ(s) =

∞∫
0

ts−1e−tdt.

Compute Γ(1). Show that the integral above can be defined for all s ∈ C with Re(s) > 0. Show
that Γ satisfies the functional equation

Γ(s+ 1) = sΓ(s).

In this way, show that

lim
s→0

Γ(s) = lim
s→0

Γ(s+ 1)

s
,

and therefore Γ has a simple pole at s = 0. Use the functional equation to extend Γ meromorphi-
cally to C with simple poles at 0,−1,−2, . . . .

(c) Show that the Riemann zeta function satisfies

ζR(s) =
∑
n≥1

n−s =
1

Γ(s)

∞∫
0

ts−1
∑
n≥1

e−ntdt,

for s ∈ C with Re(s) > 1.

(d) The series ∑
n≥1

e−nt =
∑
n≥1

(e−t)n

is a convergent geometric series for any fixed t > 0. Show that it converges to

e−t

1− e−t
=

1

et − 1
, t > 0.
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Consequently, the Riemann zeta function satisfies

ζR(s) =
1

Γ(s)

∞∫
0

ts−1 1

et − 1
dt.

The function 1
et−1 has a simple pole at t = 0. Split the integral above into

∫ 1

0
+
∫∞

1
and use

the Laurent series expansion of 1
et−1 together with the fact that Γ(s) has a simple pole at s = 0

to show that we can meromorphically extend ζR(s), and it is holomorphic in a neighborhood of
s = 0.

(e) Use the preceding exercise together with the calculation

ζ[0,`](s) =
`2s

π2s
ζR(2s)

to show that ζ[0,`](s) is also holomorphic in a neighborhood of s = 0.

(f) Search for the special value of ζ ′R(0). Use this to explain the rather funny notion that∏
n≥1

n =
√

2π.
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Chapter 5

PDEs in bounded regions of space:
stay calm and carry on, tackling
challenges one-by-one!

To solve homogeneous partial differential equations on bounded intervals that have homogeneous boundary
conditions, we can follow this three-step-procedure:

1. Separation of variables (a means to an end),

2. Superposition principle (smash solutions together to make a supersolution),

3. Fourier series to find the coefficients obtained using the initial data (L2 scalar product and divide by
the norm).

Mathematics is in many ways similar to martial arts, as we will see in this chapter. The first similarity
we emphasize is that both mathematics and martial are experiential subjects. It takes active practice to
master either discipline. Perhaps this is one of the reason they are called disciplines; because their mastery
requires just that - discipline! We are just beginning, so as in martial arts, we are a white belt like in Figure
5.1.

5.1 The homogeneous wave equation in a bounded interval

We shall begin our training to advance to the next rank by solving the equation:

utt = uxx, t > 0, x ∈ (−1, 1),
u(0, x) = 1− |x|
ut(0, x) = 0

ux(t,−1) = 0

ux(t, 1) = 0

We use separation of variables, writing u(x, t) = X(x)T (t). We substitute this into the PDE:

T ′′X = X ′′T.

Divide everything by XT to get
T ′′

T
=
X ′′

X
.
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Figure 5.1: In many martial arts, beginners start fresh with the rank of white belt. According to legend, whereas
you would wash your training attire, you would not wash your belt. You earned a black belt by training for so many
years that your white belt eventually became black. I’m not entirely convinced by this, however. In many modern
systems, the belts transition through a range of colors. In Tang Soo Do Moo Duk Kwan, for example, the original
belt system was comprised of white, green, red, and midnight blue, representing winter, spring, summer, and fall.
Similarly, these colors represent a bare, empty beginning in the winter, followed by the blossoming knowledge and
skill in the spring, ripening over the summer, and maturity in the fall. Image license and source: Creative Commons
Zero 1.0 Public Domain License openclipart.org.
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Since the two sides depend on different variables, they are both constant. We start with the X side because
that is how we have learned to do this technique. The boundary conditions demand that

ux(t,−1) = ux(t, 1) = 0 =⇒ X ′(−1) = X ′(1) = 0.

So, we have the equation
X ′′

X
= constant, call it λ.

Thus we are solving
X ′′ = λX, X ′(−1) = X ′(1) = 0.

Case 1: λ = 0: In this case, we have solved this equation before. One way to think about it is that the
second derivative is like acceleration. If X ′′ = 0, it’s saying X has constant acceleration. Therefore X can
only be a linear function. Now, we have the boundary condition which says that X ′(−1) = X ′(1) = 0. So
the slope of the linear function must be zero, hence X must be a constant function in this case. So, the only
solutions in this case are the constant functions. Let’s keep these in mind, because constant functions need
not be zero, just constant.

Case 2: λ > 0: In this case, a general solution is of the form:

X(x) = Ae
√
λx +Be−

√
λx.

Let us assume that A and B are not both zero. The left boundary condition requires

A
√
λe−

√
λ −
√
λBe

√
λ = 0.

Since λ > 0 we can divide by
√
λ to say that we must have

Ae−
√
λ = Be

√
λ =⇒ A

B
= e2

√
λ.

The right boundary condition requires

A
√
λe
√
λ −
√
λBe−

√
λ = 0.

Since λ > 0, we can divide by
√
λ, to make this:

Ae
√
λ = Be−

√
λ =⇒ e2

√
λ =

B

A
.

Hence combining with the other boundary condition we get:

A

B
= e2

√
λ =

B

A
=⇒ A2 = B2 =⇒ A = ±B =⇒ A

B
= ±1.

Neither of these are possible because

e2
√
λ > 1 since 2

√
λ > 0.

So, we run amok under the assumption that A and B are not both zero. Hence, the only solution in this
case requires A = B = 0. This is the waveless wave; the identically zero solution.

Case 3: λ < 0: In this case a general solution is of the form:

X(x) = a cos(
√
|λ|x) + b sin(

√
|λ|x).

To satisfy the left boundary condition we need

−a
√
|λ| sin(−

√
|λ|) + b

√
|λ| cos(−

√
|λ|) = 0 ⇐⇒ a sin(

√
|λ|) = −b cos(

√
|λ|).

To satisfy the right boundary condition we need

−a
√
|λ| sin(

√
|λ|) + b

√
|λ| cos(

√
|λ|) = 0 ⇐⇒ a sin(

√
|λ|) = b cos(

√
|λ|).

Hence we need
a sin(

√
|λ|) = −b cos(

√
|λ|) = b cos(

√
|λ|). (5.1.1)

We do not want both a and b to vanish. So, we need to have either
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1. the sine vanishes, so we need sin(
√
|λ|) = 0 which then implies that√

|λ| = nπ, n ∈ Z

2. or the cosine vanishes so we need cos(
√
|λ|) = 0 which then implies that

√
|λ| =

(
n+

1

2

)
π, n ∈ Z.

Note that these two cases are mutually exclusive. In case (1), by (5.1.1) this means that b = 0. In case (2),
by (5.1.1) this means that a = 0. So, we have two types of solutions, which up to constant factor look like:

Xm(x) =

{
cos(mπx/2) m is even

sin(mπx/2) m is odd

In both cases,

λm = −m
2π2

4
.

We can now solve for the partner function, Tm(t). The equation is

T ′′m
Tm

=
X ′′m
Xm

= λm = −m
2π2

4
.

Therefore, we are in case 3 for the Tm function as well, so we know that

Tm(t) = am cos

(
mπt

2

)
+ bm sin

(
mπt

2

)
.

Then we have for
um(x, t) = Xm(x)Tm(t), �um = 0 ∀m.

(Recall that � = ∂tt − ∂xx, that is the wave operator). Hence, our functions solve a homogeneous PDE, so
we can use the superposition principle to smash them all together to make a super solution:

u(x, t) =
∑
m∈Z

um(x, t) =
∑
m∈Z

Xm(x)

(
am cos

(
mπt

2

)
+ bm sin

(
mπt

2

))
.

As we have observed before, we don’t actually need all m ∈ Z because we can lump together terms with
±m, so we can simplify this to

u(x, t) =
∑
m≥0

um(x, t).

Note that the boundary condition will also be satisfied when we add all the solutions together, because
X ′m(±1) = 0 for all m, so we also get ∂xum(±1, t) = X ′m(±1)Tm(t) = 0 for all m, and therefore the same
holds for ux(±1, t). Following the mantra TIDGLAS, the initial data goes last, and this is what we use to
determine the coefficients in this last step. We determine these coefficients by expanding the initial data in
a Fourier series.

The initial data is {
u(0, x) = 1− |x|
ut(0, x) = 0

Let us plug t = 0 into our solution:

u(x, 0) =
∑
m∈N

Xm(x)am.

106



We demand that this is the initial data, so we need

1− |x| =
∑
m∈N

Xm(x)am.

It is a Fourier series on the right side!! We therefore just need to expand the function 1 − |x| in a Fourier
series. If we think about the basis functions {Xm(x)}m≥0 then

am =
〈1− |x|, Xm(x)〉
||Xm||2

,

where

〈1− |x|, Xm(x)〉 =

1∫
−1

(1− |x|)Xm(x)dx,

||Xm||2 =

1∫
−1

|Xm(x)|2dx.

On an exam, you are not actually required to compute these integrals!
Now, for the other coefficients (the bn), we use the condition on the derivative:

ut(x, 0) =
∑
m∈N

mn
mπ

2
Xm(x) = 0.

We know how to Fourier expand the zero function: its coefficients are all just zero. Hence, it suffices to take

bm = 0∀m.

5.2 To deal with time independent inhomogeneities, don’t worry
mate, find a steady state!

Our three step plan works very well as long as there are no inhomogeneities. The heuristic way I think about
inhomogeneities is that it is: non-zero stuff that doesn’t belong and can mess me up. It is an enemy to be
fought, so we gear up with our ninja garb and prepare to fight like this little ninja in Figure 5.2.

Roughly speaking, inhomogeneities are non-zero stuff that we wish was not there. If we see an inhomo-
geneity, this could be upsetting and cause us to worry. In Australia, a friendly way to refer to another person
is ‘mate.’ So, when we start to worry because our problem has an inhomogeneity, we should just imagine
a friendly Australian telling us, ‘don’t worry mate, find a steady state!’ The reason is because when the
inhomogeneity is independent of the time variable t, then we can use a method known as steady state to
solve the inhomogeneity and reduce the problem to one where the inhomogeneous stuff has vanished!

5.2.1 Heat equation on an interval with an inhomogeneous time-independent
boundary condition

We wish to solve the problem:
ut − uxx = 0, 0 < x < 4, t > 0,

u(x, 0) = v(x),

ux(4, t) = 0,

u(0, t) = 20.
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Figure 5.2: Would you rather fight one hundred duck sized horses or one horse sized duck? I would rather take
on one tough opponent than try to deal with several simultaneously. Similarly, when we solve PDEs, it is best to
tackle each inhomogeneity one-at-a-time. This is a commonly known martial arts strategy: divide and conquer!Image
license and source: Creative Commons Zero 1.0 Public Domain License openclipart.org.

Let us call this problem ♥. The boundary conditions are not zero. This means that we will have problems
using superposition because unlike zero, adding up a bunch of 20s does not result in 20. Zero is special in this
way; it is the only number you can add to itself as many times as you want and it stays the same. However,
this inhomogeneous part of the boundary condition is the number 20, and that is constant, meaning it
does not depend on time at all. It’s just 20.1 We can use a “steady state solution” to deal with this
inhomogeneous boundary condition because the condition is independent of time. If the BC u(0, t) = 20
were instead u(0, t) = 0, then the BCs would be self adjoint BCs. So we want to make it so. Since the PDE
is homogeneous, the

Don’t worry mate, find a steady state! Deal with non-self adjoint BCs which are independent of
time by finding a steady state solution.

We want a function f(x) which satisfies the equation

−f ′′(x) = 0,

and which gives us the bad BC

f(0) = 20.

1The show Space Ghost has a wonderfully funny episode featuring the Icelandic musician Björk as well as the British musician
Tom York. A quote from the episode is ‘20! Yes!’ https://www.dailymotion.com/video/xliue.
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We have a nice homogeneous BC on the other side, so we don’t want to mess that up, so we want

f ′(4) = 0.

Then, the function

f(x) = ax+ b.

We use the BCs to compute

f(0) = 20 =⇒ b = 20.

f ′(4) = 0 =⇒ a = 0.

Figure 5.3: While visiting the Australian National University in Canberra, my friend and colleague Lashi Bandara
invited me to help him do some volunteer work at a local wild animal refuge. We built a fence to expand the area
available to the animals. I also got to meet some of the rescued animals including this little wombat. Keep our friends
down under in mind when solving partial differential equations with the motto: don’t worry mate, find a steady state!

When we use a steady state technique, we will need to take care of the initial conditions before proceeding.
To help remember this:

Be careful with the steady state, don’t leave things up to fate!

If we were to solve the problem:

ut − uxx = 0, 0 < x < 4, t > 0,

u(x, 0) = v(x),

ux(4, t) = 0,

u(0, t) = 0.

and add it to our steady state solution, then the initial condition would become u(x, 0) = v(x) + 20 not
v(x). The steady state part always runs the risk of screwing up the initial conditions, because it does not
depend on time. So, we need to be careful with the steady state, not just leave things up to fate! So, rather
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than searching for a solution with the original initial data, we search for a solution with the steady state
subtracted from the initial data:

ut − uxx = 0, 0 < x < 4, t > 0,

u(x, 0) = v(x)− f(x),

ux(4, t) = 0,

u(0, t) = 0.

This is now a PDE that we know how to solve, so we call this problem ♥♥, because we like it even better
than ♥. We use separation of variables to write u = XT (just a means to an end).2 Next, we get the
equation

T ′

T
=
X ′′

X
= λ.

We solve the problem
X ′′ = λX, X(0) = 0 = X ′(4).

Exercise 55. Verify that the only solutions for the cases λ ≥ 0 are solutions which are identically zero.

We only get non-zero solutionsn for λ < 0. The solutions are of the form

an cos(
√
|λn|x) + bn sin(

√
|λn|x).

The BC at 0 tells us that
an = 0.

The BC at 4 tells us that

cos(
√
|λn|4) = 0 =⇒

√
|λn|4 =

2n+ 1

2
π =⇒

√
|λn| =

2n+ 1

8
π.

We then also get

λn = − (2n+ 1)2π2

64
.

We shall deal with the coefficients at the very end. So, we set

Xn(x) = sin(
√
|λn|x).

The partner function
T ′n
Tn

= λn =⇒ Tn(t) = αne
λnt = αne

−(2n+1)2π2t/64.

We put it all together writing

u(x, t) =
∑
n≥1

Tn(t)Xn(x).

To make the IC, we need

u(x, 0) =
∑
n≥1

Tn(0)Xn(x) = v(x)− f(x).

Since
Tn(0) = αn,

2The French rap artist, M.C. Solaar, has a song called La fin justifie les moyens, meaning the ends justify the means.
It is from the album Prose Combat, and both the song as well as the album are great! You can check out the song here:
https://www.youtube.com/watch?v=qKCkgyZ78T4
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we need ∑
n≥1

αnXn(x) = v(x)− f(x).

So we want the coefficients to be the Fourier coefficients of v − f , thus

αn =
〈v − f,Xn〉
||Xn||2

=

∫ 4

0
(v(x)− f(x))Xn(x)dx∫ 4

0
|Xn(x)|2dx

.

Our full solution is

U(x, t) = u(x, t) + f(x) = 20 +
∑
n≥1

Tn(t)Xn(x).

5.3 Fourier series with time dependent coefficient functions

What if the partial differential equation is inhomogeneous, and the inhomogeneous (non-zero) stuff depends
on time? Then, whatever we use to deal with that will also necessarily depend on time. The trick will be to
use a Fourier series that has time dependent coefficients. To show how this works, we consider the following
problem:

ut − uxx = tx, 0 < x < 4, t > 0,

u(x, 0) = v(x),

ux(4, t) = 0,

u(0, t) = 0.

Non! Sacre bleu! Tabernac!3 This is an inhomogeneous PDE and the inhomogeneity (tx) depends on
time! A steady-state solution cannot save us. What do we do? Our ninja might need two swords now like
in Figure 5.4! The technique we will use here is to first solve the homogeneous problem, so that we obtain
the basis functions for our Hilbert space, L2 of the interval on which we are working. Then, we will use
these basis functions to construct our solution to the inhomogeneous problem by writing our solution as a
Fourier series with time-dependent coefficients. Since the coefficients are time-dependent, we remember this
technique by the following quote:

Stay calm and carry on as the time moves along! Solve a time-dependent inhomogeneous PDE
using a Fourier series with time-dependent coefficients!

We first solve the homogeneous problem. The reason we do this is because we will use the orthogonal
basis functions to build the solution.

Exercise 56. Use separation of variables to solve the homogeneous problem:

wt − wxx = 0, 0 < x < 4, t > 0,

w(x, 0) = v(x)

wx(4, t) = 0

w(0, t) = 0.

3This is how they curse in French Canada.
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Figure 5.4: To deal with time dependent inhomogeneities we break out not just one sword but two! The idea is that
first we will solve the homogeneous problem to obtain the basis functions for the interval on which we are working.
That’s like going at the problem with the first sword. Next, we take our second sword to the problem by writing
our solution as a Fourier series with time-dependent coefficients. To remember this technique, we say stay calm and
carry on as the time moves along! Image license and source: Creative Commons Zero 1.0 Public Domain License
openclipart.org.

Having done this, we obtain

λn = − (2n+ 1)2π2

64
, Xn(x) = sin(

√
|λn|x).

Tn(t) = αne
λnt.

αn =
〈v,Xn〉
||Xn||2

=

∫ 4

0
v(x)Xn(x)dx∫ 4

0
|Xn(x)|2dx

,

and
w(x, t) =

∑
n≥1

Tn(t)Xn(x).

Now, we look for a solution to this problem:

φt − φxx = tx, 0 < x < 4, t > 0,

φ(x, 0) = 0,

φx(4, t) = 0,

φ(0, t) = 0.

Idea!

Look for a solution of the form ∑
n≥1

cn(t)Xn(x).

So, we keep our Xn from the homogeneous problem, and we look for different cn(t) which will now be
functions of t. We want the function to satisfy

ut − uxx = tx,
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so we put the series in the left side into this PDE:∑
n≥1

c′n(t)Xn(x)− cn(t)X ′′n(x) = tx.

We use the fact the X ′′n = λnXn, so we want to solve∑
n≥1

Xn(x) (c′n(t)− cn(t)λn) = tx.

Here is where we need an idea.

Idea!

Write out tx as a Fourier series in terms of Xn.
The t just goes along for the ride, and

tx = t
∑
n≥1

anXn(x),

where

an =
〈x,Xn〉
||Xn||2

=

∫ 4

0
xXn(x)dx∫ 4

0
|Xn|2dx

.

As usual, we do not need to compute these integrals.
So, we want: ∑

n≥1

Xn(x) (c′n(t)− cn(t)λn) = tx =
∑
n≥1

tXn(x)an.

We equate the coefficients of Xn:
(c′n(t)− λncn(t)) = tan.

This is an ODE for cn(t). We also want the IC, cn(0) = 0. The solution to the homogeneous ODE,

f ′ − λnf = 0 =⇒ f(t) = eλnt times some constant factor.

A particular solution to the inhomogeneous ODE is a linear function of the form:

Ant+Bn =⇒ An − λn(Ant+Bn) = ant =⇒ An =
−an
λn

, Bn =
An
λn

= −an
λ2
n

.

So general solutions are of the form:

cn(t) = Cne
λnt − an

λn
t− an

λ2
n

, for some constant Cn.

To obtain the initial condition that cn(0) = 0, we see that we need

Cn =
an
λ2
n

.

Thus, we have found

cn(t) =
an
λ2
n

eλnt − an
λn
t− an

λ2
n

.

Therefore the solution we seek is
u(x, t) =

∑
n≥1

cn(t)Xn(x),

and the full solution to the original problem is

U(x, t) = w(x, t) + u(x, t).
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5.4 The homogeneous wave equation inside a rectangle

Sometimes the equation is homogeneous, but in order to solve it, we will be forced to deal with inhomo-
geneities. The homogeneous wave equation inside a rectangle provides a good example of how and when
that can happen. We wish to solve the homogeneous wave equation inside a rectangle:

�u = 0 inside a rectangle, u(x, y, 0) = f(x, y), ut(x, y, 0) = 0,

u(x, y, t) = g(x, y) for (x, y) on the boundary of the rectangle.

We name this problem ♥. Here we have an inhomogeneous boundary condition. So, to solve the problem,
we break it into two smaller problems which we tackle one at a time: divide and conquer.

Deal with time independent boundary conditions by finding a steady state solution. Don’t worry
mate, find a steady state!

So, we begin by looking for

Φ(x, y)

to satisfy

�Φ = 0 inside the rectangle,

Φ = g on the boundary of the rectangle.

Since the physical problem doesn’t care where in space the rectangle is sitting, let us put it so that its vertices
are at (0, 0), (0, B), (A, 0), (A,B). Let us call this problem ♥♥.

Once we have found Φ, we will look for a solution w to solve

�w = 0 inside the rectangle,

w(x, y, t) = 0 on the boundary of the rectangle,

w(x, y, 0) = f(x, y)− Φ(x, y), wt(x, y, 0) = 0.

Then, our solution to ♥ will be

u(x, y, t) = w(x, y, t) + Φ(x, y).

So, we look for Φ to solve ♥♥.

Deal with each inhomogeneous boundary component one at a time. Stay calm and carry on,
tackling challenges one-by-one!

It is the same principle: divide and conquer. So, first, let us make nice zero boundary conditions on the
sides, and just deal with the complicated boundary conditions on the top and bottom. Therefore we look
for a function φ(x, y) which satisfies

�φ = 0,

φ(0, y) = φ(A, y) = 0,

φ(x, 0) = g(x, 0), φ(x,B) = g(x,B).

Idea!
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Since the PDE is homogeneous and half of the BCs are good and homogeneous, use separation of variables.
We therefore write the PDE:

−X ′′Y − Y ′′X = 0 =⇒ −Y
′′

Y
=
X ′′

X
= λ.

The BCs for X are X(0) = X(A) = 0. We have solved this problem. The solutions are, up to constant
factors

Xn(x) = sin
(nπx
A

)
, λn = −n

2π2

A2
.

The equation for the partner function is then:

−Y
′′
n

Yn
= λn =⇒ Y ′′n =

n2π2

A2
Yn.

A basis of solutions is given by real exponentials, or equivalently hyperbolic sines and cosines. Since our
region contains 0, we have been given a hint that using the hyperbolic sines and cosines may be more simple.
So, we follow that hint, with

Yn(y) = an cosh
(nπy
A

)
+ bn sinh

(nπy
A

)
.

Next we use superposition to create a super solution, which is legit because the PDE is homogeneous:

φ(x, y) =
∑
n≥1

Xn(x)Yn(y).

To obtain the boundary conditions, we need

φ(x, 0) = g(x, 0) =
∑
n≥1

anXn(x).

Hence, the coefficients

an =
〈g(x, 0), Xn〉
||Xn||2

=

∫ A
0
g(x, 0)Xn(x)dx∫ A
0
|Xn(x)|2dx

.

For the other BC, we need

φ(x,B) = g(x,B) =
∑
n≥1

Xn(x)

(
an cosh

(
nπB

A

)
+ bn sinh

(
nπB

A

))
.

Therefore we need (
an cosh

(
nπB

A

)
+ bn sinh

(
nπB

A

))
=
〈g(x,B), Xn〉
||Xn||2

=

∫ A
0
g(x,B)Xn(x)dx∫ A
0
|Xn(x)|2dx

.

Solving for bn we get

bn =
1

sinh(nπBA )

(
〈g(x,B), Xn〉
||Xn||2

− an cosh

(
nπB

A

))
.

Next, we proceed similarly by searching for a function to fix up the BCs on the left and the right. Having
dealt with the inhomogeneous BCs at the top and bottom, we set the BC there equal to zero. In that way,
when we sum, we shall not mess up the function φ. So, we look for a solution to:

�ψ(x, y) = 0, ψ(x, 0) = ψ(x,B) = 0, ψ(0, y) = g(0, y), ψ(A, y) = g(A, y).
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By symmetry, the solution will be given by ∑
n≥1

X̃n(y)Ỹn(x),

with
X̃n(y) = sin

(nπy
B

)
,

and
Ỹn(x) = ãn cosh

(nπx
B

)
+ b̃n sinh

(nπx
B

)
.

The coefficients come from the boundary conditions:

ãn =
〈g(0, y), X̃n〉
||X̃n||2

=

∫ B
0
g(0, y)X̃n(y)dy∫ B
0
|Xn(y)|2dy

.

The other one

b̃n =
1

sinh
(
nπA
B

) ( 〈g(A, y), X̃n〉
||X̃n||2

− ãn cosh

(
nπA

B

))
.

So, we have found

ψ(x, y) =
∑
n≥1

X̃n(y)Ỹn(x).

The full solution to this part of the problem is

Φ(x, y) = φ(x, y) + ψ(x, y).

Exercise 57. Verify that this function satisfies both the PDE �Φ = 0 as well as all of the boundary
conditions.

To complete the problem, we have only to solve the homogeneous wave equation with the lovely Dirichlet
boundary condition and the initial condition with Φ subtracted. So, we are solving:

�u = 0, ut(x, y, 0) = 0, u(x, y, 0) = f(x, y)− Φ(x, y), u = 0 on the boundary.

Idea!

Since we have homogeneous PDE and BC, use separation of variables and superposition. We use separation
of variables for t, x, and y. Write

u = TXY.

The PDE is

T ′′XY −X ′′TY − Y ′′TX = 0 ⇐⇒ T ′′

T
=
X ′′

X
+
Y ′′

Y
= λ.

Since we have nice homogeneous (Dirichlet) boundary conditions, we begin with the functions that depend
on the position in the rectangle, that is X and Y .

Their equation is:
X ′′

X
+
Y ′′

Y
= λ =⇒ X ′′

X
= λ− Y ′′

Y
.

OBS! The left and right sides depend on different independent variables. Hence, by the same reasoning that
gave us λ, we get that

X ′′

X
= λ− Y ′′

Y
= µ.
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Let us solve for X first.4 So, we are looking to solve:

X ′′ = µX, X(0) = X(A) = 0.

We have solved this before. The solutions are up to constant factors:

Xn(x) = sin
(nπx
A

)
µn = −n

2π2

A2
.

This gives the equation for Y ,
Y ′′

Y
= λ− µn, Y (0) = Y (B) = 0.

Let us briefly call
ν = λ− µn.

Then, this is just the same equation but with different names for things:

Y ′′ = νY, Y (0) = Y (B) = 0.

Up to constant factors, the solutions are

Ym(y) = sin
(mπy

B

)
νm = −m

2π2

B2
.

Since

νm = λ− µn =⇒ λ = λn,m = νm + µn = −m
2π2

B2
− n2π2

A2
.

Recalling the equation for the partner function, T , we have

Tn,m(t) = an,m cos(
√
|λn,m|t) + bn,m sin(

√
|λn,m|t).

Hence we write
u(x, y, t) =

∑
n,m≥1

Tn,m(t)Xn(x)Ym(y).

The initial condition
ut(x, y, 0) = 0 =⇒ bn,m = 0∀n,m.

The other condition is that

u(x, y, 0) = f(x, y)− Φ(x, y) =
∑
n,m≥1

an,mXn(x)Ym(y).

Hence we require

an,m =
〈f − Φ, XnYm〉
||XnYm||2

=

∫
[0,A]×[0,B]

(f(x, y)− Φ(x, y))Xn(x)Ym(y)dxdy∫
[0,A]×[0,B]

|Xn(x)Ym(y)|2dxdy
.

The full solution is then
u(x, y, t) + Φ(x, y).

Remark 3. The numbers we obtained above

λn,m = −m
2π2

B2
− n2π2

A2

4In this case, we could solve for either X or Y first, it actually does not matter which you choose.
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correspond to the resonant frequencies produced by a vibrating rectangle that has side lengths equal to A
and B. It is interesting to compare this to the numbers we obtain for a vibrating string of length `,

µn = −n
2π2

`2
.

These are the resonant frequencies produced by a vibrating string. As you can see they are all square integer
multiples of

µ1 = −π
2

`2
,

that corresponds to the ground tone or fundamental tone. Consequently, for a vibrating string, all of the
higher harmonics, corresponding to µn for n ≥ 2, are square integer multiples of the ground tone. This is
the mathematical reason that vibrating strings sound lovely. On the other hand, if the rectangle is not a
square, that is A 6= B, it is no longer true that the λn,m are all multiples of

λ1,1 = − π
2

B2
− π2

A2
.

For this reason, vibrating rectangles can sound rather awful. You can listen to something similar, for tori,
here: http://www.toroidalsnark.net/som.html.

5.5 Mathematical physics and martial arts

According to Chinese legends, a true martial arts master cannot be defeated even when fighting blindfolded.
One of the reasons is because they are able to hear everything: the location of the opponent, what type
of weapon the opponent is using, and what exactly the opponent is doing at every moment in time. Is
this possible? Can we investigate this using mathematical physics? The answer to the first question is,
maybe. The answer to the second question is more encouraging: yes we can! For those of you who can read
Mandarin, you might find our article interesting https://www.global-sci.com/intro/article_detail.

html?journal=mc&article_id=13178.5

This question is related to Kac’s famous article [9] titled can one hear the shape of a drum? Mathemati-
cally, this question is: if two bounded domains in the plane have the same eigenvalue spectrum for the Laplace
eigenvalue equation with the Dirichlet boundary condition, then are the domains the same shape? The eigen-
values determine the sound of the domain, if it were the drumhead of a vibrating drum. Consequently, the
question is, if we listen to two drumheads with perfect hearing, and they sound identical because all of the
eigenvalues are identical, then are the shapes of the drumheads identical? Mathematically, this eigenvalue
problem is to find all solutions u such that for some λ ∈ C

uxx + uyy − λu = 0, inside the domain, and u = 0 on the boundary of the domain. (5.5.1)

This is a very difficult problem, because although we can prove general facts like that λ must actually be real
and non-negative, we cannot calculate these numbers analytically. There are only a handful of examples for
which we can calculate these eigenvalues analytically, and many of those examples will be done in this text.
So, if we cannot calculate these eigenvalues, how on earth could we hope to answer Kac’s question? Two
domains have associated to them two unknown sets of numbers that are the same and somehow we want to
know if the domains are the same shape? This seems impossible.

Indeed, it is certainly not easy. To answer it, we investigate quantities that are determined by these
eigenvalues. The set of all eigenvalues of a domain is called its spectrum, and consequently the quantities
that are determined by the eigenvalues are called spectral invariants. Of particular importance are geometric
spectral invariants, that are the geometric features of a domain that are determined by the spectrum.
Hermann Weyl discovered the first geometric spectral invariant in about 1912: the area of a domain is a

5My Chinese name is 罗茱莉.
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Figure 5.5: These two domains have exactly the same set of Laplace eigenvalues with the Dirichlet boundary
condition. As one can see, they are not the same shape! This image is kindly contributed by Gottfrid Olsson, based
on the example in [6] and [7].

spectral invariant [24] About a half century later, Åke Pleijel [19] proved that the perimeters is a spectral
invariant. Shortly thereafter, in 1965, M. Kac wrote his paper. It took about a quarter century to solve the
problem, which was achieved by Carol Gordon, David Webb, and Scott Wolpert in 1991 [6, 7]. The answer
is no.

In contrast to a nice round drumhead, the “identical sounding drums,” in Figure 5.5 both have corners.
A natural question is therefore: can one hear the corners of a drum? This means, is it possible for two drums
to sound the same, and one of them has a nicely rounded, but not necessarily circular, shape, whereas the
other has at least one sharp corner? In other words, can one hear the corners of a drum? My co-authors and
I have proved that the answer is yes [13, 16]. The sound produced by a drumhead with at least one sharp
corner will always be different from the sound produced by any drumhead without corners. My co-author
and I also proved that one can hear the symmetry of regular polygons in the sense that if an n-sided polygon
has the same spectrum as a regular n-gon, then in fact that n-sided polygon is regular. These results require
that the entire spectra be equal, and it can be shown that these sets of eigenvalues are always infinite. In
terms of the physical interpretation, that means one would need perfect hearing. We proved that if one
is only listening to convex n-sided polygons, then in fact, one can detect regular n-gons through a finite
collection of eigenvalues [12]. In this sense, one could realistically expect to be able to distinguish a regular
n-gon by listening to the sound it makes as the head of a vibrating drum.

Returning to our Kung Fu master, these results indicate that if there could be some truth to the Chinese
folklore, and perhaps one day it may even be possible to mathematically prove that a Kung Fu master with
sufficiently good hearing can detect the size and shape of their opponent and their weapon! One of the most
famous martial artists of all time, Bruce Lee, also majored in philosophy at the University of Washington,
but unfortunately he finished his studies there long before I began studying mathematics. Could Bruce Lee,
shown in Figure 5.6 recognize his opponent’s weapon from only its sound? We will never know, but we will
continue to investigate this question from a mathematical physics perspective!

5.6 Exercises

1. [4, 4.2.1] Suppose the end x = 0 of a rod of length ` is held at temperature zero while the end at x = `
is insulated. This means that the boundary conditions are u(0, t) = 0, and ux(`, t) = 0.

(a) Find a series expansion for the temperature u(x, t) given the initial temperature f(x) = u(x, 0).
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Figure 5.6: Bruce Lee, born 李振藩 but more commonly known as 李小龙 was an actor, director, and one of the
most influential martial artists of all time. His philosophy was to draw from different combat disciplines, rather than
limiting himself to a single style. This is one of the reasons that Bruce Lee is often credited with paving the way for
modern mixed martial arts. He lived from 1940–1972. This image is public domain.
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(b) What is u(x, t) when f(x) = 50?

2. [4, 4.2.5] Solve:

ut = kuxx + e−2t sin(x),

with

u(x, 0) = u(0, t) = u(π, t) = 0.

3. A function is 2 periodic with f(x) = (x+ 1)2 for |x| < 1. Expand f(x) in a Fourier series. Search for
a 2 periodic solution to the equation

2y′′ − y′ − y = f(x).

4. [4, 4.2.6] Solve:

ut = kuxx +Re−ct, R, c > 0,

u(0, t) = 0, ux(`, t) = 0, u(x, 0) = f(x).

Physically this is heat flow in a rod which has a chemical reaction in it such that the reaction produced
inside the rod dies out over time. The end of the rod at x = 0 is held at temperature zero, while the
right end of the rod is insulated, and the initial temperature inside the rod is f(x).

5. [4, 4.3.5] Find the general solution of

utt = c2uxx − a2u,

u(0, t) = u(l, t) = 0,

with arbitrary initial conditions. Physically, this is a model for a string vibrating in an elastic medium
where the term −a2u represents the force of reaction of the medium on the string.

6. [4, 4.2.7] We have a radioactive rod of length `, that is to say it generates heat within itself at a constant
rate R, so the equation the temperature function u(x, t) satisfies is

ut = kuxx +R.

Assume that it is insulated at both ends and along its length, and initially it is at temperature zero,
so the boundary and initial conditions are

u(x, 0) = ux(0, t) = ux(`, t) = 0.

Show that there is no steady state solution of ut = kuxx + R with ux(0, t) = ux(`, t) = 0. Why does
that make sense from a physics perspective? Then solve this problem!

7. Solve the problem:

uxx + uyy = y, 0 < x < 2, 0 < y < 1

u(x, 0) = 0, u(x, 1) = 0

u(0, y) = y − y3, u(2, y) = 0.

8. Solve the problem

uxx + uyy + 20u = 0, 0 < x < 1, 0 < y < 1,

u(0, y) = u(1, y) = 0

u(x, 0) = 0, u(x, 1) = x2 − x.
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9. [4, 4.4.1] Solve the equation

uxx + uyy = 0

inside the square 0 ≤ x, y ≤ l, subject to the boundary conditions:

u(x, 0) = u(0, y) = u(l, y) = 0, u(x, l) = x(l − x).

10. Expand the function cos(x) in a sine series on the interval (0, π/2). Use the result to compute

∑
n≥1

n2

(4n2 − 1)2
.

11. [4, 4.2.2] Solve:

ut = kuxx, u(x, 0) = f(x),

u(0, t) = C 6= 0, ux(l, t) = 0.

12. [4, 4.3.1] Show that the function

bn(t) :=
`

nπc

t∫
0

sin
nπc(t− s)

`
βn(s)ds

solves the differential equation:

b′′n(t) +
n2π2c2

`2
bn(t) = βn(t),

as well as the initial conditions bn(0) = b′n(0) = 0.

13. Show that if there is a complex-valued solution to (5.5.1), then its real and imaginary parts are also
solutions.

14. Show that in fact the λ in (5.5.1) is real valued and non-negative.

15. [4, 4.2.7] We have a rod of length `, in which a chemical reaction is occurring that produces heat over
time, but the amount of heat is decreasing over time, so the equation the temperature function u(x, t)
satisfies is

ut = kuxx +Re−ct.

Assume that it is insulated at both ends and along its length, and initially it is at temperature zero,
so the boundary and initial conditions are

u(x, 0) = ux(0, t) = ux(`, t) = 0.

Determine u(x, t) for t > 0.

16. [4, 4.3.2] One end of an elastic bar of length ` is held at x = 0, and the other end is stretched from
its natural position to (1 + b)`. So, an arbitrary point x in the bar is moved to (1 + b)x, and its
displacement from equilibrium is bx. At time t = 0 the ends of the bar are released; thus u(x, 0) = bx,
and ut(x, 0) = 0. Here the boundary conditions are that u(0, t) = ux(`, t) = 0, corresponding to the
left endpoint being fixed, and the right endpoint being free. This could also represent a column of air
that is closed at one end and open at the other, like in a musical instrument, like a clarinet. Find the
displacement u(x, t) at times t > 0.
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17. [4, 4.3.3] A horizontally stretched string is so heavy that gravity effects the wave equation, so that it
becomes

utt = c2uxx − g,

where g is the acceleration due to gravity. Assume the ends of the string are fixed. Find a steady state
solution. Call it φ(x). Suppose initially that u(x, 0) = ut(x, 0) = 0. Find the solution u, and show
that it can be expressed as

u(x, t) = φ(x)− 1

2
[Φ(x+ ct) + Φ(x− ct)] ,

where Φ is the odd 2` periodic extension of φ.

18. [4, 4.3.6] In real-life vibrating strings, the vibrations damp out because the strings are not perfectly
elastic. This can be modeled by the modified wave equation

utt = c2uxx − 2kut,

where the term −2kut represents the frictional forces causing the dampening. Find the solution for
general initial data subject to the boundary condition u(0, t) = u(`, t) = 0, in which the ends are fixed.
Something interesting happens when the value of k > 0 is either k < πc/` compared to k ≥ πc/`...

19. [4, 4.3.8] The total energy of a vibrating string at time t is up to a constant factor given by

E(t) =

`∫
0

[ut(x, t)
2 + c2ux(x, t)2]dx.

The first term is kinetic energy, and the second term is the potential energy, and here we assume u
is real-valued. If the string has fixed ends, derive a series expression for E dependent on the Fourier
expansion of the initial data. Use this to demonstrate conservation of energy; E(t) is independent of t.

20. [4, 4.4.3] Here we consider the Neumann problem in a square. This could arise as part of solving
the heat equation in a square that has three sides which are insulated, and one side from which it is
receiving or losing heat. We therefore wish to solve:

uxx + uyy = 0, 0 < x, y < `, ux(0, y) = ux(`, y) = uy(0, y), uy(x, `) = f(x).

Show that a solution exists only if
∫ `

0
f(x)dx = 0, and that in this case the solution contains an

arbitrary constant. What could that mean, physically?

21. [4, 4.4.5] Consider an annulus, that in polar coordinates is the set {(r, θ) : r0 ≤ r ≤ 1} for some
0 < r0 < 1. Assume that the inner side is insulated, and the outer side is held at temperature
u(1, θ) = f(θ). Find the steady-state temperature. What is the solution if f(θ) = 1 + 2 sin θ?

22. [4, 4.4.7] Solve the Dirichlet problem in S = {(r, θ) : 0 ≤ r0 ≤ r ≤ 1, 0 ≤ θ ≤ β} with u(r0, θ) =
u(1, θ) = 0, u(r, 0) = g(r), u(r, β) = h(r). By the Dirichlet problem, here we wish that uxx + uyy = 0
inside S. (It is probably best to re-write the equation using polar coordinates!)
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Chapter 6

Sturm-Liouville problems: need to
solve a PDE? An SLP might be the
key!

The process of separating variables to solve partial differential equations resulted in solving the problem:

X ′′(x) = λX(x), subject to some boundary conditions.

This is an example of a general type of problem that is called a regular Sturm-Liouville problem. For example,
if we consider the interval [−π, π], the functions which satisfy

X ′′(x) = λX(x), X(−π) = X(π)

are
X(x) = Xn(x) = einx, n ∈ Z

or equivalently
{1, sin(nx), cos(nx)}n≥1

with the corresponding
λn = n2.

If we introduce the differential operator

∆ :=
d2

dx2
,

then the equation we solved is
∆X − λX = 0,

or equivalently letting
µ := −λ, ∆X + µX = 0.

This is an example of a Sturm-Liouville problem. A Sturm-Liouville problem is an eigenvalue problem
for a differential operator. The goal is to find all eigenvalues, µ, such that there exists a corresponding
eigenfunction, X, that satisfies the equation. This is like an infinite dimensional version of finding the
eigenvalues of a matrix. Instead of a matrix, we have a differential operator. Instead of a finite dimensional
vector space, we have an infinite dimensional vector space whose elements are functions. Here we take a
brief foray into the general subject of Sturm-Liouville problems, exploring their theory, and learning how to
solve them. SLPs often arise as a step in solving a partial differential equation using separation of variables.
Consequently, we can imagine that an SLP allows us to slip and slide to the solution, with the analogy
further inspired by the fact that pronouncing SLP as though it were a word sounds rather like ‘slip.’ Let’s
follow the Panda in Figure 6.1 to the solution! Our motto for this chapter is:
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Figure 6.1: Since SLPs are often a step in solving a PDE using separation of variables, we can imagine that they
are a technique that allows us to SLP, pronounced like slip without the ‘i’ to the solution. Need to solve a PDE? An
SLP might be the key! Slp, slide, and glide, like this ice skating panda bear, and the solution will have no place to
hide. Image license and source: Creative Commons Zero 1.0 Public Domain License openclipart.org.

Slp, slide, and glide; the solution has no place to hide!

6.1 Regular Sturm-Liouville Problems

Let L be a linear, second order ordinary differential operator. So, we can write

L(f) = r(x)f ′′(x) + q(x)f ′(x) + p(x)f(x).

Above, r, q, and p are specified real valued functions. As a simple example, take r(x) = 1, and q(x) = p(x) =
0. Then we have

L(f) = f ′′(x).

We are working with functions defined on an interval [a, b] which is a finite interval. So, the Hilbert space
in which everything is happening is L2 on that interval. Like with matrices, we can think about the adjoint
of the operator L. The adjoint by definition satisfies

〈Lf, g〉 = 〈f, L∗g〉,

where we are using L∗ to denote the adjoint operator. Whatever it is. On the left side, we know what
everything is, so we write it out by definition of the scalar product

〈Lf, g〉 =

b∫
a

L(f)g(x)dx =

b∫
a

(r(x)f ′′(x) + q(x)f ′(x) + p(x)f(x)) g(x)dx.
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Integrating by parts, we get

= (rḡ)f ′|ba −
b∫
a

(rḡ)′f ′ + (qg)f |ba −
b∫
a

(qḡ)′f +

b∫
a

pfḡ

= (rḡ)f ′ + (qḡ)f |ba −
b∫
a

[(rḡ)′f ′ + (qḡ)′f − pfḡ] .

We integrate by parts once more on the (rḡ)′f ′ term to get

= (rḡ)f ′ − (rḡ)′f + (qḡ)f)|ba +

b∫
a

(rḡ)′′f − (qḡ)′f + fpḡ.

So, if the boundary conditions are chosen to make the stuff evaluated from a to b (these are called the
boundary terms in integration by parts) vanish, then we could define

L∗g = (rg)′′ − (qg)′ + pg,

since then

〈Lf, g〉 =

b∫
a

(rḡ)′′f − (qḡ)′f + fpḡ = 〈f, L∗g〉.

Here we use that r, q and p are real valued functions, so r̄ = r, q̄ = q, and p̄ = p. For the spectral theorem
to work, we will want to have

L = L∗.

When this holds, we say that L is formally self-adjoint. So, we need

Lf = L∗f ⇐⇒ rf ′′ + qf ′ + pf = (rf)′′ − (qf)′ + pf.

We write the things out:

rf ′′ + qf ′ + pf = (rf ′ + r′f)′ − qf ′ − q′f + pf ⇐⇒ rf ′′ + qf ′ = rf ′′ + 2r′f ′ + r′′f − qf ′ − q′f

⇐⇒ qf ′ = 2r′f ′ + r′′f − qf ′ − q′f ⇐⇒ (2q − 2r′)f ′ + (r′′ − q′)f = 0.

To ensure this holds for all f , we set the coefficient functions equal to zero:

2q − 2r′ = 0 =⇒ q = r′, q′ = r′′.

Well, that just means that q = r′. So, we need L to be of the form

Lf = rf ′′ + r′f ′ + pf = (rf ′)′ + pf.

The boundary terms should also vanish, so we want:

(rḡ)f ′ − (rḡ)′f + (qḡ)f)|ba = (rḡ)f ′ − (rḡ)′f + (r′ḡ)f |ba = 0,

⇐⇒ rḡf ′ − r′ḡf − rḡ′f + r′ḡf |ba = 0 ⇐⇒ rḡf ′ − rḡ′f |ba = 0

⇐⇒ r(ḡf ′ − ḡ′f)|ba = 0.

So, we would like to guarantee that r, f , and g satisfy

r(ḡf ′ − ḡ′f)|ba = 0.
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Writing this out we get:

r(b) (ḡ(b)f ′(b)− ḡ′(b)f(b))− r(a) (ḡ(a)f ′(a)− ḡ′(a)f(a)) = 0 ⇐⇒

r(b) (ḡ(b)f ′(b)− ḡ′(b)f(b)) = r(a) (ḡ(a)f ′(a)− ḡ′(a)f(a)) .

This is how we get to the definition of a regular SLP on an interval [a, b]. It is specified by

1. a formally self-adjoint operator
L(f) = (rf ′)′ + pf,

where r and p are real valued, r, r′, and p are continuous, and r > 0 on [a, b].

2. self-adjoint boundary conditions:

Bi(f) = αif(a) + α′if
′(a) + βif(b) + β′if

′(b) = 0, i = 1, 2.

The self adjoint condition further requires that the coefficients αi, α
′
i, βi, β

′
i are such that for all f and

g which satisfy these conditions

r(ḡf ′ − ḡ′f)|ba = 0.

3. a positive, continuous function w on [a, b].

The SLP is to find all solutions to the BVP

L(f) + λwf = 0, Bi(f) = 0, i = 1, 2.

The eigenvalues are all numbers λ for which there exists a corresponding non-zero eigenfunction f so that
together they satisfy the above equation, and f satisfies the boundary condition.

The formulation of SLPs is somewhat tedious and probably seems rather strange, cumbersome, and
unintuitive. You may feel the same way towards these problems that I feel towards Swedish sidewalks in the
winter: frustrated and clumsy! It is not so easy to master that slp, slide, glide walking technique discussed
in Figure 6.2. Similarly, when faced with new and complicated appearing mathematics one may initially feel
frustrated and clumsy. This is a normal part of the learning process. Although we cannot prove the Adult
Spectral Theorem below, we can understand it, and we can compare it to the spectral theorem from linear
algebra for hermitian matrices. Let A be an n × n matrix with possibly complex entries. Then, A acts on
the Hilbert space Cn via matrix multiplication:

A : v ∈ Cn → Av ∈ Cn.

This is a linear operator. We can apply the spectral theorem to A if it satisfies

〈Av,w〉 = 〈v,Aw〉, ∀v, w ∈ Cn. (6.1.1)

If this is true, then the spectral theorem says that there is a orthonormal basis of Cn that consists of
eigenvectors of A, that is vectors so that

Avk = λkvk.

Then, with respect to these basis vectors the action of A is given by multiplication by a diagonal matrix, in
the sense that if we write

x ∈ Cn =

n∑
k=1

x̂kvk, x̂k = 〈x, vk〉,

then

Ax =

n∑
k=1

λkx̂kvk,
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Figure 6.2: In the Swedish winter, young people become particularly adept at walking over ice. There is a certain
technique that involves walking a bit and then sliding on the soles of one’s shoes. It looks really awesome; you can
see people using this technique to speed walk in the winter wearing ordinary sneakers. These folks are slping, sliding,
and gliding towards their destinations! Image license and source: Creative Commons Zero 1.0 Public Domain License
openclipart.org.

and the right side is equal to the product of x with the diagonal matrix that has the eigenvalues of A on the
diagonal! You know how matrix multiplication works in general right? Across and down, across and down,
lots and lots and lots of calculations. If the matrix is diagonal, however, then matrix multiplication becomes
just like multiplying numbers, way fewer calculations and way easier! This is one of the reasons the spectral
theorem is awesome. However, a crucial fact is that the matrix A must satisfy (6.1.1).

Here, we are working with infinite dimensional Hilbert spaces, like L2(a, b) for a bounded interval (a, b).

We also have linear operators that act on our Hilbert space, like d2

dx2 , or more generally, the L in the definition
of a regular SLP. There is a spectral theorem for these operators as well! The condition that replaces (6.1.1)
for L is precisely the rather lengthy and strange-seeming definition of self-adjoint boundary condition. This
is precisely what guarantees that we have an analogous equation satisfied by L, namely

〈Lf, g〉 = 〈f, Lg〉

because

〈LF, g〉 =

b∫
a

(L(f(x))g(x)dx.

If we compare this to

〈f, Lg〉 =

b∫
a

f(x)L(g(x)dx,

the necessary and sufficient condition for these to be equal for all f and g in our Hilbert space is precisely
the definition of a self-adjoint boundary condition. This is why we have that condition!
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Theorem 58 (Spectral Theorem for regular SLPs). For every regular Sturm-Liouville problem as above,
there is an orthonormal basis of L2

w consisting of eigenfunctions {φn}n∈N with eigenvalues {λn}n∈N. We
have

lim
n→∞

λn =∞.

Here, L2
w is the weighted Hilbert space consisting of (the almost everywhere-equivalence classes of measurable)

functions on the interval [a, b] which satisfy

b∫
a

|f(x)|2w(x)dx <∞,

and the scalar product is

〈f, g〉w =

b∫
a

f(x)g(x)w(x)dx.

We are not equipped to prove this fact, but roughly speaking, it is proven by deeper investigation of
Hilbert spaces, an area of math known as functional analysis. The proof is in many ways similar to the
proof of the spectral theorem for linear (matrix) operators on finite dimensional Hilbert spaces, like Cn. As
a corollary to this theorem however, we can prove the fact that we have been using thus far without proof.

Corollary 59. The functions {
einx

}
n∈Z

are an orthogonal basis for the Hilbert space L2(−π, π).

Proof: These functions satisfy a regular SLP. This SLP is to find all constants λ and functions f such
that

f ′′ + λf = 0,

and f is 2π periodic. The operator L is just the operator

L(f) = f ′′.

The function r = 1, p = 0, and the weight is just 1. The boundary conditions are thus:

f(−π)− f(π) = 0, f ′(−π)− f ′(π) = 0.

We can check that this is ‘self-adjoint’ by plugging it into the required condition. Assume that some totally
arbitrary f and g satisfy this condition, so that g(−π)− g(π) = 0 also. Then

(ḡf ′ − ḡ′f)|π−π = ḡ(π)f ′(π)− ḡ′(π)f(π)− ḡ(−π)f ′(−π) + ḡ′(−π)f(−π) = 0.

By our ODE theory, we can already say that all solutions (up to constant factors) to this problem are

fn(x) = einx, λn = n2.

Now, by the Spectral Theorem for regular SLPs, we know that these are an orthogonal basis (they can be
normalized if we so desire).
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6.2 Useful cute facts about SLPs

Although we cannot prove the Adult Spectral Theorem, we can and indeed shall prove the following useful
facts about SLPs.

Theorem 60 (The facts of SLPing and sliding). Let f and g be eigenfunctions for a regular SLP in an
interval [a, b] with weight function w(x) > 0. Let λ be the eigenvalue for f and µ the eigenvalue for g. Then:

1. λ ∈ R och µ ∈ R;

2. If λ 6= µ, then:
b∫
a

f(x)g(x)w(x)dx = 0.

Proof: By definition we have Lf + λwf = 0. Moreover, L is self-adjoint, which similar to matrices
guarantees that

〈Lf, f〉 = 〈f, Lf〉.

By being an eigenfunction,
Lf = −λwf.

So combining these facts:
〈Lf, f〉 = 〈−λwf, f〉 = −λ〈wf, f〉

= 〈f, Lf〉 = 〈f,−λwf〉 = −λ〈f, wf〉.

Since w is real valued,

〈wf, f〉 =

b∫
a

w(x)f(x)f(x)dx =

b∫
a

|f(x)|2w(x)dx,

〈f, wf〉 =

b∫
a

f(x)w(x)f(x)dx =

b∫
a

|f(x)|2w(x)dx.

Since w > 0 and f is an eigenfunction,

b∫
a

|f(x)|2w(x)dx > 0.

So, the equation

−λ〈wf, f〉 = −λ
b∫
a

|f(x)|2w(x)dx = −λ〈f, wf〉 = −λ
b∫
a

|f(x)|2w(x)dx

implies
λ = λ.

For the second part, we use basically the same argument based on self-adjointness:

〈Lf, g〉 = 〈f, Lg〉.

By assumption

〈Lf, g〉 = −λ〈wf, g〉 = −λ
b∫
a

w(x)f(x)g(x)dx.
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Similarly,

〈f, Lg〉 = 〈f,−µwg〉 = −µ〈f, wg〉 = −µ〈f, wg〉 = −µ
b∫
a

f(x)g(x)w(x)dx,

since µ ∈ R and w(x) is real. So we have

−λ
b∫
a

w(x)f(x)g(x)dx = −µ
b∫
a

f(x)g(x)w(x)dx.

If the integral is non-zero, then it forces λ = µ which is false. Thus the integral must be zero.

6.3 Do you need to solve a PDE? An SLP might be the key!

Consider the heat equation on a bounded interval subject to Newton’s law of cooling at the endpoints:

ut − uxx = 0, ux(0, t) = αu(0, t), ux(l, t) = −αu(l, t), u(x, 0) = f(x).

Above, we assume that

α > 0, f ∈ L2.

These boundary conditions are based on Newton’s law of cooling: the temperature gradient across the
ends is proportional to the temperature difference between the ends and the surrounding medium. It is a
homogeneous PDE, so we have good chances of being able to solve it using separation of variables. Thus,
we write

u(x, t) = X(x)T (t) =⇒ T ′(t)X(x)−X ′′(x)T (t) = 0 =⇒ T ′

T
=
X ′′

X
.

This means both sides are equal to a constant. Call it λ. We start with the x side, because we have more
information about that due to the BCs. Are they self-adjoint BCs? Let’s check! In the definition of SLP,
we are looking for X to satisfy

X ′′

X
= λ ⇐⇒ X ′′ = λX ⇐⇒ X ′′ − λX = 0.

OBS! The relationship between the constant we have named λ from the PDE has the opposite sign as the
corresponding term in an SLP. So, the SLP would look like

X ′′ + ΛX = 0 Λ = −λ.

The r and w are both 1 in the definition of SLP, and the p is 0. The a = 0 and b = l. So, we need to
check that if f and g satisfy

f ′(0) = αf(0), g′(l) = −αg(l)

then

(ḡf ′ − ḡ′f)|l0 = 0.

We plug it in

ḡ(l)f ′(l)− ḡ′(l)f(l)− ḡ(0)f ′(0) + ḡ′(0)f(0)

= −ḡ(l)αf(l) + ¯αg(l)f(l)− ḡ(0)αf(0) + ¯αg(0)f(0) = 0.
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Yes, the BC is a self-adjoint BC. So, the SLP theorem says there exists an L2 OB of eigenfunctions. What
are they? We check the cases.

X ′′ = λX.

What if λ = 0? Then
X(x) = ax+ b.

To get

X ′(0) = αX(0) =⇒ a = αb =⇒ b =
a

α
.

Next,

X ′(l) = −αX(l) =⇒ a = −α
(
al +

a

α

)
= −a(αl + 1).

Presumably a 6= 0 because if a = 0 the whole solution is just 0. So, we can divide by it and we get

=⇒ 1 = − (αl + 1) =⇒ αl = −2.

Since l > 0 and α > 0, this is impossible. So, no non-zero solutions for λ = 0.
Next we try λ > 0. Then the solution looks like

X(x) = ae
√
λx + be−

√
λx

or equivalently, we can use sinh and cosh, to write

X(x) = a cosh(
√
λx) + b sinh(

√
λx).

We try out the BCs. They require

X ′(0) = αX(0) ⇐⇒ a
√
λ sinh(0) + b

√
λ cosh(0) = α (a cosh(0) + b sinh(0))

⇐⇒ b
√
λ = αa =⇒ b =

αa√
λ
.

We check out the other BC:

X ′(l) = −αX(l) ⇐⇒ a
√
λ sinh(

√
λl) + αa cosh(

√
λl) = −α

(
a cosh(

√
λl) +

αa√
λ

sinh(
√
λl)

)
.

⇐⇒ a
√
λ sinh(

√
λl) +

α2a√
λ

sinh(
√
λl) = −2αa cosh(

√
λl)

If a = 0 the whole solution is zero, so we presume that is not the case and divide by a. Then this requires

sinh(
√
λl)

cosh(
√
λl)

=
−2α√

λ+ α2/
√
λ
.

The left side is positive, but the right side is negative.  
Thus, we finally try λ < 0. Then the solution looks like

X(x) = a cos(
√
|λ|x) + b sin(

√
|λ|x).

To get

X ′(0) = αX(0) =⇒ b
√
|λ| = αa =⇒ b =

αa√
|λ|
.

Next we need
X ′(l) = −αX(l)
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=⇒ −a
√
|λ| sin(

√
|λ|l) +

αa√
|λ|

√
|λ| cos(

√
|λ|l) = −α

(
a cos(

√
|λ|l) +

αa√
|λ|

sin(
√
|λ|l)

)
.

Presumably a 6= 0 because if that is the case then the whole solution is 0. So, we may divide by a, and we
need

2α cos
√
|λ| = sin(

√
|λ|l)

(√
|λ| − α2√

|λ|

)
.

This is equivalent to
2α√

|λ| − α2√
|λ|

= tan(
√
|λ|l)

⇐⇒
2α
√
|λ|

|λ| − α2
= tan(

√
|λ|l).

Well, that’s pretty weird, but according to the SLP theory, the sequence

{λn}n≥1 and {Xn(x)}n≥1, Xn(x) = an

(
cos(

√
|λn|x) +

α√
|λn|

sin(
√
|λn|x)

)
of eigenvalues and corresponding eigenfunctions is an orthogonal basis of L2. Here since we are solving a
PDE, it is most convenient to leave the coefficients simply as an and solve for them according to the initial
conditions of the PDE.

The partner functions

Tn(t) satisfy T ′n(t) = λnTn(t) =⇒ Tn(t) = eλnt.

Here it is good to note that the λn < 0 and tend to −∞ as n → ∞ which follows from the Adult Spectral
Theorem, because in the SLP terminology,

Λn = −λn →∞ =⇒ λn → −∞.

So, for heat, that is realistic. We build the solution using superposition because the PDE is linear and
homogeneous, so

u(x, t) =
∑
n≥1

Tn(t)Xn(x).

Since we wish this to be equal to the initial data at t = 0, we demand

u(x, 0) =
∑
n≥1

an

(
cos(

√
|λn|x) +

α√
|λn|

sin(
√
|λn|x)

)
= f(x).

By the SLP theory, the functions above form an OB, so we can expand our initial data function in terms of
this OB. To do this we compute

an =
〈f(x), cos(

√
|λn|x) + α√

|λn|
sin(

√
|λn|x)〉

|| cos(
√
|λn|x) + α√

|λn|
sin(

√
|λn|x)||2

,

where

〈f(x), cos(
√
|λn|x) +

α√
|λn|

sin(
√
|λn|x)〉 =

l∫
0

f(x)(cos(
√
|λn|x) +

α√
|λn|

sin(
√
|λn|x))dx,

|| cos(
√
|λn|x) +

α√
|λn|

sin(
√
|λn|x)||2 =

l∫
0

| cos(
√
|λn|x) +

α√
|λn|

sin(
√
|λn|x)|2dx.

Having completed this example, we are one level better at slping, sliding, and gliding to the solutions of our
problems!
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Figure 6.3: Skiing also involves a lot of slping, sliding, and gliding. We can imagine that as we practice solving
SLPs, we are mathematically becoming more and more adept at slping, sliding, and gliding to the solution! Image
license and source: Creative Commons Zero 1.0 Public Domain License openclipart.org.

6.4 SLP, slide, and glide; the solution has no place to hide!

SLPs may come from solving a PDE, but to avoid overcomplicating things, sometimes one needs to solve
an SLP by itself, not necessarily as part of the solution. Here we hone our slp, slide, and glide technique by
working out the following example:

(xf ′)′ + λx−1f = 0, f(1) = f(b) = 0, b > 1.

In this example the function r(x) = x, and the function p(x) = 0, whilst the weight function w(x) = x−1.
Let us consider three cases for λ.

Case λ = 0: If λ = 0, then the equation becomes

xf ′′ + f ′ = 0,

which we can re-arrange to
f ′′

f ′
= − 1

x
.

The left side is the derivative of log(f ′). So, integrating both sides (saving the constant for later):

log(f ′) = − log(x).

Exponentiating both sides we get

f ′ =
1

x
=⇒ f(x) = A log(x) +B,

for some constants A and B. The boundary conditions demand that

f(1) = 0 =⇒ B = 0.

The other boundary condition demands that

f(b) = 0 =⇒ A = 0, since b > 1 so log(b) > 0.
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We are left with the zero function. That is never an eigenfunction. So λ = 0 is not an eigenvalue for this
SLP.

Case λ > 0: If λ > 0, we observe that the equation we have is something called an Euler equation. (Or
we look up the ODE section of Beta and search for this type of ODE, and see that Beta tells us this is an
Euler equaiton). Consequently, we look for solutions of the form

f(x) = xν .

The differential equation we wish to solve is:

xf ′′ + f ′ + λx−1f = 0 =⇒ x2f ′′ + xf ′ + λf = 0,

so substituting f(x) = xν , this becomes

x2(ν)(ν − 1)xν−2 + xνxν−1 + λxν = 0.

This simplifies to:
xν
(
ν2 − ν + ν + λ

)
= 0 =⇒ ν2 = −λ.

Since λ > 0, this means
ν = ±i

√
λ.

So, a basis of solutions is xi
√
|λ| and x−i

√
λ. Note that

x±i
√
λ = e±i

√
λ log(x).

By Euler’s formula, an equivalent basis of solutions is

cos(
√
λ log(x)), sin(

√
λ log(x)).

Hence in this case our solution is of the form:

f(x) = A cos(
√
λ log(x)) +B sin(

√
λ log(x)).

The boundary conditions demand that

f(1) = 0 =⇒ A = 0.

The second boundary condition demands that

B sin(
√
λ log(b)) = 0.

Since we do not seek the zero function, we presume that B 6= 0 and thus require

sin(
√
λ log(b)) = 0 =⇒

√
λ log(b) = nπ, n ∈ N.

We therefore have countably many eigenfunctions and eigenvalues, which we may index by the natural
numbers, writing

λn =
n2π2

(log b)2
, fn(x) = sin

(
nπ log(x)

log(b)

)
.

Nice.
The last case to consider is case λ < 0: We proceed similarly as above and obtain that a basis of solutions

is
x±
√
|λ|.

Write our solution as
f(x) = Ax

√
|λ| +Bx−

√
|λ|.
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The boundary conditions demand that:

f(1) = 0 =⇒ A+B = 0 =⇒ B = −A.

The next boundary condition demands that:

f(b) = Ab
√
|λ| −Ab−

√
|λ| = 0 =⇒ A = 0 or b

√
|λ| = b−

√
|λ| =⇒ b2

√
|λ| = 1 =⇒

√
|λ| = 0 .

Thus the only way for the boundary conditions to be satisfied is if the eigenfunction is the zero function,
but this is not an eigenfunction! Hence no negative λ solutions.

The Adult Spectral Theorem tells us that these rather peculiar functions

{fn(x)}n≥1

are an orthogonal basis for L2
1/x(1, b). This means that for any g ∈ L2

1/x(1, b), we can expand it as a Fourier
series with respect to this basis. The coefficients will be

〈g, fn〉1/x
||fn||21/x

, 〈g, fn〉1/x =

b∫
1

g(x)fn(x)x−1dx, ||fn||21/x =

b∫
1

|fn(x)|2x−1dx.

If the function we wish to expand is specified, we could compute these integrals.

6.5 Practice makes perfect: slp, slide, and glide

Consider the problem
(x2f ′)′ + λf = 0, f(1) = f(b) = 0, b > 1.

Here we have r(x) = x2 and w(x) = 1. The equation is:

2xf ′ + x2f ′′ + λf = 0.

We shall consider the three cases for λ.
Case λ = 0: In this case the equation simplifies to

x2f ′′ + 2xf ′ = 0 =⇒ f ′′

f ′
= − 2

x
=⇒ (log(f ′))′ = − 2

x
=⇒ log(f ′) = −2 log x =⇒ f ′ = e−2 log x = x−2.

So, this gives us a solution of the form

f(x) = −A 1

x
+B.

Let us verify the boundary conditions. We require f(1) = 0 so this means

−A+B = 0 =⇒ B = A.

We also require f(b) = 0 so this means

−A1

b
+B = 0 =

−A
b

+A =⇒ A

b
= A =⇒ b = 1 or A = 0.

So since b > 1 the only solution here is the zero function which is not an eigenfunction.
Case λ > 0: We consider the fact that this is an Euler equation, so we look for solutions of the form

f(x) = xν . Then the equation looks like:

x2(ν)(ν − 1)xν−2 + 2x(ν)xν−1 + λxν = 0 ⇐⇒ xν
(
ν2 − ν + 2ν + λ

)
= 0
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Figure 6.4: I am not skilled at walking on ice and am very far from mastering the Swedish technique of combining
walking and sliding. My technique for managing ice is the penguin-strategy. Attempt to keep my center of gravity
directly over my feet, and take short little steps. When you start learning to slp, slide, and glide to the solution you
might start out with the penguin walk, and that’s okay! Practice makes perfect! Image license and source: Creative
Commons Zero 1.0 Public Domain License openclipart.org.

so we need ν to satisfy:

ν2 + ν + λ = 0.

This is a quadratic equation, so we solve it:

ν = −1

2
±
√

1

4
− λ.

So, actually the cases λ > 0 and λ < 0 really should split up into whether λ = 1
4 or is larger or smaller. If

λ = 1
4 , then we are only getting one solution this way, x−1/2. To get a second solution we multiply by log x.

Exercise 61. Plug the function x−1/2 log x into the SLP for the value λ = 1
4 . Verify that it satisfy the

equation.

Now, let’s see if such a function will satisfy the boundary conditions. We need

Ax−1/2 +Bx−1/2 log(x)
∣∣∣
x=1

= 0 =⇒ A = 0.

We also need

Bb−1/2 log(b) = 0, b > 1 =⇒ B = 0.

So we only get the zero solution in this case.
When λ < 1

4 , solutions are of the form

Axν+ +Bxν− , ν± = −1

2
±
√

1

4
− λ.

Exercise 62. Check the boundary conditions. Verify that they are satisfied if and only if A = B = 0.

Finally we consider λ > 1
4 . Then we have

ν± = −1

2
± i
√
λ− 1

4
=⇒ f(x) =

A√
x
xi
√
λ−1/4 +

B√
x
x−i
√
λ−1/4.
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Using Euler’s formula, this is equivalently expressed as

α√
x

cos(
√
λ− 1/4 log x) +

β√
x

sin(
√
λ− 1/4 log x).

Due to the boundary condition at x = 1 we must have α = 0. So to obtain the other boundary condition,
we need

sin(
√
λ− 1/4 log b) = 0 =⇒

√
λ− 1/4 log b = nπ, n ∈ N.

Hence

λ = λn =
1

4
+

n2π2

(log b)2
, fn(x) = x−1/2 sin

(
nπ log x

log b

)
.

Note that in general we are not bothering to normalize our eigenfunctions because it is rather tedious and
not fundamental to our learning experience in this subject.

6.6 Sturm-Liouville problems in mathematical physics

There is a tradition of referring to mathematical results, like the Cauchy-Schwarz inequality, that were ob-
tained either in a joint work or independently, by two mathematicians, separating their surnames with a
dash. Like Cauchy-Schwarz. Similarly, Sturm-Liouville problems are named after the two mathematicians,
Jacques Charles Franç ois Sturm and Joseph Liouville. In 1837, they published a joint article titled Anal-
yse d’un Mémoire sur le développement des fonctions en séries, dont les différents terms sont assujettis à
satisfaire à une même équation différentielle linéaire contenant un paramètre variable. The translation is
approximately Analysis of a memoire on the expansion of functions in series in which the different terms are
required to satisfy the same linear differential equation that contains one variable parameter. I don’t know
about you, but I love that title! It is so descriptive and basically summarizes the fundamental result of the
theory, the Adult Spectral Theorem. We should perhaps rename the theorem: Sturm & Liouville Spectral
Theorem. A small detail here, is that I think we should change the dash-between-names-tradition, because
in modern times, many people have surnames with a dash in them, like my co-author Susanne Menden-
Deuer, and my mathematical brother, Jesse Gell-Redman. I suggest that we use & instead. Like Sturm &
Liouville. A small observation is that unlike a typical math publication, in which the authors names are
listed alphabetically, here we have Sturm’s name first. The reason for this could be that he was working
independently on this theory throughout the 1830s before teaming up with Liouville, so we might consider
him as having contributed a bit more to the theory. For those interested in the history of the subject, check
out [2]!

Sturm & Liouville problems are ubiquitous in mathematical physics. Sturm & Liouville were working
on the problem of heat conduction through a metal bar and realized that the technique for solving this
particular problem could be generalized and used for solving a large class of PDEs. For example in the
equation (p(x)u′)′ + (q(x) − λr(x))u = 0, the unknown function u could be either a physical quantity or a
quantum mechanical wave function. Indeed, the one-dimensional time-independent Schrödinger equation is
a SLP! Another important example in physics is the two-body system equation, that reads

(Lu′)′ + Lu =
1

L
.

This system can be derived from Newtonian mechanics and describes the evolution of the system under
torque. Such a system can describe for example planetary movements and be useful if one is interested in
traveling through space. As a kid, I imagined that traveling in space is just like driving a car but you can
travel in three dimensions not just two, like in Figure 6.5. Later I realized that is totally wrong, because of
the influence of gravity due to massive things like planets, stars, and black holes. So it’s more like driving a
3D car surrounded by scary flaming and/or frozen giant magnets that are moving in mysterious patterns. If
there are only two giant objects nearby, then their trajectories in space could be understood by solving this
two-body problem, and therefore extremely useful for planning the path of your spaceship. Although SLPs
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Figure 6.5: Why is space travel so difficult? Isn’t it just like driving a car that can move in 3 dimensions instead of
2? Nope! It is a lot more complicated than that! To design and operate a vehicle suitable for space travel requires a
lot of mathematics! Many of the mathematical equations that need to be understood in order to avoid crashing your
space craft can be investigated with the help of... Sturm & Liouville problems! Image license and source: Creative
Commons Zero 1.0 Public Domain License openclipart.org.

have been studied since the 1830s, there is still quite a lot of research on them in modern times. For example,
[14] is a research article on the two-body system and its solutions via SLP methods that was published in
2020!

6.7 Exercises

1. (EO 23) Determine the eigenvalues and eigenfunctions of the SLP:

f ′′ + λf = 0, 0 < x < a,

f(0)− f ′(0) = 0, f(a) + 2f ′(a) = 0.

2. [4, 3.5.4] Find the eigenvalues and normalized eigenfunctions for the problem

f ′′ + λf = 0, f ′(0) = 0, f(`) = 0,

on [0, `].

3. (EO 24) Determine the eigenvalues and eigenfunctions of the SLP:

−e−4x d

dx

(
e4x du

dx

)
= λu, 0 < x < 1,

u(0) = 0, u′(1) = 0.

4. [4, 3.5.7] Find all solutions f on [0, 1] and all corresponding λ to the equation:

f ′′ + λf = 0, f(0) = 0, f ′(1) = −f(1).

5. [4, 4.2.9] Let k(x) be a smooth positive function on [0, `]. Let b > 0 be a constant. Solve the boundary
value problem

ut = (kux)x + f(x, t), u(0, t) = u(`, t) = u(x, 0) = 0,

in terms of the eigenvalues {λn} and eigenfunctions {φn} of the SLP:

(kf ′)′ + λf = 0, f(0) = f(`) = 0.
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6. [4, 3.5.1] Under what condition on the constants c and c′ are the boundary conditions f(b) = cf(a)
and f ′(b) = c′f ′(a) self adjoint for the operator L(f) = (rf ′)′ + pf on [a, b]?

7. [4, 3.5.2] Show that the SLP has no negative eigenvalues if α > 0 > β and exactly one negative
eigenvalue if β > α > 0 or 0 > β > α, for the SLP

f ′′ + λf = 0, f ′(0) = αf(0), f ′(`) = βf(`).

Verify that the boundary conditions are self-adjoint.

8. [4, 3.5.3] Find the eigenvalues and eigenfunctions of the problem

f ′′ + λf = 0, f(0) = 0, f ′(`) = 0.

Verify that the boundary conditions are self-adjoint.

9. [4, 3.5.5] Find the eigenvalues and eigenfunctions for the problem f ′′ + λf = 0, f ′(0) = αf(0), f ′(`) =
βf(`), assuming that α = 0.

10. [4, 3.5.6] Find the eigenvalues and eigenfunctions for the problem f ′′ + λf = 0, f ′(0) = αf(0), f ′(`) =
βf(`), assuming that β = 0.

11. [4, 3.5.8] Sturm & Liouville are not limited to second order problems. For example, consider L(f) :=
d4

dx2 f(x) on the interval [0, `]. Show that the eigenvalues for the equation L(f)−λf = 0, subject to any
self-adjoint boundary conditions, are all real, and that the eigenfunctions corresponding to different
eigenvalues are orthogonal in L2(0, `). Show that there is an orthogonal basis of eigenfunctions.

12. [4, 3.5.10] Find the eigenvalues and eigenfunctions for the problem

(xf ′)′ + λx−1f = 0, f(1) = f(b) = 0, (b > 1).

13. [4, 3.5.11] Find the eigenvalues and eigenfunctions for the problem

(x2f ′)′ + λf = 0, f(1) = f(b) = 0, (b > 1).

14. [4, 4.2.8] Solve

ut = kuxx, ux(0, t) = 0, ux(`, t) + bu(`, t) = 0, u(x, 0) = 100,

where b > 0 is a fixed constant. What is the physical interpretation?

15. [4, 4.2.10] Assume that the rod on which we are studying the conduction of heat is not insulated along
its length. This is described by the equation

ut = kuxx − hu,

for a positive constant h.

(a) Show that u satisfies this equation if and only if u(x, t) = e−htv(x, t) where v satisfies the standard
heat equation.

(b) Suppose that both ends are insulated, and that the initial temperature is f(x) = x. Solve for
u(x, t).

(c) Suppose instead that one end is held at temperature 0, and the other is held at temperature 100,
and that the initial temperature is zero. Solve for u(x, t).
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Chapter 7

Bessel functions are loads of fun; their
zeros describe a vibrating drum!

Why do drums sound the way they do? This is actually a question that even today we do not completely
understand. You’ll soon find out why...

7.1 Drums and Bessel funs

A heavy metal band would not be complete without drums; see Figure 7.1. How would you describe the
sound of a drum? To me, it is a somewhat cloudy sound, not as clear as the sound of a vibrating string.
When we solved the mathematical problem that describes a vibrating string, we found the space part of the
solutions

Xn(x) = sin(nπx/`),

for a string of length ` whose ends are held fixed. The resonant frequencies of the string are the numbers

n2π2

`2
.

These numbers are obtained by requiring Xn(0) = Xn(`) = 0. Consequently, these numbers are the squares
of the zeros of the sine function. When we solve the analogous problem to describe a vibrating drum, the
boundary of the drumhead is fixed to a rigid material. It doesn’t move. The interior of the drum vibrates
up and down, however. We will see that the resonant frequencies of the drum are squares of zeros of Bessel

Figure 7.1: How would a heavy metal band sound without drums? Can you imagine it? Drums are crucial for the
rhythm of the music, for ‘keeping the beat!’ One of my good friends is a drummer in a punk band, and you can check
out their music here on Spotify: https://open.spotify.com/artist/4bXqTVV44kO06WxWJBGoZT Warning for explicit
lyrics! Image license and source: Creative Commons Zero 1.0 Public Domain License openclipart.org.
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Figure 7.2: The graph of a sine or cosine function looks rather like a slithering snake, as shown here. We can imagine
that the sine and cosine got together one night and had baby snakes. Those baby snakes continued reproducing,
getting a bit weird due to inbreeding, but nonetheless still resembling the sine and cosine. We call all of these
descendants of sine and cosine the Bessel functions, or Bessel funs, for fun! After all, we shall see that the zeros
of Bessel funs describe the sounds of beating drums! Image license and source: Creative Commons Zero 1.0 Public
Domain License openclipart.org.

functions. Bessel functions bear many similarities to trigonometric functions. Like trigonometric functions,
they admit a series expansion, and this expansion looks somewhat similar to the series expansion of sine and
cosine,

Jν(x) =

∞∑
n=0

(−1)n

n!Γ(n+ ν + 1)

(x
2

)ν+2n

.

This is the definition of the Bessel function of order ν, written Jν . The Γ we have already met in Chapter
4, but just as a reminder

Γ(s) =

∞∫
0

ts−1e−tdt, s ∈ C with Re(s) > 0.

We will prove in the exercises of this chapter that

Γ(n+ 1) = n! =

n∏
k=1

k, ∀n ∈ N.

Consequently, the series expression for Jν(x) is similar to that of both sine and cosine, since

sin(x) =
∑
n≥0

(−1)nx2n+1

(2n+ 1)!
, cos(x) =

∑
n≥0

(−1)nx2n

(2n)!
.

The sum alternates sign, due to the changing powers of (−1), and the powers of x in the sum increase by 2,
and the denominator has factorials. So, one should think of Bessel functions as being like an infinite family
of trigonometric functions, because there are not just two of them, but uncountably many of them, because
the order ν can be any complex (or real) number! Perhaps we can think of it like this: sine and cosine are
two snakes, because their graphs look snake-like. They got together and had baby snakes, and those snakes
continued to multiply and unfortunately inbreed caused them to get kind of weird, a bit different from the
original sine and cosine. Some of the snakes live in the trees, others live in the ocean, and there is a whole
wealth of different snakes (Bessel functions) found all over the world, but they all are somewhat similar to
their ancestors, the sine and cosine. Let’s give them a nickname: rather than calling them Bessel functions,
let’s call them Bessel funs, and check out Figure 7.2.

7.1.1 The mathematics of a vibrating drum

We shall solve the initial value problem for a vibrating drum. We begin by mathematicizing the drumhead
as a circular membrane. Since it is a drumhead, the boundary is attached to the rest of the drum, so the
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boundary does not vibrate, it remains fixed. We think of the drumhead as being instantaneously still at the
moment when we hit it. Consequently, the height on the drum at a point z = (x, y) and time t satisfies:

utt − uxx − uyy = 0, x2 + y2 ≤ L2,


u(x, y, t) = 0 (x, y) on the boundary

ut(x, y, 0) = 0

u(x, y, 0) = f(x, y)

.

To solve this problem, we see that it is homogeneous, and it is also occurring in a bounded region of the
plane. So we see if we can use separation of variables. For this we first separate the time and space variables.
So our equation is

T ′′(t)S(x, y)− Sxx(x, y)T − Syy(x, y)T = 0.

We divide everything by TS, move things around, and get

T ′′

T
=
Sxx + Syy

S
.

Since each side depends on a different variable, we have the equation

Sxx + Syy
S

= λ =
T ′′

T
.

Which side to solve first? Remember our mantra of TIDGLAS: the initial data goes last. So we solve for
the space part of the solution first, not the time part. Consequently we seek a solution to:

Sxx + Syy = λS.

Expressing the boundary using x and y it is:

x2 + y2 = L2.

This is not something of the form “variable equals value.” It is more complicated. The reason is because
the natural coordinate system for a disk is not the square Cartesian coordinates. The natural coordinate
system is the polar coordinate system.

Exercise 63. Show that the differential operator

∂xx + ∂yy

in polar coordinates (r, θ) becomes
∂rr + r−1∂r + r−2∂θθ.

Hint: use the chain rule!

In terms of polar coordinates the boundary is at r = L. This is the type of expression we usually have
for a boundary. The function S should vanish at r = L. Moreover, we are on a disk. So, the function S at
θ and θ + 2kπ should be the same for all k ∈ Z. Let us separate variables, writing S = R(r)Θ(θ). Then our
equation becomes

R′′Θ + r−1R′Θ + r−2Θ′′R = λRΘ, R(L) = 0, Θ(θ + 2kπ) = Θ(θ).

Let’s get the different variables cordoned off to different sides of the equation. So, we first divide by RΘ:

R′′

R
+ r−1R

′

R
+ r−2 Θ′′

Θ
= λ.

Multiply everything by r2 to liberate the term with Θ from any r dependence:

r2R
′′

R
+ r

R′

R
+

Θ′′

Θ
= r2λ ⇐⇒ r2R

′′

R
+ r

R′

R
− r2λ = −Θ′′

Θ
.
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Each side depends on a different variable, so they are both constant. Since we have the lovely periodicity
condition for Θ, and its equation is more simple, let us look for its solution first. We have

−Θ′′

Θ
= constant = µ, Θ(θ + 2kπ) = Θ(θ).

So, we are looking for a 2π periodic function which has Θ′′ equal to a constant times Θ. The only functions
which have this are sines and cosines! Equivalently, we may use complex exponentials. So, we may choose
to use

{sin(nx), cos(nx)}n∈N0
, or {einx}n∈Z.

Either of these will do the job. The numbers

µ = µn = −n2.

So, now let us take the value of µn and use it to find the partner function Rn. It satisfies

r2R
′′
n

Rn
+ r

R′n
Rn
− r2λ = −Θ′′n

Θn
= −− n2 = n2.

Re-arranging the equation, we get

r2R′′n + rR′n − r2λRn − n2Rn = 0. (7.1.1)

This is quite close to Bessel’s equation.

Definition 64. The differential equation

x2u′′(x) + xu′(x) + (x2 − α2)u(x) = 0, α ∈ C

is Bessel’s equation. The differential equation

x2u′′(x) + xu′(x)− (x2 + α2)u(x) = 0,

is the modified Bessel equation.

So, let’s try to relate our equation (7.1.1). The main differences are: λ factor attached to r2 term and
different signs. Let us consider first the case in which λ < 0. Then −λ > 0. So, let us write

Rn(r) = Fn(x), x = r
√
|λ| =⇒ R′n(r) = F ′n(x)

√
|λ|.

So we also have
rR′n(r) =

x√
|λ|
R′n(r) =

x√
|λ|
F ′n(x)

√
|λ| = xF ′n(x).

Similarly we get
r2R′′n(r) = x2F ′′n (x).

Moreover, since λ < 0,
−r2λ = x2.

So for the function Fn the differential equation (7.1.1) is

x2F ′′n (x) + xF ′n(x) + x2Fn(x)− n2Fn(x).

This is
x2F ′′n (x) + xF ′n(x) + (x2 − n2)Fn(x) = 0.

This is Bessel’s equation! The solution in this case is given by the function

Fn(x) = Jn(x) =⇒ Rn(r) = Jn(r
√
|λ|).

What should
√
|λ| be? This comes from the boundary condition. We need

Rn(L) = 0 =⇒ Jn(L
√
|λ|) = 0 =⇒ L

√
|λ| is a number where Jn vanishes.
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Theorem 65. The Bessel function Jn has infinitely many zeros along the real axis. We may therefore write
{zn,m}m≥1 to indicate the mth positive zero of the Bessel function Jn.

Consequently, we require
L
√
|λ| = zn,m for some m ≥ 1.

This shows that (recalling λ < 0 in this case)

λ = λn,m = −
z2
n,m

L2
.

Exercise 66. Consider the case λ > 0. Do a similar change of variables to (7.1.1) to show that in this case
we obtain the modified Bessel equation:

x2F ′′n (x) + xF ′n(x)− (x2 + n2)Fn(x) = 0.

Check the literature to see that the solutions are the modified Bessel functions, In and Kn. Verify in the
literature that the functions Kn(x) → ∞ when x → 0. So, these do not yield physically viable solutions to
the wave equation because there is no reason for our drum to go off to infinity at the center point. Verify that
the functions In(x) do not have any positive real zeros, so there is no way to obtain the boundary condition
Rn(L) = 0. Hence, these too can be discarded.

So, with the exercise, we are able to conclude that only the case λ < 0 yields physically viable solutions.
Equipped with this knowledge, we may return to our equation for the time dependent function.

T ′′n,m
Tn,m

= λn,m = −
z2
n,m

L2
=⇒ Tn,m(t) = an,m cos(zn,mt/L) + bn,m sin(zn,mt/L).

The coefficients shall be determined by our initial conditions. Using superposition to create a super solution
we have

u(t, r, θ) =
∑

n≥0,m≥1

(an,m cos(zn,mt/L) + bn,m sin(zn,mt/L)) Jn(zm,nr/L)(cos(nθ) + sin(nθ)).

The time derivative should vanish when t = 0, which means that the coefficients

bn,m = 0 ∀n,m.

The other condition is

u(0, r, θ) =
∑

n≥0,m≥1

an,mJn(zm,nr/L)(cos(nθ) + sin(nθ)) = f(r, θ).

So, we would like to have a sort of Fourier expansion in terms of these Bessel functions and sines and cosines.
We will have a theorem which says that indeed this is true. Thus

an,m =
〈f, Jn(zm,nr/L)(cos(nθ) + sin(nθ))〉
||Jn(zm,nr/L)(cos(nθ) + sin(nθ))||2

.

Here since we are doing things on a disk and using polar coordinates, our scalar products are:

〈f, Jn(zm,nr/L)(cos(nθ) + sin(nθ))〉 =

L∫
0

2π∫
0

f(r, θ)Jn(zm,nr/L)(cos(nθ) + sin(nθ))rdrdθ,

and

||Jn(zm,nr/L)(cos(nθ) + sin(nθ))||2 =

L∫
0

2π∫
0

|Jn(zm,nr/L)(cos(nθ) + sin(nθ))|2rdrdθ.

We therefore have mathematically described the vibrating drum as in Figure 7.3.
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Figure 7.3: There is a rock song by Dire Straights, Money for Nothing, https://open.spotify.com/playlist/

37i9dQZF1E8zzE1OlcU3xt. Warning for explicit lyrics! Apparently some of the lyrics were from a conversation the
singer overheard while in an appliance store. The workers were commenting on musicians in music videos on MTV.
The song lyrics include ‘I shoulda learned to play the drums... Bangin’ on the bongoes like a chimpanzee. That ain’t
workin’ that’s the way you do it Get your money for nothin and your chicks for free.’ The song lyrics continue to
contrast being a musician with working at an appliance store, ‘We gotta install microwave ovens, custom kitchen
deliveries. We gotta move these refrigerators. We gotta move these colour TVs.’ It is a great song and has a cute
video. This picture looks rather like it’s a chimpanzee banging on the drum. Image license and source: Creative
Commons Zero 1.0 Public Domain License openclipart.org.
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7.2 A series solution to Bessel’s equation

Let us write Bessel’s equation in this way:

x2f ′′ + xf ′ + (x2 − ν2)f = 0.

Assume that f has a series expansion (we will later see that this assumption luckily works out - if it didn’t
- we’d just have to keep trying other methods). Then we write

f(x) =
∑
j≥0

ajx
j+b.

Stick it into the ODE:

x2
∑
j≥0

aj(j + b)(j + b− 1)xj+b−2 + x
∑
j≥0

aj(j + b)xj+b−1 + (x2 − ν2)
∑
j≥0

ajx
j+b = 0.

Pull the factors of x inside the sum:∑
j≥0

aj(j + b)(j + b− 1)xj+b +
∑
j≥0

aj(j + b)xj+b +
∑
j≥0

ajx
j+b+2 − ν2ajx

j+b = 0.

To make the sum vanish, it will certainly suffice to make all the individual terms in the sum vanish. So, we
investigate the powers of x and their coefficients. The lowest power is x0+b = xb. We collect together all the
terms that have a factor of xb, obtaining

a0

(
b(b− 1) + b− ν2

)
xb.

Since we need this to vanish for all x, we need

a0 = 0 or b2 − ν2 = 0 =⇒ b = ±ν.

The next power of x is xb+1. Collecting all the terms that have xb+1, we would like to guarantee that

a1

(
(1 + b)(1 + b− 1) + (1 + b)− ν2

)
xb+1 = 0.

Let’s simplify what’s in the parentheses, so we need

a1

(
(1 + b)2 − ν2

)
= 0.

So, here are our options:

1. Let b = ν, set a1 = 0, and be free to choose a0 OR

2. Let (1 + b) = ν, set a0 = 0, and be free to choose a1.

If we think about it, the second option is rather like doing the first one for ν − 1 instead of ν. So, the two
options are basically equivalent, but the first one is a bit more simple, so that is what we choose to do. We
set b = ν, a1 = 0, and we shall choose a0 6= 0 later.

What happens with the higher terms? Once j ≥ 2 the term with ajx
j+b+2 gets involved. Let’s group

the terms in the series in a nice way:∑
j≥0

xj+baj
(
(j + b)(j + b− 1) + (j + b)− ν2

)
+ ajx

j+b+2 = 0.

This is ∑
j≥0

xj+baj
(
(j + b)2 − ν2

)
+ ajx

j+b+2 = 0.
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We figured out how to make the terms with the powers xb and xb+1 vanish. For the higher powers, the
coefficient of

xj+b+2 is aj+2

(
(j + 2 + b)2 − ν2

)
+ aj .

Therefore, we need

aj+2

(
(j + 2 + b)2 − ν2

)
= −aj =⇒ aj+2 = − aj

(j + 2 + b)2 − ν2)
.

Recalling that we picked b = ν, this means

aj+2 = − aj
(j + 2 + ν)2 − ν2

,

so we are not dividing by zero which is a good thing. Equivalently, for j ≥ 2, we have

aj = − aj−2

(j + ν)2 − ν2
= − aj−2

j2 + 2νj
= − aj−2

j(j + 2ν)
.

We therefore see that since we picked a1 = 0, all of the odd terms are zero. On the other hand, for the
even terms, we can figure out what these are using induction. I claim that

a2k =
(−1)ka0

22kk!(1 + ν)(2 + ν) . . . (k + ν)
.

To begin we check the base case which has k = 1:

a2 = − a0

2(2 + 2ν)
= − a0

4(1 + ν)
=

(−1)1a0

22(1)1!(1 + ν)
.

So the formula is correct. We next assume that it holds for k and verify using what we computed above that
it works for k + 1. We have for j = 2k + 2,

a2k+2 = − a2k

(2k + 2)(2k + 2 + 2ν)
.

We insert the expression for a2k by the induction assumption that the formula holds for k:

a2k+2 = − (−1)ka0

(2k + 2)(2k + 2 + 2ν)22kk!(1 + ν)(2 + ν) . . . (k + ν)
.

We note that
(2k + 2)(2k + 2 + 2ν) = 4(k + 1)(k + 1 + ν) = 22(k + 1)(k + 1 + ν).

So

a2k+2 = − (−1)ka0

22(k+1)(k + 1)k!(1 + ν)(2 + ν) . . . (k + ν)(k + 1 + ν)
.

Finally we note that
(k + 1)k! = (k + 1)!.

So,

a2k+2 = − (−1)ka0

22(k+1)(k + 1)!(1 + ν)(2 + ν) . . . (k + ν)(k + 1 + ν)
.

This is the formula for k + 1, so it is indeed correct. Before we proceed, we recall the Γ function

Γ(s) :=

∞∫
0

ts−1e−tdt, s ∈ C, Re(s) > 1.
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Exercise 67. Use integration by parts to show that

sΓ(s) = Γ(s+ 1).

Next, show that Γ(1) = 1. Use induction to show that Γ(n+ 1) = n! for n ≥ 1.
Since Γ(1) = 1, this is the reason we define

0! := 1.

Moreover, viewing Γ as an extension of the factorial function to real numbers, we can compute silly expres-
sions like

π! = Γ(π + 1), e! = Γ(e+ 1), i! = Γ(i+ 1).

Use the so-called functional equation sΓ(s) = Γ(s + 1) to show that Γ extends to a meromorphic function
whose only poles occur at the points 0 and the negative integers.

So, motivated by the form of the coefficients, the tradition is to choose

a0 =
1

2νΓ(ν + 1)
.

Therefore coefficient

a2k =
(−1)k

22k+νk!(1 + ν)(2 + ν) . . . (k + ν)Γ(ν + 1)
=

(−1)k

22k+νk!Γ(k + ν + 1)
.

This is because
(ν + 1)Γ(ν + 1) = Γ(ν + 2).

Next
(ν + 2)Γ(ν + 2) = Γ(ν + 3).

We continue all the way to
(ν + k)Γ(ν + k) = Γ(ν + k + 1).

We have therefore arrived at the definition of the Bessel function of order ν,

Jν(x) :=
∑
k≥0

(−1)k
(
x
2

)2k+ν

k!Γ(k + ν + 1)
.

For the special case ν = n ∈ N, the Bessel function is defined for good reason via

J−n(x) = (−1)nJn(x).

The Weber Bessel function is defined for ν 6∈ N to be

Yν(x) =
cos(νπ)Jν(x)− J−ν(x)

sin(νπ)
.

The second linearly independent solution to Bessel’s equation is then defined for n ∈ N to be

Yn(x) := lim
ν→n

Yν(x),

and this is well defined. If you are curious about Bessel functions, there are books by Olver [18], Watson
[23], and Lebedev [11] to name a few. I am very fond of Watson’s book [23] and use it in my research. What
is most important about Yn is that it blows up when x → 0. That’s okay. Since Jn(x) → 0 as x → 0, for
n ≥ 1, this shows that Yn and Jn are certainly linearly independent! Hence they indeed form a basis of
solutions to the Bessel equation.
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Figure 7.4: The Bessel funs are the descendants of the sine and cosine snakes. They have evolved over the years so
that while they still resemble their ancestors, they can live in the sea, in trees, and even fly through the air! Image
license and source: Creative Commons Zero 1.0 Public Domain License openclipart.org.
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7.3 Properties of Bessel funs

The Bessel functions evolved from the original sine and cosine, so they bear resemblance in many ways but
also have their own distinct features. With our snake analogy, we could imagine that some of the Bessel funs
evolved to have wings as shown in Figure 7.4.

Recall the recurrence relationship we have between the original sine and cosine snakes:

sin′(x) = cos(x), cos′(x) = − sin(x).

The Bessel funs have inherited something similar to this trait, known as recurrence formulas.

Theorem 68 (Recurrence Formulas). For all x and ν

(x−νJν(x))′ = −x−νJν+1(x)

(xνJν(x))′ = xνJν−1(x)

xJ ′ν(x)− νJν(x) = −xJν+1(x)

xJ ′ν(x) + νJν(x) = xJν−1(x)

xJν−1(x) + xJν+1(x) = 2νJν(x)

Jν−1(x)− Jν+1(x) = 2J ′ν(x)

Proof: Can you guess what we do? That’s right - use the definition!!!! First,

x−νJν(x) =
∑
n≥0

(−1)n x2n

22n+ν

n!Γ(n+ ν + 1)
.

Take the derivative of the sum termwise. This is totally legitimate because this series converges locally
uniformly in C. So, we compute

∑
n≥1

(−1)n2nx
2n−1

22n+ν

n!Γ(n+ ν + 1)
=
∑
m≥0

(−1)m+12(m+ 1) x2m+1

22m+2+ν

(m+ 1)!Γ(m+ 2 + ν)
.

Above we re-indexed the sum by defining n = m+ 1. Next we do some simplifying around

= −
∑
m≥0

(−1)m x2m+1

22m+1+ν

m!Γ(m+ 2 + ν)
= −x−ν

∑
m≥0

(−1)mx2m+1+ν

22m+1+ν

m!Γ(m+ 2 + ν)
= −x−νJν+1(x).

Next we compute similarly the derivative of xνJν is

∑
n≥0

(−1)n(2n+ 2ν)x
2n+2ν−1

22n+ν

n!Γ(n+ ν + 1)
.

We factor out a 2 to get ∑
n≥0

(−1)n(n+ ν)x
2n+2ν−1

22n+ν−1

n!Γ(n+ ν + 1)
.

Note that

Γ(n+ ν + 1) = (n+ ν)Γ(n+ ν) =⇒ (n+ ν)

Γ(n+ ν + 1)
=

1

Γ(n+ ν)
.

So, above we have ∑
n≥0

(−1)n x
2n+2ν−1

22n+ν−1

n!Γ(n+ ν)
= xνJν−1(x).
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To do the third one it is basically expanding out the first one:

(x−νJν(x))′ = −νx−ν−1Jν + x−νJ ′ν = −x−νJν+1.

Multiply through by xν+1 to get
−νJν + xJ ′ν = −xJν+1.

We do similarly in the second formula:

νxν−1Jν + xνJ ′ν = xνJν−1.

Multiply by x−ν+1 to get
νJν + xJ ′ν = xJν−1.

Next, to get the fifth formula, subtract the third formula from the fourth. Finally, to get the sixth formula,
add the third formula to the fourth.

7.3.1 The generating function for the Bessel functions

Euler’s equation relates the original sine and cosine snakes to the exponential function,

eix = cos(x) + i sin(x), x ∈ R, i =
√
−1.

This is one way to obtain the series expansions for the sine and cosine, using the fact that

ez =
∑
n≥0

zn

n!
, ∀z ∈ C.

The Bessel funs have inherited a similar relationship to the exponential function, but of course since they
evolved for infinitely many generations from the original sine and cosine, the simple relationship between
the Bessel funs and the exponential function also evolved into something a bit more complicated. This
relationship between the exponential function and the Bessel funs is known as the generating function for
the Bessel funs. We call it that, because this expression is one of the first ways that the Bessel funs were

defined, namely, the nth coefficient function for the Laurent expansion of the function e
x
2 (z− 1

z ). Expanding
in terms of z, that is a series with zn for n ∈ Z, the coefficient of zn will be some function of x. We will
prove below that it is none other than the nth Bessel fun! So, one way to obtain the Bessel funs is to solve

the Bessel differential equation. An alternative way is to investigate the Laurent series of e
x
2 (z− 1

z ), and
determine the coefficients of zn.

Theorem 69 (Generating function for the Bessel funs). For all x and for all z 6= 0, the Bessel functions,
Jn satisfy

∞∑
n=−∞

Jn(x)zn = e
x
2 (z− 1

z ).

Proof: We begin by writing out the familiar Taylor series expansion for the exponential functions

exz/2 =
∑
j≥0

(
xz
2

)j
j!

,

and

e−x/(2z) =
∑
k≥0

(−x
2z

)k
k!

.
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These converge beautifully, absolutely and uniformly for z in compact subsets of C \ {0}. So, since we
presume that z 6= 0, we can multiply these series and fool around with them to try to make the Bessel
functions pop out... Thus, we write

exz/2e−x/(2z) =
∑
j≥0

(
xz
2

)j
j!

∑
k≥0

(−x
2z

)k
k!

=
∑
j,k≥0

(−1)k
(x

2

)j+k zj−k
j!k!

. (7.3.1)

Here is where the one and only clever idea enters into this proof, but it’s rather straightforward to come
up with it.

Idea!

We would like a sum with n = −∞ to∞. So we look around into the above expression on the right, hunting
for something which ranges from −∞ to ∞. The only part which does this is j − k, because each of j and
k range over 0 to ∞. Thus, we keep k as it is, and we let n = j − k. Then j + k = n + 2k, and j = n + k.
However, now, we have j! = (n+ k)!, but this is problematic if n+ k < 0. There were no negative factorials
in our original expression! So, to remedy this, we use the equivalent definition via the Gamma function,

j! = Γ(j + 1), k! = Γ(k + 1).

Moreover, we observe that in (7.3.1), j! and k! are for j and k non-negative. We also observe that

1

Γ(m)
= 0, m ∈ Z, m ≤ 0.

Hence, we can write

exz/2e−x/(2z) =

∞∑
n=−∞

∞∑
k=0

(−1)k
(x

2

)n+2k zn

Γ(n+ k + 1)k!
.

This is because for all the terms with n + k + 1 ≤ 0, which would correspond to (n + k)! with n + k < 0,
those terms ought not to be there, but indeed, the 1

Γ(n+k+1) causes those terms to vanish!

Now, by definition,

Jn(x) =

∞∑
k=0

(−1)k
(
x
2

)n+2k

k!Γ(k + n+ 1)
.

Hence, we have indeed see that

exz/2e−x/(2z) =

∞∑
n=−∞

Jn(x)zn.

7.3.2 Integral representation of the Bessel functions

Let z = eiθ for θ ∈ R. Then the theorem on the generating function for the Bessel functions says∑
n∈Z

Jn(x)zn = e
xz
2 −

x
2z .

So, we use the fact that
1

eiθ
= e−iθ,
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together with this formula to see that ∑
n∈Z

Jn(x)einθ = e
x
2 (eiθ−e−iθ).

By Euler’s formula, ∑
n∈Z

Jn(x)einθ = eix sin θ = cos(x sin θ) + i sin(x sin θ).

Therefore, the left side is the Fourier expansion of the function on the right. OMG!!! Hence, the Bessel
functions are actually Fourier coefficients of this function! So,

Jn(x) =
1

2π

π∫
−π

eix sin θe−inθdθ =
1

2π

π∫
−π

cos(x sin θ − nθ) + i sin(x sin θ − nθ)dθ.

Note that
sin(x sin(−θ)− n(−θ)) = sin(−x sin θ − n(−θ)) = − sin(x sin θ − nθ).

So the sine part is odd and integrates to zero. We therefore have

Jn(x) =
1

2π

π∫
−π

cos(x sin θ − nθ)dθ.

This formula can be super useful. For example, we see that the Bessel functions have yet another property
similar to their ancestors, the sine and cosine. They satisfy |Jn(θ)| ≤ 1∀x.

7.4 Applications to solving PDEs in circular type regions

We shall now see how to generalize our Bessel function techniques to solve problems on pieces of circular
sectors. Consider a circular sector of radius ρ and opening angle α. In the eyes of polar coordinates, this is
a rectangle, [0, ρ]× [0, α]. That is, this set in R2 is in polar coordinates

{(r, θ) ∈ R2 : 0 ≤ r ≤ ρ, and 0 ≤ θ ≤ α}.

This is much the same as how we describe a rectangle using rectangular coordinates, (x, y).
The homogeneous heat equation is:

∂tu+ ∆u = 0, ∆ = −∂xx − ∂yy.

The homogeneous wave equation is:
utt + ∆u = 0.

If we have neat and tidy (self-adjoint) boundary conditions, we can use separation of variables. Writing our
function as T (t)S(x, y), we obtain the equations:

heat equation T ′S + T∆S = 0 ⇐⇒ ∆S

S
= −T

′

T
= constant.

wave equation T ′′S + T∆S = 0 ⇐⇒ ∆S

S
= −T

′′

T
= constant.

So we see that in both cases we need to solve an equation of the form

∆S = λS, λ is a constant.

After we solve this, we can then continue with solving both the heat equation and the wave equation.
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7.4.1 Dirichlet boundary condition on a circular sector

Let’s assume that we have the Dirichlet boundary condition on the boundary of the circular sector. So, we
are looking for a function S which is zero on the boundary.

The boundary condition in polar coordinates is:

r = ρ, θ = 0, θ = α.

So, it makes a lot more sense to use these coordinates. To proceed, we need to write the operator using polar
coordinates also! We have previously computed in an exercise that in polar coordinates, the operator is:

∆ = −∂rr − r−1∂r − r−2∂θθ.

Let us try to solve ∆S = λS in the circular sector using separation of variables. So, we have

R(r) and Θ(θ).

The first one only depends on the r coordinate, whereas the second one only depends on the θ coordinate.
Now, our PDE is:

−R′′(r)Θ(θ)− r−1R′(r)Θ(θ)− r−2Θ′′(θ)R(r) = λR(r)Θ(θ).

First, we multiply everything by r2, then we divide it all by ΘR to get

−r2R′′ − rR′

R
− Θ′′

Θ
= λ =⇒ −r2R′′ − rR′

R
− λr2 =

Θ′′

Θ
.

Since the two sides depend on different variables, they are both constant. It turns out that the Θ side is
much easier to deal with, so we look at solving it:

Θ′′

Θ
= µ, Θ(0) = Θ(α) = 0.

We have solved such an equation a few times before. There are no non-zero solutions for µ > 0. For µ < 0
solutions are, up to constant factors,

Θm(θ) = sin

(
mπθ

α

)
, µm = −m

2π2

α2
.

As a consequence, we get the equation for R,

−r2R′′ − rR′

R
− λr2 = µm.

We multiply this equation by R, obtaining

−r2R′′ − rR′ − λr2R = µmR.

This is equivalent to

r2R′′ + rR′ + (λr2 + µm)R = 0.

We make a small clever change of variables. Let

x =
√
λr, f(x) := R(r), r =

x√
λ
.

Then by the chain rule

R′(r) =
√
λf ′(x), R′′(r) = λf ′′(x).
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So, the equation becomes (
x2

λ

)
λf ′′(x) +

x√
λ

√
λf ′(x) + (x2 + µm)f(x) = 0.

This simplifies, recalling that µm = −m2π2/α2,

x2f ′′(x) + xf ′(x) + (x2 −m2π2/α2)f(x) = 0. (7.4.1)

This is the definition of Bessel’s equation of order mπ
α . Consequently, a solution to this equation is

Jmπ/α(x) = Jmπ/α(
√
λr).

To satisfy the boundary condition, we would like

Jmπ/α(
√
λρ) = 0.

So,
√
λρ should be a point at which this Bessel function vanishes. We have a useful fact about these zeros.

Theorem 70. The Bessel function Jmπ/α has infinitely many positive zeros which can be indexed as

{zm,k}k≥1,

where zm,k is the kth positive zero.

Consequently, we shall have

Jmπ/α(zm,kr/ρ), λm,k =
z2
m,k

ρ2
.

We therefore have the collection of functions

Sm,k(θ, r) = sin(mπθ/α)Jmπ/α

(
zm,kr

ρ

)
.

Now we may obtain the time part of the solution.
Let us look for a solution to the homogeneous heat equation which satisfies

u(r, θ, 0) = f(r, θ).

Then, the partner functions T shall be given by:

∆S

S
= −T

′

T
= λm,k =⇒ Tm,k(t) = Am,ke

−λm,kt.

By superposition our full solution is therefore

solution to heat equation: u(r, θ, t) =
∑
m,k

Am,ke
−λm,ktSm,k(r, θ).

Let us look for a solution to the homogeneous wave equation which satisfies

w(r, θ, 0) = g(r, θ), wt(r, θ, 0) = 0.

∆S

S
= −T

′′

T
= λm,k =⇒ Tm,k(t) = am,k cos(zm,kt/ρ) + bm,k sin(zm,kt/ρ).

By superposition our full solution is therefore

solution to wave eqn: w(r, θ, t) =
∑
m,k

(am,k cos(zm,kt/ρ) + bm,k sin(zm,kt/ρ))Sm,k(r, θ).

To determine the coefficients, we shall use the following theorem, that shows that the Bessel functions
are an orthogonal basis for L2 on a sector.
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Theorem 71. The set of functions

sin(mπθ/α)Jmπ/α

(
zm,kr

ρ

)
, k ≥ 0, m ≥ 1

are an orthogonal basis for L2 on the sector of radius ρ and opening angle α. Above, zm,k is the kth positive
zero of Jmπ/α.

Consequently, for the heat equation we demand

u(r, θ, 0) =
∑
m,k

Am,kSm,k(r, θ) = f(r, θ),

which shows us that the coefficients should be

Am,k =
〈f, Sm,k〉
||Sm,k||2

,

where

〈f, Sm,k〉 =

α∫
0

ρ∫
0

f(r, θ)Sm,k(r, θ)rdrdθ,

and

||Sm,k||2 =

α∫
0

ρ∫
0

|Sm,k(r, θ)|2rdrdθ.

For the wave equation we demand

w(r, θ, 0) =
∑
m,k

am,kSm,k(r, θ) = g(r, θ) =⇒ am,k =
〈g, Sm,k〉
||Sm,k||2

.

The second condition tells us what the other coefficients should be:

wt(r, θ, 0) =
∑
m,k

zm,k/ρbm,kSm,k(r, θ) = 0 =⇒ bm,k = 0∀m, k.

The following theorem guarantees that we can use the Bessel functions as an orthogonal basis when
working in polar coordinates. Note that in polar coordinates, dxdy becomes rdrdθ. So, integration with
respect to theta is just the usual integration, but now when we integrate with respect to the radial variable,
we integrate rdr, so we are using a weighted L2 space as discussed in the previous chapter. The first case of
the theorem below will correspond to the Dirichlet boundary condition, while the second case will correspond
to the Neumann boundary condition.

Theorem 72 (Bessel functions as an orthogonal basis). Assume that b > 0. Let w(x) = x.

1. Let {λk} be the positive zeros of Jν(x), and let φk(x) := Jν(λkx/b). Then {φk} is an orthogonal basis
for L2

w(0, b) and moreover

||φk||2w =
b2

2
Jν+1(λk)2.

2. Let
{zk}k≥1

be the non-negative zeros of zJ ′ν(z) = 0. Let

ψk(x) = Jν(zkx/b), ν > 0,
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and in case ν = 0, define further ψ0(x) = 1. (If ν 6= 0, then this case is omitted). Note that this
guarantees ψ′k(b) = zk

b J
′
ν(zk) = 1

b (zJ ′ν(z)) = 0. Then {ψk}k≥1 for ν 6= 0 is an orthogonal basis for
L2
w(0, b). For ν = 0, {ψk}k≥0 is an orthogonal basis for L2

w(0, b). Moreover

||ψk||2w =
b2(z2

k − ν2)

2z2
k

Jν(zk)2, k ≥ 1, ||ψ0||2w =
b2ν+2

2ν + 2
.

3. Let {µk}k≥1 be the positive solutions of µJ ′ν(µ) + cJν(µ) = 0 for a constant c > 0. Then for ϕk(x) =
Jν(µkx/b), {ϕk}k≥1 is an orthogonal basis for L2

w(0, b).

7.4.2 Bessel functions with Neumann boundary condition

Let us name the sector
Σ.

We wish to solve the heat equation for a sector with an insulated boundary, corresponding to the Neumann
boundary condition

ut + ∆u = 0, inside Σ,

u(r, θ, 0) = v(r, θ) inside Σ

the outward pointing normal derivative of u = 0 on the boundary of Σ.

We do the same procedure as before, separating variables, and following the same steps as for the Dirichlet
boundary condition. We arrive at the equation for the Θ part:

Θ′′ = µΘ, Θ′(0) = Θ′(α) = 0.

You can do the exercise to show that the only solutions are for µ < 0, and to satisfy the boundary conditions,
up to constant multiples

Θm(θ) = cos(mπ/α), µm = −m
2π2

α2
, m ≥ 0.

Then, we again arrive at the Bessel equation of order mπ/α for the function R. So, we get that

Rm(r) = Jνm(
√
λr), νm = mπ/α.

The boundary condition for Rm is that
R′m(ρ) = 0.

So, this means we need √
λJ ′νm(

√
λρ) = 0.

In other words,
√
λ needs to be a solution of the equation

xJ ′νm(ρx) = 0.

If zk is a solution to
xJ ′νm(x) = 0,

then
zkJ

′
νm(zk) = 0 =⇒ zk

ρ
J ′νm(zkρ/ρ) = 0.

So, to satisfy the boundary condition, we need

√
λ =

zk
ρ

=⇒
√
λJ ′νm(

√
λρ) = 0.
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Really, zk also depends on m, so that is why we write zm,k to mean the kth positive solution of the equation

xJ ′νm(x) = 0.

Our function
Rm,k(r) = Jνm(zm,kr/ρ).

This also shows that

λm,k =
z2
m,k

ρ2
.

Now, we recall the equation for the partner function, T ,

T ′m,k(t) = −λm,kTm,k(t).

So, up to constant factors,
Tm,k(t) = e−λm,kt.

To apply the theorem, we note that
νm = mπ/α > 0∀m ∈ N.

Therefore taking c = 0 in the theorem, c ≥ −νm for all m. The theorem then tells us that the set

{Rm,k(r)}k≥1 = {Jνm(zm,kr/ρ)}k≥1

is an orthogonal basis for L2(0, ρ) with respect to integrating against rdr. We also know that the Θm(θ)
functions are an orthogonal basis for L2(0, α) with respect to integrating against dθ. Consequently, the entire
collection

Sm,k(r, θ) = Θm(θ)Rm,k(r)

is an orthogonal basis for L2(Σ). This is because integrating on L2(Σ) in polar coordinates is integrating∫
Σ

v(r, θ)rdrdθ =

ρ∫
0

α∫
0

v(r, θ)rdrdθ.

So, the theorem says that we can expand the initial data in a Fourier series with respect to the orthogonal
basis functions Sm,k. We therefore write the solution

u(r, θ, t) =
∑
m,k

v̂m,kTm,k(t)Sm,k(r, θ),

where

v̂m,k =

∫
Σ
v(r, θ)Sm,k(r)rdrdθ

||Sm,k||2

=

∫ r
0

∫ θ
0

sin(mπθ/α)Jmπ/α(zm,kr/ρ)v(r, θ)rdrdθ∫ r
0

∫ θ
0

sin(mπθ/α)2Jmπ/α(zm,kr/ρ)2rdrdθ
.

7.5 Bessel funs in mathematical physics and music

According to my PhD supervisor, these books about special functions, including [18], [23], [11] to name a few.
were written by poorly paid mathematics professors seeking to earn extra money. Many governments allocate
a large amount of their budget to their military. Vehicles and weapons all obey the laws of physics, and
therefore optimizing their performance involves many mathematical physics calculations as well as solutions
of PDEs. Since Bessel functions arise in many of these solutions, governments will pay to have books written
that can be used in solving the PDEs needed to make their vehicles and weapons work best. So, doing all
these calculations was one way for poor mathematicians to make an extra buck.

Quoting [3],
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In Europe, there was an efforescence in the development of music in the seventeenth century. This
was complemented by empirical and experimental studies of the physical as well as the aesthetic
properties of musical instruments and their interdependence.

Inspired by music, mathematicians sought to solve the equations that describe the vibration of strings as on
stringed instruments, and columns of air, as in wind instruments, and the vibration of a circular membrane
like a drumhead. Isn’t it interesting to note that musical instruments, that were developed independently
without communication or collaboration, often share common features? It seems that stringed instruments
are found everywhere, so there must be some reason that human ears like the sounds they make. Similarly,
drums with round drumheads were developed on every continent that supports human life. For some reason
we like the sounds they make. This is beautiful and mysterious because there is no known analytical formula
for the zeros of the Bessel functions! There are numerous results like asymptotic formulas, recursive formulas,
and approximations for the zeros of the Bessel functions, but there is no simple formula for these zeros like
we have for the zeros of sin(x) and cos(x). The zeros of the sine are numbers of the form kπ for integers
k ∈ Z. The zeros of the cosine are numbers of the form (k + 1/2)π for integers k ∈ Z.

Figure 7.5: The desire to understand music lead to amazing scientific discoveries in mathematics and mathematical
physics. Contributors include: the Bernoulli family, Count Riccati, G. W. Leibniz (the general notion of the product
rule in differentiation is often called Leibniz’s rule), E. C. J. von Lommel, M. Mersenne (after whom Mersenne primes
are named), J. Saveur (who coined the term acoustics), B. Taylor, C. Huygens (after whom Huygens’s principle is
named), Euler, W. K. Clifford (after whom Clifford algebras are named), J. le rond d’Alembert (who is credited
with obtaining the wave equation in the form we know it today), J. L. L. L. Lagrange (for whom the optimization
technique of Lagrange multipliers in multivariable calculus is named as well as the notion of a Lagrangian in the
study of PDEs), P. S. Laplace (for whom the Laplace transform is named), M. A. Parseval (that name should sound
familiar!), Fourier, C. Maxwell (for whom Maxwell’s equations in physics are named), S. D. Poisson (for whom the
Poisson relation is named), Bessel and Hankel (both names are often used for generalized Bessel functions). Music
inspired a wealth of mathematics and mathematical physics discoveries. The arts are not only intrinsically valuable,
but also can lead to great advances in science!

Could it be that what is missing, in order to obtain a concise formula for the zeros of Bessel functions,
is a new special numerical value? Since there are infinitely many Bessel functions, Jν of order ν, we might
need infinitely many special numerical values, like a family of πν , where the Bessel function of order ν has a
closed expression in terms of the numerical value πν . This πν would probably be a transcendental number,
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similar to π and e. In other words, it would be neither rational, nor would it be obtained as a solution of a
polynomial equation with rational coefficients. Now, I’m probably not the first person to have this idea, so
please don’t set off and try to find the magical πν that is the key to expressing the zeros of Jν in a simple
way, because I am pretty sure people just as smart as we are (and possibly smarter) have already had this
idea and tried. Watson [23] wrote hundreds of pages on Bessel functions and did countless calculations with
them. If Watson couldn’t figure out πν , we don’t stand a chance. Nonetheless, it is an interesting concept to
dream about, the magical πν that is the key to describing the zeros of Jν as well as the mystical explanation
for why human ears from all different areas of the Earth enjoy the sounds of stringed instruments, wind
instruments, and drums with circular drumheads.

7.6 Exercises

1. (Eö 28) Solve: 
ut − uxx = t sin(x), 0 < x < 1, t > 0,

u(0, t) = u(1, t) = 0

u(x, 0) = sin(2πx).

2. [4, 5.5.2] A circular cylinder of radius ρ is at the constant temperature A. At time t = 0 it is tightly
wrapped in a sheath of the same material of thickness δ, thus forming a cylinder of radius ρ+ δ. The
sheath is initially at temperature B, and its outside surface is maintained at temperature B. If the
ends of the new, enlarged cylinder are insulated, find the temperature inside at subsequent times.

3. (EO 30) Solve the problem:
uxx + uyy = 0

in the region in polar coordinates 0 < θ < π
4 , 1 < r < 2, with the boundary conditions{

u = 0 for r = 1, ur = 0 for r = 2

u = 0 for θ = 0, u = r − 1 for θ = π
4 .

4. (EO 52) Solve 
uxx + 1 = 1

4utt 0 < x < 2, t > 0

u(0, t) = 0, u(x, 0) = x− x2,

u(2, t) = −2, ut(x, 0) = 0.

5. (EO 53) Solve

uxx + uyy = 0, r =
√
x2 + y2 < 1, u(r = 1, θ) = sin2 θ + cos θ.

6. [4, 5.5.4] A cylindrical uranium rod of radius 1 generates heat within itself at a constant rate a (think
radioactive material). Its ends are insulated and its circular surface is immersed in a cooling bath at
temperature zero. Thus

ut = urr + r−1ur + r−2uθθ + a, u(1, t) = 0.

First find the steady state temperature v(r) in the rod. Then find the temperature in the rod if its
initial temperature is zero.

7. [4, 5.2.4] Demonstrate the identity:

x∫
0

sJ0(s)ds = xJ1(x),

x∫
0

J1(s)ds = 1− J0(x).
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8. [4, 5.5.1] A cylinder of radius b is initially at the constant temperature A. Find the temperatures in
it at subsequent times if its ends are insulated and its circular surface obeys Newton’s law of cooling,
ur + cu = 0, (c > 0).

9. [4, 5.5.5] Solve the problem

urr + r−1ur + r−2uθθ + uzz = 0 in D = {(r, θ, z) : 0 ≤ r ≤ b, 0 ≤ z ≤ l}

u(r, θ, 0) = 0, u(r, θ, l) = g(r, θ), u(b, θ, z) = 0.

10. [4, 5.5.6] Find the steady-state temperature in the cylinder 0 ≤ r ≤ 1, 0 ≤ z ≤ 1 when the circular
surface is insulated, the bottom is kept at temperature 0, and the top is kept at temperature f(r).

11. [4, 5.2.11] Show that for all real x,

J0(x)2 + 2

∞∑
n=1

Jn(x)2 = 1.

(Hint: Parsevals equation). Deduce that |J0(x)| ≤ 1 and |Jn(x)| ≤ 2−1/2 for n > 0.

12. (The interlacing theorem) For ν ∈ R prove that between every two positive zeros of Jν there is a zero
of Jν+1. (Hint: Use Rolle’s theorem and the recurrence formulas).

13. [4, 5.3.6] Let f(x) = x1/2Jν(x). Show that f satisfies

f ′′ + f = (ν2 − 1/4)x−2f.

14. Show that f from the preceding problem satisfies

(2n+1)π∫
2πn

(1/4− ν2)x−2f(x) sin(x)dx = − (f((2n+ 1)π) + f(2nπ)) , n ∈ N.

15. For f as in the preceding two exercises, assume now that − 1
2 < ν < 1

2 . Show that f must vanish
somewhere in the interval [2nπ, (2n+ 1)π].

16. [4, 5.3.7] Use the preceding exercises to show that Jν has infinitely many positive zeros when − 1
2 <

ν < 1
2 . Show that J1/2(x) =

√
2/(πx) sin(x) and use this to conclude that J1/2 also has infinitely

many positive zeros. Use this together with the interlacing theorem to show that Jν has infinitely
many positive zeros for all real ν.

17. [4, 5.3.8] Let jν denote the smallest positive zero of Jν . Show that jν−1 < jν for all ν ≥ 1.

18. [4, 5.2.9] Show that for all x,

J0(x) + 2

∞∑
n=1

J2n(x) = 1,

∞∑
n=1

(2n− 1)J2n−1(x) =
x

2
.

19. [4, 5.2.10] Show that for each fixed x,

lim
n→∞

nkJn(x) = 0, ∀k.

20. [4, 5.2.12] Use the formula

J0(x) =
2

π

π/2∫
0

cos(x sin θ)dθ

to show that J0 satisfies Bessel’s equation of order zero.
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21. [4, 5.2.13] Show that for n ≥ 0, n ∈ Z

J2n(x) = (−1)n
2

π

π/2∫
0

cos(x cos θ) cos(2nθ)dθ,

J2n+1(x) = (−1)n
2

π

π/2∫
0

sin(x cos θ) cos((2n− 1)θ)dθ.

22. (Poisson’s integral for Jν). Show that if Re(ν) > − 1
2 ,

Jν(x) =
xν

2νπ1/2Γ(ν + 1/2)

1∫
−1

(1− t2)ν−1/2eixtdt.

(Hint: expand eixt in a Taylor series and integrate termwise. This is okay because the series converges
uniformly on compact subsets of C.) Do a search for the so-called ‘beta function’ and use it to deduce
that

Jν(x) =
xν

2νπ1/2Γ(ν + 1/2)

π/2∫
−π/2

eix sin θ cos2ν(θ)dθ.

23. [4, 5.5.3] A cylindrical core of radius 1 is removed from a block of material whose temperature increases
linearly from left to right. Thus if the cylinder occupies the region x2 + y2 ≤ 1, the initial temperature
is ax + b for some constants a and b. Find the subsequent temperatures in the core if its ends are
completely insulated.

24. Assume the same setup as in the preceding problem, but now assume that the ends are insulated,
and the circular surface is maintained at temperature zero. Find the subsequent temperatures in the
cylindrical core.

25. [4, 5.5.8] Analyze the vibrations of an elastic solid cylinder occupying the region 0 ≤ r ≤ 1, 0 ≤ z ≤ 1
in cylindrical coordinates if its top and bottom are held fixed, its circular surface is free, and the initial
velocity ut is zero. That is, find general solutions of

utt = c2(urr + r−1ur + r−2uθθ + uzz), u(r, θ, 0, t) = u(r, θ, 1, t) = ur(1, θ, z, t) = ut(r, θ, z, 0) = 0.
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Chapter 8

There’s not just one orthogonal base:
the best base is found with help from
space!

In the previous chapter, we discovered that Bessel functions are orthogonal bases of functions in circular
regions and pieces of circles. Their zeros can be used to describe the sound of a vibrating drum, because
the resonant frequencies of a vibrating drum with a circular drumhead are equal to the squares of the zeros
of the Bessel functions! When solving PDEs in circular type regions, the Bessel functions appear, and we
use them as an orthogonal base. This is an example of a more general phenomenon, and our motto for this
chapter.

There’s not just one orthogonal base: the best base is found with help from space!

The spatial region, and its geometry, will lead you to the best orthogonal base to use to solve your
PDE. If we think about the historical origins of Bessel functions, we discovered them because we wished to
understand the vibrations of a circular membrane. So far, we have been working with regions of space that
include:

1. bounded intervals (one dimensional),

2. a circle (one dimensional),

3. rectangles (two dimensional),

4. annuli (two dimensional),

5. a disk (two dimensional),

6. cylinders (three dimensional),

7. pieces of disks, like sectors (two dimensional).

We have seen how the process of solving PDEs like the heat and wave equation often leads to a set of
functions which comprise an orthogonal basis for L2 or a weighted L2 space. These basis functions generally
come from separation of variables. When we solve the “space” part of the PDE, we very often end up solving
a type of SLP. The easiest examples are:

f ′′ = λf, f(a) = 0 = f(b), for f defined on the interval, [a, b]

f ′′ = λf, f ′(a) = 0 = f ′(b), for f defined on the interval, [a, b]
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        {𝑒𝑖𝑛𝑥}, {1, cos(𝑛𝑥) , sin(𝑛𝑥)} 
        Solutions of associated SLP, often
        trig funs and hyperbolic trig funs. 
        Sometimes logs and 𝑥𝑎 appear. 
   
              

 
 

Bessel funs!  𝐽𝜈(√𝜆 𝑟) and 

products of these with other 
functions!   

 
 
 
   

Region of space Orthogonal base 

 

 

Figure 8.1: The region of space where the physical phenomenon is occurring, like the vibrating string on a guitar,
or the vibrating head of a drum, will lead us to a specific choice of orthogonal base for our Hilbert space. The Hilbert
space is L2 of the region where the problem is occurring, and so it is natural that the Hilbert space base depends on
space! Now, there are lots of bases on any Hilbert space, but if we work carefully paying attention to all the details
of our problem, this process will lead us to a particular orthogonal base that can be used to solve our problems, as
well as to understand the physical phenomena. Here we will learn about many more orthogonal bases!
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Figure 8.2: Here is a picture of Bora Bora, one of the French Polynesian islands. The particular functions that are
required to solve a partial differential equation always depend on the geometry of where we are solving the equation.
We have considered circles, intervals, cylinders, rectangles, and pieces of circles. Imagine what could happen if our
geometric context is something as complicated as a real island, like Bora Bora! Image license and source: Creative
Commons Zero 1.0 Public Domain License openclipart.org.

f ′′ = λf, f(a) = 0 = f ′(b), for f defined on the interval, [a, b]

f ′′ = λf, f ′(a) = 0 = f(b), for f defined on the interval, [a, b].

A more challenging example comes from solving the heat and wave equations on a circular sector. There,
when we did separation of variables, we got the nice type of SLP above for the angular variable (θ), and we
got a more complicated SLP for the radial variable. This turned into a Bessel equation. We used the initial
data to determine the coefficients in our series expansion, by writing the initial data as a Fourier-Bessel type
series. To solve problems in these regions of space, we used a suitable orthogonal base. In this way, the
region of space guides us to use the best orthogonal base to solve our problem as depicted in Figure 8.1.

In other geometric settings, this same process will lead to other special functions. We can compare this
to navigating different cities. Whereas cities in the US are generally built with a grid-like structure, other
cities around the world are built with a different structure, for example Paris, Beijing, and Moscow all have
a ring-like structure. Finding our way around those cities is different. Similarly, the orthogonal base that
guides our way in a Hilbert space is not always the same. So, now we may be solving PDEs in more exotic
geometric settings, like French Polynesia, as shown with a glimpse of Bora Bora in Figure 8.2. Hence, more
exotic functions will play the role of the SLP part of the problem. Three such types of functions are the
French polynomials:

1. The Legendre polynomials arise from using spherical coordinates to solve the wave and heat equations
on a three-dimensional sphere.

2. The Hermite polynomials arise from using parabolic coordinates to solve the wave and heat equations
in a parabolic shaped region.

3. The Laguerre polynomials arise from the quantum mechanics of the hydrogen atom.

These are all examples of a more general concept: orthogonal polynomials.

169

openclipart.org


8.1 General theory of orthogonal polynomials

Constructing an orthogonal basis that is comprised of polynomials is useful not only for solving PDEs but
also for obtaining best approximations. We begin this process by proving that we can express arbitrary
polynomials in terms of a sequence of polynomials of our choosing.

Proposition 73. Assume that {pn}n∈N is a sequence of polynomials such that pn is of degree n for each n.
Assume that p0 6= 0. Then for each k ∈ N, any polynomial of degree k is a linear combination of {pj}kj=0.

Proof: The proof is by induction. If q0 is a polynomial of degree 0, then we may simply write

q0 =
q0

p0
p0.

This is okay because p0 is degree zero, so it is a constant, and p0 6= 0, so the coefficient q0/p0 is also a
constant. Assume that we have verified the proposition for all 0, 1, . . . k. We wish to show that it holds for
k + 1. So, let q be a polynomial of degree k + 1. This means that

q(x) = axk+1 + l.o.t. l.o.t. means lower order terms

has
a 6= 0.

Moreover, since pk+1 is of degree k + 1 (not of a lower degree), it is of the form

pk+1 = bxk+1 + l.o.t., b 6= 0.

So, let us consider

q(x)− a

b
pk+1(x) = p(x) which is degree k.

By induction, p is a linear combination of p0, . . . , pk. Therefore

q(x) =
a

b
pk+1 +

k∑
j=0

cjpj ,

for some constants {cj}kj=0.

Next we prove that polynomials that are orthogonal with respect to L2 on a bounded interval are an
orthogonal base!

Proposition 74. Let {pk}∞k=0 be a set of polynomials such that each pk is of degree k, and p0 6= 0. Moreover,
assume that they are L2 orthogonal on a finite bounded interval [a, b]. Then these polynomials comprise an
orthogonal basis of L2 on the interval [a, b].

Proof: Assume that some f ∈ L2 on the interval is orthogonal to all of these polynomials. Therefore by
the preceding proposition, f is orthogonal to all polynomials. To see this, note that if p is a polynomial of
degree n, then there exist numbers c0, . . . , cn such that

p =

n∑
j=0

cjpj =⇒ 〈f, p〉 =

n∑
j=0

cj〈f, pj〉 = 0.

We shall use the fact that continuous functions are dense in L2. Therefore given ε > 0, there exists a
continuous function, g, such that

||f − g|| < ε

2(||f ||+ 1)
.

170



Next, we use the Stone-Weierstrass Theorem which says that all continuous functions on bounded intervals
can be approximated by polynomials. Therefore, there exists a polynomial p such that

||g − p|| < ε

2(||f ||+ 1)
.

Finally, we compute

||f ||2 = 〈f, f〉 = 〈f − g + g − p+ p, f〉 = 〈f − g, f〉+ 〈g − p, f〉+ 〈p, f〉

= 〈f − g, f〉+ 〈g − p, f〉.

By the Cauchy-Schwarz inequality,

||f ||2 ≤ ||f − g||||f ||+ ||g − p||||f || < ||f ||ε
2(||f ||+ 1)

+
||f ||ε

2(||f ||+ 1)
< ε.

Since ε > 0 is arbitrary, this shows that ||f || = 0. Hence by the three equivalent conditions to be an
orthogonal basis, we have that the polynomials are an orthogonal basis of L2 on the interval.

Figure 8.3: Paris has a much more complicated street layout compared to the standard grid-style of cities in the
US. Fortunately, if you speak French at least, people are pretty helpful in giving directions! This is an old photo with
my parents visiting Paris. I hope you all will be able to visit someday too, and that you’ll be able to navigate this
place with an orthogonal base!

One of the main applications we have for orthogonal polynomials is using them to obtain best approxi-
mations of functions in the Hilbert space L2 on a bounded interval.

8.1.1 Best approximations

To use orthogonal polynomials to obtain best approximations, we will need the following slight generalization
of the best approximation theorem.
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Theorem 75 (Best approximation generalization). Let {φn}n∈N be an orthonormal set in a Hilbert space,
H. If f ∈ H,

||f −
∑
n∈N
〈f, φn〉φn|| ≤ ||f −

∑
n∈N

cnφn||, ∀{cn}n∈N ∈ `2,

and = holds ⇐⇒ cn = 〈f, φn〉 holds ∀n ∈ N. More generally, let {φn}Nn=0 be an orthogonal, non-zero set in
a Hilbert space H. Then,

||f −
N∑
n=0

〈f, φn〉
||φn||2

φn|| ≤ ||f −
N∑
n=0

cnφn||, ∀{cn}Nn=0 ∈ CN+1.

Equality holds if and only if

cn =
〈f, φn〉
||φn||2

, n = 0, . . . , N.

Proof: The first part of the statement is just a repetition of the best approximation theorem. We will
use that to prove the second part. Define ψn = 0 for n > N . Next define

ψn =
φn
||φn||

, n = 0, . . . , N.

We repeat the argument in the proof of the best approximation theorem using {ψn}n∈N instead of φn.

||f −
∑
n∈N

cnψn||2 = ||f −
∑
n∈N

f̂nψn +
∑
n∈N

f̂nψn −
∑
n∈N

cnψn||2

= ||f −
∑
n∈N

f̂nψn||2 + ||
∑
n∈N

f̂nψn −
∑
n∈N

cnψn||2 + 2 Re〈f −
∑
n∈N

f̂nψn,
∑
n∈N

f̂nψn −
∑
n∈N

cnψn〉.

The scalar product

〈f −
∑
n∈N

f̂nψn,
∑
n∈N

f̂nψn −
∑
n∈N

cnψn〉 = 〈f,
∑
n∈N

(f̂n − cn)Ψn〉 −
∑
n∈N

f̂n〈ψn,
∑
m∈N

(f̂m − cm)Ψn〉.

By the orthogonality and definition of Ψn, and the definition of f̂n,

=
∑
n∈N

f̂n(f̂n − cn)−
∑
n∈N

f̂n
∑
m∈N

(f̂m − cm)〈ψn, ψm〉

=
∑
n∈N

f̂n(f̂n − cn)−
∑
n∈N

f̂n(f̂n − cn) = 0.

Therefore
||f −

∑
n∈N

cnψn||2 = ||f −
∑
n∈N

f̂nψn||2 + ||
∑
n∈N

f̂nψn −
∑
n∈N

cnψn||2

= ||f −
N∑
n=0

f̂nψn||2 +

N∑
n=0

|f̂n − cn|2 ≤ ||f −
N∑
n=0

f̂nψn||2,

with equality if and only if cn = f̂n for all n. Since

N∑
n=0

f̂nψn =

N∑
n=0

〈f, φn〉
||φn||2

φn,

this completes the proof.
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Figure 8.4: This is a photograph I took of the Forbidden City in Beijing. Somewhat similar to Paris, Beijing also
has a ring-like layout. The Forbidden City is forbidden because historically, no one could enter or leave without the
emperor’s permission. What orthogonal base is best for navigating the streets of Beijing?

Theorem 75 shows us that if we have a finite orthogonal set of non-zero vectors in a Hilbert space, then
for any element of that Hilbert space, the best approximation of f in terms of those vectors is given by

N∑
n=0

〈f, φn〉
||φn||2

φn.

Here is the setup of questions which can be solved using this theory. Either:

1. You are given functions defined on an interval which are L2 orthogonal on that interval (possibly with
respect to a weight function which is also specified). Either you recognize that they orthogonal because
you’ve seen them before (like sines, cosines, from problems you have solved previously) or you compute
that they are L2 orthogonal on the interval. Then, you are asked to find the numbers c0, c1, . . . cN so
that the L2 norm, or the weighted L2 norm of f −

∑N
k=0 ckφk is minimized, where the function f is

also specified.

2. You are asked to find the polyonomial of at most degree N such that the L2 norm (or weighted L2

norm) of f − p where p is a polynomial is minimized.

In the first case, you compute

ck =
〈f, φk〉
||φk||2

.
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In the second case you need to build up a set of orthogonal or orthonormal polynomials. Then, you let φk
be defined to be the polynomial of degree k you have built. Proceed the same as in the first case, and your
answer shall be

N∑
k=0

ckφk.

If you don’t like the thought of building up a set of orthogonal polynomials, if you are lucky, then it may
be possible to suitably modify some of the French polynomials to be orthogonal on the interval under
investigation, with respect to the (possibly weighted) L2 norm. So, we shall proceed to study the French
polynomials.

8.2 The Legendre polynomials and applications

The Legendre polynomials, are defined to be

Pn(x) =
1

2nn!

dn

dxn
(
(x2 − 1)n

)
.

Your first reaction might be something like why on earth are they defined in such a bizarre way? Admittedly,
when I first learned about these polynomials, that is what I thought. What did you expect, they are
French polynomials! Of course they are not defined in some simple way, mais non, they must be all fancy
and shrouded in mystery and intrigue. Actually though, the reason comes from the PDE in which they
arise as solving one part of the separation of variables for the heat and wave equations in three dimensions
using spherical coordinates. The best way to familiarize ourselves with these polynomials is to start doing
calculations with them:

(x2 − 1)n =

n∑
k=0

(
n

k

)
(−1)n−k(x2)k =

n∑
k=0

(
n

k

)
(−1)n−kx2k.

Therefore, if we differentiate n times, only the terms with k ≥ n/2 survive. Differentiating a term x2k once
we get 2kx2k−1. Differentiating n times gives

dn

dxn
(x2k) = x2k−n

n−1∏
j=0

(2k − j).

If we want to be really persnickety, we prove this by induction. For n = 1, we get that

(x2k)′ = 2kx2k−1.

Which is correct. If we assume the formula is true for n, then differentiating n+ 1 times using the formula
for n we get

(2k − n)x2k−(n+1)
n−1∏
j=0

(2k − j) = x2k−(n+1)
n∏
j=0

(2k − j).

See, it is correct. As a result,

Pn(x) =
1

2nn!

n∑
k≥n/2

(−1)n−k
(
n

k

)
x2k−n

n−1∏
j=0

(2k − j).

So, we see that this is indeed a polynomial of degree n. The Legendre polynomials are very useful because
we can obtain a set of orthogonal polynomials on any arbitrary bounded interval by modifying the Legendre
polynomials! As a consequence, we can use them to obtain the best approximation by polynomials of any
arbitrary function in L2.
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Theorem 76. The Legendre polynomials are orthogonal in L2(−1, 1), and

||Pn||2 =
2

2n+ 1
.

Proof: We first prove the orthogonality. Assume that n > m. Then, since they have this constant stuff
out front, we compute

2nn!2mm!〈Pn, Pm〉 =

1∫
−1

dn

dxn
(x2 − 1)n

dm

dxm
(x2 − 1)mdx.

Let us integrate by parts once:

=
dn−1

dxn−1
(x2 − 1)n

dm

dxm
(x2 − 1)m

∣∣∣∣1
−1

−
1∫
−1

dn−1

dxn−1
(x2 − 1)n

dm+1

dxm+1
(x2 − 1)m.

Consider the boundary term:

dn−1

dxn−1
(x2 − 1)n =

dn−1

dxn−1
(x− 1)n(x+ 1)n.

This vanishes at x = ±1, because the polynomial vanishes to order n whereas we only differentiate n − 1
times. So, we have shown that

2nn!2mm!〈Pn, Pm〉 = −
1∫
−1

dn−1

dxn−1
(x2 − 1)n

dm+1

dxm+1
(x2 − 1)m.

We repeat this n− 1 more times. We note that for all j < n,

dj

dxj
(x2 − 1)n vanishes at x = ±1.

For this reason, all of the boundary terms from integrating by parts vanish. So, we just get

(−1)n
1∫
−1

(x2 − 1)n
dm+n

dxm+n
(x2 − 1)mdx = (−1)n

1∫
−1

(x2 − 1)n
dn

dxn
dm

dxm
(x2 − 1)mdx

Remember that n > m. We computed that dm

dxm (x2−1)m is a polynomial of degree m. So, if we differentiate
it more than m times we get zero. So, we’re integrating zero! Hence it is zero.

For the second part, we need to compute:

(x2 − 1)n =

n∑
k=0

(
n

k

)
(−1)n−k(x2)k =

n∑
k=0

(
n

k

)
(−1)n−kx2k.

Therefore, if we differentiate n times, only the terms with k ≥ n/2 survive. Differentiating a term x2k once
we get 2kx2k−1. Differentiating n times gives

dn

dxn
(x2k) = x2k−n

n−1∏
j=0

(2k − j).

If we want to be really persnickety, we prove this by induction. For n = 1, we get that

(x2k)′ = 2kx2k−1.
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Which is correct. If we assume the formula is true for n, then differentiating n+ 1 times using the formula
for n we get

(2k − n)x2k−(n+1)
n−1∏
j=0

(2k − j) = x2k−(n+1)
n∏
j=0

(2k − j).

See, it is correct. As a result,

Pn(x) =
1

2nn!

n∑
k≥n/2

(−1)n−k
(
n

k

)
x2k−n

n−1∏
j=0

(2k − j).

So, we see that this is indeed a polynomial of degree n. With this formula, we can write

Pn(x) =
1

2nn!

n∑
k≥n/2

(−1)n−k
(
n

k

)
x2k−n

n−1∏
j=0

(2k − j).

Differentiating n times gives us just the term with the highest power of x, so we have

dn

dxn
Pn(x) =

1

2nn!
n!

n−1∏
j=0

(2n− j) =
(2n)!

2nn!
.

Consequently,

〈Pn, Pn〉 = (−1)n
1

2nn!

(2n)!

2nn!

1∫
−1

(x2 − 1)ndx = (−1)n
2(2n)!

22n(n!)2

1∫
0

(x2 − 1)ndx

= (−1)n
2(2n)!

22n(n!)2

1∫
0

n∑
k=0

(−1)n−k
(
n

k

)
x2kdx

= (−1)n
2(2n)!

22n(n!)2

n∑
k=0

(−1)n−k
x2k+1

2k + 1

(
n

k

)∣∣∣∣∣
1

0

= (−1)n
2(2n)!

22n(n!)2

n∑
k=0

(−1)n−k
(
n

k

)
1

2k + 1

=
2(2n)!

22n(n!)2

n∑
k=0

(−1)k
(
n

k

)
1

2k + 1
.

This looks super complicated. Apparently by some miracle of life

1∫
0

(1− x2)ndx =
Γ(n+ 1)Γ(1/2)

Γ(n+ 3/2)
.

Since

〈Pn, Pn〉 = (−1)n
2(2n)!

22n(n!)2

1∫
0

(x2 − 1)ndx =
2(2n)!

22n(n!)2

1∫
0

(1− x2)ndx,

we get
Γ(n+ 1)Γ(1/2)2(2n)!

22n(n!)2Γ(n+ 3/2)
.
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We use the properties of the Γ function together with the fact that Γ(1/2) =
√
π to obtain

√
π2(2n)!

22nn!(n+ 1/2)Γ(n+ 1/2)
.

Let us consider
2(n+ 1/2)Γ(n+ 1/2) = (2n+ 1)Γ(n+ 1/2).

Next consider
2(n− 1/2)Γ(n− 1/2) = (2n− 1)Γ(n− 1/2).

Proceeding this way, the denominator becomes

2nn!(2n+ 1)(2n− 1) . . . 1
√
π.

However, now looking at the first part

2nn! = 2n(2n− 2)(2n− 4) . . . 2.

So together we get
(2n+ 1)!

√
π.

Hence putting this in the denominator of the expression we had above, we have

√
π2(2n)!

(2n+ 1)!
√
π

=
2

2n+ 1
.

The results of this chapter then immediately imply

Corollary 77. The Legendre polynomials are an orthogonal basis for L2 on the interval [−1, 1].

We used the orthogonal basis {einx}n∈Z or equivalently {1, sin(nx), cos(nx)}n≥1 on the Hilbert space
L2(−π, π). By extending functions evenly or oddly from (0, π) to (−π, π) we proved that we could choose an
orthogonal base for (0, π) that was comprised only of cosines or sines, respectively. Similarly, we can obtain
an orthogonal basis for L2(0, 1) comprised only of even degree or odd degree Legendre polynomials.

Theorem 78. The even degree Legendre polynomials {P2n}n∈N are an orthogonal basis for L2(0, 1). The
odd degree Legendre polynomials {P2n+1}n∈N are an orthogonal basis for L2(0, 1).

Proof: Let f be defined on [0, 1]. We can extend f to [−1, 1] either evenly or oddly. First, assume we
have extended f evenly. Then, since f ∈ L2 on [0, 1],

1∫
−1

|fe(x)|2dx = 2

1∫
0

|f(x)|2dx <∞.

Therefore fe is in L2 on the interval [−1, 1]. We have proven that the Legendre polynomials are an orthogonal
basis. So, we can expand fe in a Legendre polynomial series, as∑

n≥0

f̂e(n)Pn,

where

f̂e(n) =
〈fe, Pn〉
||Pn||2.
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By definition,

〈fe, Pn〉 =

1∫
−1

fe(x)Pn(x)dx.

Since fe is even, the product fe(x)Pn(x) is an odd function whenever n is odd. Hence all of the odd coefficients
vanish. Moreover,

〈fe, P2n〉 = 2

1∫
0

f(x)P2n(x))dx.

We also have

||P2n||2 = 2

1∫
0

|P2n(x)|2dx.

Consequently

f =
∑
n∈N

(∫ 1

0
f(x)P2n(x)dx∫ 1

0
|P2n(x)|2dx

)
P2n.

We can also extend f oddly. This odd extension satisfies

1∫
−1

|fo(x)|2dx =

0∫
−1

|fo(x)|2dx+

1∫
0

|fo(x)|2dx = 2

1∫
0

|fo(x)|2dx <∞.

So, the odd extension is also in L2 on the interval [−1, 1]. We can expand fo in a Legendre polynomial series,
as ∑

n≥0

f̂o(n)Pn,

where

f̂o(n) =
〈fo, Pn〉
||Pn||2.

By definition,

〈fo, Pn〉 =

1∫
−1

fo(x)Pn(x)dx.

Since fo is odd, the product fo(x)Pn(x) is an odd function whenever n is even. Hence all of the even
coefficients vanish. Moreover,

〈fo, P2n+1〉 = 2

1∫
0

f(x)P2n+1(x))dx,

because the product of two odd functions is an even function. We also have

||P2n+1||2 =

0∫
−1

|P2n+1(x)|2dx+

1∫
0

|P2n+1(x)|2dx = 2

1∫
0

|P2n+1(x)|2dx.

Consequently

f =
∑
n∈N

(∫ 1

0
f(x)P2n+1(x)dx∫ 1

0
|P2n+1(x)|2dx

)
P2n+1.
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Applications of Legendre polynomials to best approximations on bounded integrals

Exercise 79. Find the polynomial q(x) of at most degree 10 which minimizes the following integral

π∫
−π

|q(x)− sin(x)|2dx.

To do this exercise, we need different polynomials... If Legendre polynomials are orthogonal on (−1, 1),
can we somehow use them to create orthogonal polynomials on (−π, π)? Let’s think about changing variables.
How about setting

t =
x

π
.

Then,
π∫
−π

Pn(x/π)Pm(x/π)dx =

1∫
−1

Pn(t)Pm(t)πdt =

{
0 n 6= m

2π
2n+1 n = m

.

Therefore the polynomials
Pn(x/π)

are orthogonal on x ∈ (−π, π), and their norms squared on that interval are

2π

2n+ 1
.

The best approximation is therefore the polynomial

q(x) =

10∑
n=0

anPn(x/π), an :=

∫ π
−π sin(x)Pn(x/π)dx

2π
2n+1

.

Exercise 80. Find the polynomial p(x) of degree at most 100 which minimizes the following integral

10∫
0

|ex
2

− p(x)|2dx.

Yikes! Well, let’s not panic just yet. The number 100 is even. Hence, we know that the even degree
Legendre polynomials are an orthogonal basis for L2(0, 1). So, we can use the even degree Legendre polyno-
mials if we can just deal with this interval not being (0, 1) but being (0, 10). To figure this out, let’s think
about changing variables... As before, think about changing variables,

t = x/10,

so that
10∫

0

P2n(x/10)P2m(x/10)dx =

1∫
0

P2n(t)P2m(t)10dt =

{
0 n 6= m

10
4n+1 n = m

The last calculation we obtained by recalling our calculation

1∫
−1

|Pn(x)|2dx = (−1)n
(2n)!

(2nn!)2

1∫
−1

(x2 − 1)ndx =
2

2n+ 1
=⇒

1∫
0

|P2n(x)|2dx =
1

4n+ 1
.

So, the functions P2n(x/10) are an orthogonal basis for L2(0, 10). Consequently the Best Approximation
Theorem says that the best approximation is given by the polynomial

p(x) =

50∑
n=0

cnP2n(x/10), cn =

∫ 10

0
ex

2

P2n(x/10)dx
10

4n+1

.

179



Exercise 81. Find the polynomial p(x) of degree at most 99 which minimizes the following integral

10∫
0

|ex
2

− p(x)|2dx.

Here, we can recycle our previous solution since 99 is odd, so we can use the odd degree Legendre
polynomials in this case to form an orthogonal basis for L2(0, 10). Our polynomial shall be

p(x) =

49∑
n=0

cnP2n+1(x/10), cn =

∫ 10

0
ex

2

P2n+1(x/10)dx
10

2(2n+1)+1

.

Legendre polynomials for best approximations on arbitrary intervals

Let’s consider a best approximation problem on an interval (a, b). First, we find its midpoint,

m =
a+ b

2
.

Next, we find its length

` =
b− a

2
.

Then the interval
(a, b) = (m− `,m+ `).

Since we know about the Legendre polynomials, Pn, on (−1, 1) since x 7→ x−m
` = t sends (a, b) to (−1, 1),

Pn

(
x−m
`

)
are orthogonal on (a, b).

In case this is not super obvious, let us compute using the substitution t = x−m
` ,

b∫
a

Pn

(
x−m
`

)
Pk

(
x−m
`

)
dx =

1∫
−1

`Pn(t)Pk(t)dt = 0 if n 6= k.

We have simply used substitution in the integral with t = x−m
` . So, these modified Legendre polynomials

are orthogonal on (a, b). Moreover

b∫
a

P 2
n

(
x−m
`

)
dx =

1∫
−1

`P 2
n(t)dt = `||Pn||2 =

2`

2n+ 1
.

So, we simply expand the function f using this version of the Legendre polynomials. Let

cn =

∫ b
a
f(x)Pn

(
x−m
`

)
dx∫ b

a
[Pn((x−m)/`)]2dx

.

The best approximation amongst all polynomials of degree at most N is therefore

P (x) =

N∑
n=0

cnPn

(
x−m
`

)
.
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Figure 8.5: Moscow also has a ring-like structure rather than a grid-like structure. I had the pleasure to visit this
beautiful city in order to attend a math conference on partial differential equations in honor of the great mathematician
B. Y. Sternin. What orthogonal base would you use to navigate Moscow?
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8.3 Les polynomes d’hermite

These polynomials shall be a basis for L2(R) with respect to the weight function e−x
2

. This L2(R) is a Hilbert
space that is defined analogously to the Hilbert space L2(a, b) for an interval (a, b) by letting a→ −∞ and
b→∞.

Definition 82 (The workable definition of L2(R)). It will suffice for our purposes to treat L2(R) as the set
of functions on R which satisfy ∫

R

|f(x)|2dx <∞.

This set of functions, denoted by L2(R), is a Hilbert space with the scalar product:

〈f, g〉 =

∫
R

f(x)g(x)dµ.

Hence, by definition, the norm on L2(R) is

||f ||L2(R) =

√√√√∫
R

|f(x)|2dx.

Definition 83 (The rigorous definition of the Hilbert space L2). The set

L2(R) = the set of equivalence classes of functions which satisfy:

f is measurable, and

∫
R

|f(x)|2dx <∞.

The function g belongs to the same equivalence class as f if g = f almost everywhere on R with respect to
the Lebesgue measure on R.

Since everything that would arise in our studies here is measurable, we do not need to worry about the
measurability condition nor the equivalence class business, so we can just rely on the workable definition of
L2(R).

Definition 84. The Hermite polynomials are defined to be

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

.

Proposition 85. The Hermite polynomials are polynomials with the degree of Hn equal to n.

Proof: The proof is by induction. For n = 0, this is certainly true, as H0 = 1. Next, let us assume that

dn

dxn
e−x

2

= pn(x)e−x
2

,

is true for a polynomial, pn which is of degree n. Then,

dn+1

dxn+1
e−x

2

=
d

dx

(
pn(x)e−x

2
)

= p′n(x)e−x
2

− 2xpn(x)e−x
2

= (p′n(x)− 2xpn(x)) e−x
2

.

Let
pn+1 = p′n(x)− 2xpn(x).

Then we see that since pn is of degree n, pn+1 is of degree n+ 1. Moreover

dn+1

dxn+1
e−x

2

= pn+1(x)e−x
2

.

So, in fact, the Hermite polynomials satisfy:

H0 = 1, Hn+1 = − (H ′n(x)− 2xHn(x)) .
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Theorem 86. The Hermite polynomials are orthogonal on R with respect to the weight function e−x
2

.
Moreover, with respect to this weight function ||Hn||2 = 2nn!

√
π.

Proof: Assume n > m ≥ 0. We compute∫
R

Hn(x)Hm(x)e−x
2

dx =

∫
R

(−1)n
dn

dxn
e−x

2

Hm(x)dx.

We use integration by parts n times, noting that the rapid decay of e−x
2

kills all boundary terms. We
therefore get ∫

R

e−x
2 dn

dxn
Hm(x)dx = 0.

This is because the polyhomial, Hm, is of degree m < n. Therefore differentiating it n times results in zero.
Finally, for n = m, we have by the same integration by parts,∫

R

H2
n(x)e−x

2

dx =

∫
R

e−x
2 dn

dxn
Hn(x)dx.

The nth derivative of Hn is just the nth derivative of the highest order term. By our preceding calculation,
the highest order term in Hn is

(2x)n.

Differentiating n times gives
2nn!.

Thus ∫
R

H2
n(x)e−x

2

dx = 2nn!

∫
R

e−x
2

dx = 2nn!
√
π.

We may wish to use the following lovely fact, but we shall not prove it.

Theorem 87. The Hermite polynomials are an orthogonal basis for L2 on R with respect to the weight
function e−x

2

.

We shall on the other hand prove the following lovely fact about the Hermite polynomials, known as the
generating function for the Hermite polynomials.

Theorem 88 (Generating function for the Hermite polynomials). For any x ∈ R and z ∈ C, the Hermite
polynomials,

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

,

satisfy
∞∑
n=0

Hn(x)
zn

n!
= e2xz−z2 .

Proof:
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Idea!

The key idea with which to begin is to consider instead

e−(x−z)2 = e−x
2+2xz−z2 .

We consider the Taylor series expansion of this with respect to z, viewing x as a parameter. By definition,
the Taylor series expansion for

e−(x−z)2 =
∑
n≥0

anz
n,

where

an =
1

n!

dn

dzn
e−(x−z)2 , evaluated at z = 0.

To compute these coefficients, we use the chain rule, introducing a new variable u = x− z. Then,

d

dz
e−(x−z)2 = − d

du
e−u

2

,

and more generally, each time we differentiate, we get a −1 popping out, so

dn

dzn
e−(x−z)2 = (−1)n

dn

dun
e−u

2

,

Hence, evaluating with z = 0, we have

an =
1

n!
(−1)n

dn

dun
e−u

2

, evaluated at u = x.

The reason it’s evaluated at u = x is because in our original expression we’re expanding in a Taylor series
around z = 0 and z = 0 ⇐⇒ u = x since u = x− z. Now, of course, we have

dn

dun
e−u

2

, evaluated at u = x =
dn

dxn
e−x

2

.

Hence, we have the Taylor series expansion

e−(x−z)2 = e−x
2+2xz−z2 =

∑
n≥0

zn

n!
(−1)n

dn

dxn
e−x

2

.

Now, we multiply both sides by ex
2

to obtain

e2xz−z2 = ex
2 ∑
n≥0

zn

n!
(−1)n

dn

dxn
e−x

2

.

We can bring ex
2

inside because everything converges beautifully. Then, we have

e2xz−z2 =
∑
n≥0

zn

n!
ex

2

(−1)n
dn

dxn
e−x

2

.

Voilà! The definition of the Hermite polynomials is staring us straight in the face! Hence, we have computed

e2xz−z2 =
∑
n≥0

zn

n!
Hn(x).
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8.3.1 Applications to best approximations on R
Exercise 89. Find the polynomial of at most degree 40 which minimizes∫

R

|f(x)− P (x)|2e−x
2

dx,

where f is some function in the weighted L2 space on R with weight e−x
2

.

We know that the Hermite polynomials are an orthogonal basis for L2 on R with the weight function
e−x

2

. We see that same weight function in the integral. Therefore, we can rely on the theory of the Hermite
polynomials! Consequently, we define

cn =

∫
R f(x)Hn(x)e−x

2

dx

||Hn||2
,

where

||Hn||2 =

∫
R

H2
n(x)e−x

2

dx = 2nn!
√
π.

The polynomial we seek is:

P (x) =

40∑
n=0

cnHn(x).

Some variations on this theme are created by changing the weight function.

Exercise 90. Find the polynomial of at most degree 60 which minimizes∫
R

|f(x)− P (x)|2e−2x2

dx.

This is not the correct weight function for Hn. However, we can make it so. The correct weight function
for Hn(x) is e−x

2

. So, if the exponential has 2x2 = (
√

2x)2, then we should change the variable in Hn as
well. We will then have, via the substitution t =

√
2x,∫

R

Hn(
√

2x)Hm(
√

2x)e−2x2

dx =

∫
R

Hn(t)Hm(t)e−t
2 dt√

2
= 0, n 6= m.

Moreover, the norm squared is now∫
R

H2
n(t)e−t

2 dt√
2

=
||Hn||2√

2
=

2nn!
√
π√

2
.

Consequently, the functions Hn(
√

2x) are an orthogonal basis for L2 on R with respect to the weight function

e−2x2

. We have computed the norms squared above. The coefficients are therefore

cn =

∫
R f(x)Hn(

√
2x)e−2x2

dx

2nn!
√
π/
√

2
.

The polynomial is

P (x) =

60∑
n=0

cnHn(
√

2x).
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8.4 The Laguerre polynomials

The Laguerre polynomials come from understanding the quantum mechanics of the hydrogen atom. This
will be explored at the end of the chapter.

Definition 91. The Laguerre polynomials,

Lαn(x) =
x−αex

n!

dn

dxn
(xα+ne−x).

We summarize their properties in the following

Theorem 92 (Properties of Laguerre polynomials). The Laguerre polynomials are an orthogonal basis for
L2 on (0,∞) with the weight function xαe−x. Their norms squared,

||Lαn||2 =
Γ(n+ α+ 1)

n!
.

They satisfy the Laguerre equation

[xα+1e−x(Lαn)′]′ + nxαe−xLαn = 0.

For x > 0 and |z| < 1,
∞∑
n=0

Lαn(x)zn =
e−xz/(1−z)

(1− z)α+1
.

The Laguerre polynomials can also be used to obtain best approximations.

Exercise 93. Find the polynomial of at most degree 7 which minimizes

∞∫
0

|f(x)− P (x)|2xαe−xdx.

Since the Laguerre polynomials are an orthogonal basis for L2(0,∞) with weight function xαe−x, we
define

cn =

∫∞
0
f(x)Lαn(x)xαe−xdx

||Lαn||2
.

The polynomial we seek is:

P (x) =

7∑
n=0

cnL
α
n(x).

8.5 Some functions have Taylor expansions but nearly all func-
tions can be expanded with orthogonal polynomials!

It is natural to wonder what is the difference between a best polynomial approximation and a Taylor ex-
pansion? The most important distinction is that we can create a best polynomial approximation for any
function defined on an interval (a, b) that satisfies

b∫
a

|f(x)|2dx <∞.
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On the other hand, f has a Taylor series expansion, also known as a power series expansion, if and only if
f can be differentiated infinitely many times. That is a pretty demanding requirement that is not satisfied
by a lot of functions. Here is an example

f(x) =

∞∑
n=0

αn cos(βnπx), 0 < α < 1, β ∈ N is odd, and αβ > 1 +
3π

2
.

This function is called the Weierstraß function, named after Karl Weierstraß. It is nowhere differentiable.
It is however continuous, and consequently it is an element of L2 on any bounded interval. We can therefore
expand this function in terms of an orthogonal basis of polynomials. For example, if {pn}∞n=0 are a set of
orthogonal polynomials on an interval (a, b), then we have the expansion

f(x) =

∞∑
n=0

〈f, pn〉
||pn||2

pn(x).

On the other hand, this function does not have a Taylor expansion.
For the converse, consider a function g(x) that does have a Taylor expansion. Then it is differentiable

infinitely many times, and so as a consequence it is continuous. It is therefore bounded on any bounded
interval and hence an element of the Hilbert space L2 on such an interval. So, we can expand it in terms of
the orthogonal polynomials as well:

g(x) =

∞∑
n=0

〈g, pn〉
||pn||2

pn(x).

Thus, we can expand a lot more functions using orthogonal polynomials in comparison to using Taylor series.
This will be explored further in the exercises!

8.5.1 Best approximations

If we have established that a certain collection of functions

einx, cos, sin, orthogonal polynomials, Bessel functions, functions obtained by solving SLPs,

are an orthogonal basis on a bounded interval, then we can use these to obtain best approximations. Let
us call such functions φn. Then the best approximation to any f in L2 of the bounded interval under
consideration is its Fourier-φn expansion, which is∑ 〈f, φn〉

||φn||2
φn(x).

Recall

〈f, φn〉 =

∫
f(y)φn(y)w(y)dy, if the weight function is w(y),

and
||φn||2 = 〈φn, φn〉.

One can also do best approximations using Hermite and Laguerre polynomials on R and (0,∞), respectively,

with the weight functions e−x
2

and xαe−x, respectively. The process is analogous in all cases!

8.6 Orthogonal polynomials in quantum chemistry: the mathe-
matics of the hydrogen atom

In the hydrogen atom, there is an electron and a proton. The proton is about 2,000 times more massive
than the electron, so it makes sense to consider the proton as immobile, from the electron’s point of view.
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The electron is therefore moving in an electrostatic force field with potential −ε2/r, where ε is the charge of
the proton, and r is the distance from the origin. We assume that the proton is located at the origin.

According to quantum mechanics, when the electron is in a stationary state at energy level E, its wave
function u is in L2(R3) and satisfies the Schrödinger equation

}2

2m
∆u+

ε2

r
u+ Eu = 0. (8.6.1)

Above, } is Planck’s constant, and m is the mass of the electron, the Laplace operator ∆ is in R3 equal to

∆ = ∂2
x + ∂2

y + ∂2
z ,

and r =
√
x2 + y2 + z2 is the distance from the proton located at the origin. Due to the radial symmetry,

it is natural to introduce spherical coordinates to try to solve this equation. In this section, we will work
through a series of exercises to solve this time-independent Schrödinger equation and understand the energy
levels of the hydrogen atom as shown in Figure 8.6.

Figure 8.6: The density function u that we seek to find in equation (??) describes the probability of finding the
electron at the point (x, y, z) ∈ R3. This image shows the atomic orbitals at different energy levels. The probability
of finding the electron is given by the color. This image is Public Domain, obtained from https://en.wikipedia.

org/wiki/Atomic_orbital.

Exercise 94. Let
x = r cos θ sinφ, y = r sin θ sinφ, z = r cosφ.
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Show that

∆f = frr +
2

r
fr +

1

r2 sinφ
(fφ sinφ)φ +

1

r2 sin2 φ
fθθ.

Exercise 95. For a function of the form R(r)Θ(θ)Φ(φ), compute

∆(R(r)Θ(θ)Φ(φ).

Now, the equation (8.6.1) looks a bit more complicated than necessary. We can change the units of mass,
so that we can assume } = m = ε = 1. Then, our equation becomes

1

2
∆u+

u

r
+ Eu = 0 ⇐⇒ ∆u+ 2

u

r
+ 2Eu = 0. (8.6.2)

Assume our function u = R(r)Θ(θ)Φ(φ).

Exercise 96. Using separation of variables, show that (up to a constant multiple) the Θ part of the function
must be equal to

Θ(θ) = eimθ,

and that
Φ(φ) = P |m|n (cosφ),

where n ≥ |m|. Above, Pmn is the associated Legendre function,

Pmn (s) =
(1− s2)m/2

2nn!

dn+m

dsn+m
(s2 − 1)n.

Show that Pmn is the solution of the problem for the function y = y(s) of one variable,

[(1− s2)y′] +
m2y

1− s2
+ n(n+ 1)y = 0, y(−1) = y(1) = 0.

Next, we’re going to consider the radial part.

Exercise 97. Show that R must satisfy

r2R′′ + 2rR′ + [2Er2 + 2r − n(n+ 1)]R = 0.

Let’s think for a moment about the energy, E. A proton is positively charged. So, if the electron is also
positively charged, the two of them repel each other, and the electron runs away. This does not create a
hydrogen atom. So, we’re interested in negative energy, E < 0, because this can create a bond with the
proton, so that the electron stays trapped. That’s what’s happening in a hydrogen atom. So, from now on,
we assume

E < 0.

By introducing a few definitions, we will be able to simplify our problem,

ν = (−2E)−1/2, s = 2ν−1r, R(r) = S(2ν−1) = S(s).

Exercise 98. Show that the equation becomes

s2S′′ + 2sS′ + [νs− 1

4
s2 − n(n+ 1)]S = 0.

Next, let
S = sne−s/2Σ.

Show that the equation now becomes

sΣ′′ + (2n+ 2− s)Σ′ + (ν − n− 1)Σ = 0. (8.6.3)

Verify that this is the Laguerre equation,

xy′′ + (α+ 1− x)y′ + ny,

with α = 2n+ 1 and n replaced by ν − n− 1.
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Exercise 99. Show that the only solutions of (8.6.3) that will produce solutions of the form u = RΘΦ ∈
L2(R3) to (8.6.2) are the Laguerre polynomials.

So we now know that ν ≥ n+ 1 and ν ∈ Z.

Exercise 100. Unravel all the substitutions to show that the solution

Rnν(r) = (2ν−1r)ne−r/νL2n+1
ν−n−1(2ν−1r),

and
umnν = Rnν(r)eimθP |m|n (cos(φ),

with

Emnν = −1

2
ν−2.

What is important to notice here is that ν is an integer. This means that when ν changes, the energy
Emnν jumps. This is because any two different integers are at least one apart. Therefore, the energy can
only come at the levels

Emnν = −1

2
ν−2, ν ∈ Z, ν ≥ n+ 1.

It is rather fascinating to know that experimental physicists already knew this fact about the energy levels,
before the mathematics had been done! Another important observation is that Emnν depends only on ν,
as long as ν ≥ n + 1. So, there are a lot of different functions umnν for each Emnν . What happens to the
energy as ν →∞?

8.7 Exercises

1. (EO 21) Show that the functions ϕn(x) = sin(x/2)
πx einx are pairwise orthogonal in L2(R). Determine

coefficients cn that minimize
∞∫
−∞

∣∣∣∣∣ 1

1 + x2
−

N∑
n=−N

cnϕn(x)

∣∣∣∣∣
2

dx.

2. (EO 36) Determine the polynomial P (x) of at most degree two that minimizes

∞∫
0

|
√
x− P (x)|2e−xdx.

3. (EO 37) Determine the polynomial P (x) of at most degree two that minimizes

∞∫
−∞

|x4 − P (x)|2e−x
2/2dx.

4. (EO 38) Determine the polynomial P (x) of at most degree two that minimizes

∞∫
0

|ex/4 − P (x)|2xe−x.

5. (EO 39) Determine the polynomial of the form P (x) = x3 + ax2 + bx+ c that minimizes

1∫
0

|P (x)|2dx.
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6. (EO 41) Compute H ′n(0) for the Hermite polynomials Hn. Hint: use the generating function.

7. [4, 6.1.1] Let {pn} be an orthogonal set of polynomials for L2 on a bounded interval (a, b), such that
pn is of degree n.

(a) Fix n. Let x1, x2, . . . , xk be the points in (a, b) where pn changes sign, and let q(x) =
∏k
j=1(x−xj).

Show that pnq never changes sign on (a, b) and hence 〈pn, q〉 6= 0.

(b) Show that the number k of sign changes in the preceding part is at least n.

(c) Conclude that pn has exactly n distinct zeros, all of which lie in (a, b). Geometrically, this shows
that pn becomes more and more oscillatory as n→∞, similar to sin(nx).

8. [4, 6.2.1] Show that the nth Legendre polynomial can be written in closed form as

Pn(x) =
1

2n

∑
j≤n/2

(−1)j(2n− 2j)!

j!(n− j)!(n− 2j)!
xn−2j .

Use this to compute that

P2k−1(0) = 0, P2k(0) =
(−1)k(2k)!

22k(k!)2
.

9. [4, 6.2.3] Find the general solution of the Legendre equation[
(1− x2)y′

]′
+ λy = 0, x ∈ (−1, 1).

It may be helpful to re-write the equation as

(1− x2)y′′ − 2xy′ + ν(ν + 1)y = 0,

set y =
∑
n≥0 anx

n, and solve recursively for the coefficients in terms of a0 and a1. Verify that the
series converges in the interval (−1, 1).

10. [4, 6.2.4] Use the preceding exercise to show that the Legendre equation has a polynomial solution
precisely when ν is an integer, and that this solution is a constant multiple of Pν if ν ≥ 0 or P−ν−1 if
ν < 0.

11. [4, 6.2.5] Expand xn for n = 2, 3, 4 in series of Legendre polynomials. Hint: no calculus is needed!

12. [4, 6.4.1] Show that the Hermite polynomials can be explicitly computed as

Hn(x) = n!
∑
j≤n/2

(−1)j(2x)n−2j

j!(n− 2j)!
.

13. [4, 6.4.2] Find the general solution of the Hermite equation

y′′ − 2xy′ + λy = 0,

where λ ∈ C. Do this by assuming y =
∑
n≥0 anx

n and solving recursively for the coefficients in terms
of a0 and a1. Show that the Hermite equation has a polynomial solution of degree n precisely when
λ = 2n, and this solution is a constant multiple of Hn.

14. Compute the best polynomial approximation of degree two in L2(−1, 1) for ex. Compare this with the
Taylor expansion about zero for ex.

15. Consider the polynomial x3 + 1. Compute its best polynomial approximations of degree 0, 1, 2, and 3
in L2(−1, 1). Compare these with its Taylor expansion.
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16. The Laguerre polynomials also have a generating function. It is

∞∑
n=0

Lαn(x)zn =
e−xz/(1−z)

(1− z)α+1
.

If you are really ambitious, you can prove this using the Cauchy integral formula, but this is rather
tricky. Instead, use this formula to show that

(1− z2)
∂

∂z

∑
n≥0

Lαn(x)zn = [x+ (1 + α)(z − 1)]
∑
n≥0

Lαn(x)zn.

17. Use the preceding exercise to obtain the recursive formula

(n+ 1)Lαn+1(x) + (x− α− 2n− 1)Lαn(x) + (n+ α)Lαn−1(x) = 0.

18. Show that
(Lαn)′(x)− (Lαn−1)′(x) + Lαn−1(x) = 0.

19. Show that the Laguerre and Hermite polynomials are related by

L−1/2
n (x) =

(−1)n

22nn!
H2n(

√
x), L1/2

n (x) =
(−1)n

22n+1n!

H2n+1(
√
x)√

x
.

20. Complete all of the exercises in §8.6.

192



Chapter 9

The Fourier transform: when a
solution needs to be found, transform
the problem into sound!

The Fourier transform has become ubiquitous in several different contexts including but not limited to: theo-
retical mathematics, physics, chemistry, engineering, signal processing, electronics, and medicine. Physically,
the Fourier transform takes a function that depends on a variable like x ∈ R, that we think of as position
in one-dimensional space, into a function that depends on ξ ∈ R, that is the frequency of a wave. We could
think of this as changing the problem from something that is happening in physical space to a sound wave.
This change in perspective can be useful, for example if we start with an impossible looking equation, or a
partial differential equation, or an impossible looking integral. Taking the Fourier transform, we may then
obtain a solvable equation, for example by changing a PDE into an ODE, or by obtaining an equivalent but
easier looking integral. So, in terms of the (sound) wave frequency variable, the problem becomes solvable,
and we solve it. Then, we obtain a solution for the original problem on x ∈ R by applying the Fourier
inversion theorem (FIT). In §9.9.2, we will see how the Fourier transform can also be used to explain the
Heisenberg uncertainty principle, and how it relates to the process of quantizing operators.

Throughout this chapter we will be working in unbounded regions of space. We will first be able to define
the Fourier transform for functions such that the integral of the absolute value over the real line is finite.
This is a Banach space, sadly it is not a Hilbert space.1

Definition 101 (The Banach space L1). The set

L1(R) = the set of equivalence classes, of functions which satisfy:

f is measurable, and

∫
R

|f(x)|dx <∞.

The function g belongs to the same equivalence class as f if g = f almost everywhere on R with respect to
the Lebesgue measure on R.

That is the mathematically rigorous definition, but it suffices for us to work with the ‘workable definition’
below.

Definition 102 (The workable definition of L1). The Banach space

L1(R) = the set functions which satisfy:

∫
R

|f(x)|dx <∞.

1One can prove this statement rigorously, and it is generally done in a functional analysis course. The method is to prove
that it is not self-dual, because all Hilbert spaces are self-dual.
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Figure 9.1: The Fourier transform does just that: it transforms! In physics, taking the Fourier transform with
respect to the spatial variable, we change from a function that depends on position in space into a function that
depends on a wave frequency. This can be very useful, because tasks that appear impossible to solve in the space
variable can turn into solvable problems in the frequency variable. How does sound propagate? As soundwaves of
course! So, we can imagine that the Fourier transforms the problem into sound (waves). Since soundwaves are not
visible, to illustrate the concept here is a famous wave, known as the Great Wave off Kanagawa, a woodblock print
by the artist Hokusai, published around 1830. Image license and source cc 1.0 openclipart.org
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Quite a bit changes when we consider the entire real line, or more generally unbounded regions of space,
as compared with the previous chapters, that focused on problems and calculations for bounded regions of
space. For example, the functions

einx, sin(x), cos(x)

are all neither in L1(R) nor in L2(R). Furthermore, there is no relationship between L1(R) and L2(R).
There are functions which are in L1(R) but not in L2(R). For example, consider

f(x) :=


0 x ≤ 0

1√
x

0 < x < 1

0 x ≥ 1

.

Exercise 103. Verify that this function f is in L1(R) but is not in L2(R). Compute its L1(R) norm.

Now consider

g(x) =

{
0 x ≤ 1
1
x x > 1

.

Exercise 104. Verify that this function g is in L2(R) but is not in L1(R). Compute its L2(R) norm.

The function
e−|x|

is in both L1(R) and in L2(R).

Exercise 105. Verify that this function is in both L1(R) and L2(R). Compute its L1 and L2 norms. Come
up with your own examples of functions which are

1. In L1(R) but not in L2(R).

2. In L2(R) but not in L1(R).

3. In both L1(R) and L2(R).

So, all we can say is that

L1(R) 6⊂ L2(R), L2(R) 6⊂ L1(R), L1(R) ∩ L2(R) 6= ∅.

On the other hand, one can prove that L2(a, b) ⊂ L1(a, b) for any bounded interval (a, b).

9.1 A convolution could be the solution!

The convolution is a convoluted way of taking two functions and producing a third function. Let’s call the
functions f and g (Fred and George). We shift one of the two functions by a real value, x, and then integrate
the product, f(x− y)g(y). When we integrate over the whole real line, the result then only depends on the
value of x, and so this is a way to obtain a new function. Perhaps we should name it Henry? The convolution
has many uses, including allowing us to approximate arbitrary functions with smooth ones. This is a way
to cheat out derivatives of functions that are not differentiable. Moreover, the convolution is key to solving
the initial value problem for the heat equation in infinite spatial regions.

Definition 106. The convolution of f and g is a function f ∗ g : R→ C defined by

f ∗ g(x) =

∫
R

f(x− y)g(y)dy,

whenever the integral on the right exists.
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Proposition 107. Assume that f and g are both in L2(R). Then

1. |f ∗ g(x)| ≤ ||f ||||g|| for all x ∈ R

2. f ∗ (ag + bh) = af ∗ g + bf ∗ h for all a, b ∈ C

3. f ∗ g = g ∗ f

4. f ∗ (g ∗ h) = (f ∗ g) ∗ h

Proof: This is useful to do because it helps to familiarize oneself with the convolution. We first estimate

|f ∗ g(x)| =

∣∣∣∣∣∣
∫
R

f(x− y)g(y)dy

∣∣∣∣∣∣ ≤
∫
R

|f(x− y)||g(y)|dy.

The point x ∈ R is fixed and arbitrary, so we define a function

φ(y) = f(x− y).

Then

|f ∗ g(x)| ≤
∫
R

|φ(y)||g(y)|dy ≤ ||φ||||g||.

We compute

||φ||2 =

∫
R

|f(x− y)|2dy = −
−∞∫
∞

|f(t)|2dt =

∞∫
−∞

|f(t)|2dt = ||f ||2.

Above, we used the substitution t = x − y so dt = −dy, and the integral got reversed. The − goes away
when we re-reverse the integral. So, in the end we see that

|f ∗ g(x)| ≤ ||f ||||g||

as desired. The second property follows simply by the linearity of the integral itself. For the third property,
we will use substitution again:

f ∗ g(x) =

∫
R

f(x− y)g(y)dy.

We want to get g(x− z) so we define

y = x− z =⇒ x− y = z, dz = −dy.

Hence,

f ∗ g(x) = −
−∞∫
∞

f(z)g(x− z)dz =

∞∫
−∞

g(x− z)f(z)dz = g ∗ f(x).

We do something rather similar in the fourth property:

f ∗ (g ∗ h)(x) =

∫
R

f(x− y)

∫
R

g(y − z)h(z)dzdy.

For the other term we have

(f ∗ g) ∗ h(x) =

∫
R

(f ∗ g)(x− y)h(y)dy =

∫
R

∫
R

f(x− y − z)g(z)h(y)dzdy.
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So, we define
t = y − z =⇒ x− y = x− t− z, dt = dy.

Then

f ∗ (g ∗ h)(x) =

∫
R

∫
R

f(x− t− z)g(t)h(z)dzdt.

Finally, we call z = y and t = z (sorry if this gives you a headache!) because they are just names, and then
we get

f ∗ (g ∗ h)(x) =

∫
R

∫
R

f(x− y − z)g(y)h(z)dzdy.

If you’re worried about the order of integration, don’t be. Since everything is in L2, these integrals converge
absolutely, so those Italian magicians, Fubini & Tonelli allow us to do the switch-a-roo with the integrals as
much as we like.

One of the useful features of convolution is that we can use it to smooth out non-smooth functions. This
is known as mollification, which comes from the verb, to mollify, which means to make smooth.2

Proposition 108 (Mollification). If f ∈ C1(R) ∩ L2(R), f ′ ∈ L2(R), and g ∈ L2(R), then f ∗ g ∈ C1(R).
Moreover (f ∗ g)′ = f ′ ∗ g.

Proof: Everything converges beautifully so just stick that differentiation right under the integral defining

f ∗ g(x) =

∫
R

f(x− y)g(y)dy.

Hence

(f ∗ g)′(x) =

∫
R

f ′(x− y)g(y)dy = f ′ ∗ g(x).

If you are not satisfied with this explanation, a rigorous proof can be obtained using the Dominated Con-
vergence Theorem, but that is a theorem which we cannot prove in the context of this humble course.

A convoluted example

Let’s compute a convolution. Let f(x) = 1
1+x2 and

g(x) =

{
1 |x| < 3

0 |x| > 3
.

The function g is not differentiable at the points ±3. The function f is perfectly smooth on R. Let’s convolve
them!

f ∗ g(x) =

∫
R

f(x− y)g(y)dy =

∫
R

1

1 + (x− y)2
g(y)dy =

3∫
−3

1

1 + (x− y)2
dy.

2One can mollify garlic, tahini, chickpeas, soy sauce, olive oil, oregano, black pepper, lemon juice, in suitable proportions,
together with a bit of hot sauce like Cholula, Tabasco, or Sriracha, to make hummus.
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If we dig deep into our calculus memory, we vaguely recall that

(arctan(t))′ =
1

1 + t2
.

So, this integral becomes:

− arctan(x− y)|3−3 = − arctan(x− 3) + arctan(x+ 3).

This is indeed a smooth function of x.

9.2 The formidable Fourier transform

The Fourier transform is the scalar product of a function f(x) that depends on x ∈ R together with a wave
function, that is a function of the form eixξ. When the variable ξ ∈ R, then physically one would refer to
the function e−ixξ as a wave, like in Figure 9.1, because

eixξ = cos(xξ) + i sin(xξ),

so it is the sum of a cosine wave in the real direction and a sine wave in the imaginary direction. The
frequency of the wave is ξ. So, when we take the Fourier transform, that is defined as

f̂(ξ) = 〈f, eixξ〉 =

∫
R

f(x)eixξdx =

∫
R

f(x)e−ixξdx. (9.2.1)

The Fourier transform is now a function of ξ, because the dependence on x has been integrated away. So,
the Fourier transform transforms the function f(x) that depends on the space variable x ∈ R into a function

f̂(ξ) that depends on the frequency variable ξ. Before we can define the Fourier transform on the Hilbert
space L2, we will define it on the Banach space L1.

Proposition 109. Assume that f ∈ L1(R). Then

f̂(ξ) :=

∫
R

f(x)e−ixξdx

is a well-defined complex number for any ξ ∈ R.

Proof: Since f ∈ L1(R), by definition we can estimate for ξ ∈ R∣∣∣∣∣∣
∫
R

e−ixξf(x)dx

∣∣∣∣∣∣ ≤
∫
R

|f(x)|dx <∞.

This is because for ξ ∈ R and x ∈ R, |e−ixξ| = 1. Consequently, the integral that defines the Fourier
transform

f̂(ξ) =

∫
R

f(x)e−ixξdx ∈ C,

and so it defines a function f̂ : R→ C. Note that if we do not assume that ξ ∈ R, then we can say nothing
about the integral, because |e−ixξ| = ex Im(ξ), so if Im(ξ) 6= 0, then this can grow exponentially for large x.
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9.2.1 Example of computing a Fourier transform

Let us get a feel for Fourier transforming by doing it! Consider the function f(x) = e−a|x| where a > 0.
Then it is certainly in L1(R) so we ought to be able to compute its Fourier transform. This is by definition

f̂(ξ) =

∫
R

e−ixξe−a|x|dx =

0∫
−∞

e−ixξeaxdx+

∞∫
0

e−ixξe−axdx.

We compute these integrals by finding a primitive for the integrand:

f̂(ξ) =
ex(a−iξ)

a− iξ

∣∣∣∣0
−∞

+
ex(−a−iξ)

−a− iξ

∣∣∣∣∞
0

=
1

a− iξ
+

1

a+ iξ
=
a+ iξ + a− iξ

a2 + ξ2
=

2a

a2 + ξ2
.

9.3 The formidable Fourier transform’s fine features

The following is a useful and fundamental collection of facts about the Fourier transform. It may be useful
to introduce the notations

F(f)(ξ) = f̂(ξ) = f̂(ξ).

Sometimes we feel like a wide hat, sometimes a narrow hat, and sometimes we need that big F . It is useful
to be fluent with all three equivalent notations.

Theorem 110 (Properties of the Fourier transform). Assume that everything below is well defined. Then,
the Fourier transform,

F(f)(ξ) := f̂(ξ) :=

∫
R

f(x)e−ixξdx

satisfies

1. F(f(x− a))(ξ) = e−iaξ f̂(ξ).

2. F(f ′)(ξ) = iξf̂(ξ)

3. F(xf(x))(ξ) = iF(f)′(ξ)

4. F(f ∗ g)(ξ) = f̂(ξ)ĝ(ξ)

Proof: We just compute3 First

F(f(x− a))(ξ) =

∫
R

f(x− a)e−ixξdx.

Change variables. Let t = x− a, then dt = dx, and x = t+ a so

F(f(x− a))(ξ) =

∫
R

f(t)e−i(t+a)ξdt = e−iaξ f̂(ξ).

The next one will come from integrating by parts:∫
R

f ′(x)e−ixξdx = f(x)e−ixξ
∣∣∞
−∞ −

∫
R

−iξf(x)e−ixξdx = iξf̂(ξ).

3We do not need to bother with issues of convergence, because everything is rigorously correct thanks to the dominated
convergence theorem. This will be discussed in the appendix eventually.
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The boundary terms vanish because of reasons (again it is L1 and L2 theory stuff). Similarly we compute∫
R

xf(x)e−ixξdx = −1

i

∫
R

f(x)
d

dξ
e−ixξdx = i

d

dξ

∫
R

f(x)e−ixξdx = iF(f)′(ξ).

Finally,

F(f ∗ g)(ξ) =

∫
R

f ∗ g(x)e−ixξdx =

∫
R

∫
R

f(x− y)g(y)e−ixξdydx.

We do a little sneaky trick

=

∫
R

∫
R

f(x− y)g(y)e−ixξe−iyξeiyξdydx

=

∫
R

∫
R

f(x− y)e−i(x−y)ξg(y)e−iyξdydx.

Let z = x− y. Then dz = −dy so

=

∫
R

−∞∫
∞

f(z)e−izξ(−dz)g(y)e−iyξdy =

∫
R

∫
R

f(z)e−izξdzg(y)e−iyξdy

= f̂(ξ)ĝ(ξ).

The following theorem can be proven with sophisticated tools of measure theory and functional analysis
that are outside the scope of this text. However, we can understand and apply the statement of the theorem.
The first statement is that there is a unique way to make sense of the Fourier transform for functions in L2,
even though this is not very obvious. The proof involves a limiting procedure of estimating L2 functions by
functions that are in L1 ∩ L2, because the Fourier transform is well-defined for all of those functions. The
second statement in this theorem is the Fourier inversion theorem, abbreviated FIT, that shows us how to
undo the Fourier transform. Physically, we transform the function of space into a function of frequency, and
then the FIT takes us back to space again.

Theorem 111 (Extension of Fourier transform to L2 and getting FIT). There is a well defined unique
extension of the Fourier transform to L2(R). The Fourier transform of an element of L2(R) is again an
element of L2(R). Moreover, for any f ∈ L2(R) we have the FIT (Fourier Inversion Theorem):

f(x) =
1

2π

∫
R

f̂(ξ)eixξdξ. (9.3.1)

If two functions in L2(R) have the same Fourier transform, then they are equal.

The following theorem is extremely useful for computing impossible looking integrals. The theorem shows
us how the scalar product of two functions in L2 is related to the scalar product of their Fourier transforms.

Theorem 112 (Plancharel). For any f ∈ L2(R), f̂ ∈ L2(R). Moreover,

〈f̂ , ĝ〉 = 2π〈f, g〉,

and thus
||f̂ ||2L2 = 2π||f ||2,

for all f and g in L2(R).
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Figure 9.2: If we take a lot of waves with random frequencies and start adding them up, and letting the frequencies
tend to infinity, they will start to cancel each other out. This is the physical meaning of the Riemann & Lebesgue
lemma.

Proof: Start with the right side and use the FIT on f , to write

2π〈f, g〉 = 2π

∫
R

∫
R

1

2π
eixξ f̂(ξ)g(x)dξdx =

∫
R

∫
R

eixξ f̂(ξ)g(x)dξdx.

Move the complex conjugate to engulf the eixξ,

=

∫
R

∫
R

f̂(ξ)g(x)e−ixξdξdx.

Swap the order of integration and integrate x first:

=

∫
R

∫
R

f̂(ξ)g(x)e−ixξdxdξ =

∫
R

f̂(ξ)ĝ(ξ)dξ = 〈f̂ , ĝ〉.

We may from time to time use the following fact that we also shall not prove. It is named after two
mathematicians, Riemann and Lebesgue. Roughly speaking, it shows that if we take an L1 function and
compute its Fourier transform, the transform tends to zero as the frequency of the wave tends to infinity.
This is related to a physical concept known as the stationary phase method. The idea is that if we add up
a bunch of waves with random frequencies, and we let these random frequencies tend to infinity, we will
get a lot of cancellation. Integration is a mathematical way of summing over a continuous range of values,
and so we can view the Riemann & Lebesgue lemma as a consequence of the stationary phase method. An
illustration of this method is shown in Figure 9.2.

Lemma 113 (Riemann & Lebesgue). Assume f ∈ L1(R). Then,

lim
ξ→±∞

f̂(ξ) = 0.

9.4 The big bad(*ss) convolution approximation theorem: the big
bad CAT

This theorem and its proof are both rather long. The proof relies very heavily on knowing the definition of
limits and how to work with those definitions, so if you’re not comfortable with ε and δ style arguments, it
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would be advisable to review these. The efforts required to prove this theorem are worthwhile, because we
will apply it to solving partial differential equations including the heat equation.

To help get you through this, is a picture of my old cat, Romeo in Figure 9.3. He was a big Bengal boy,
and if I didn’t play with him enough, he destroyed my stuff. It is a bit of an analogy with the big bad CAT;
if you don’t pay enough attention to it, it could screw up your day.

Figure 9.3: The big bad CAT is your best ally, if you just pay enough attention to it. Similar to an energetic cat
or dog. They are by nature good, and if they’re misbehaving, it is always due to human error.

Theorem 114 (The big bad CAT). Assume that g ∈ L1(R). Define

α =

0∫
−∞

g(x)dx, β =

∞∫
0

g(x)dx.

Assume that f is piecewise continuous on R and its left and right sided limits exist for all points of R.
Assume that at least one of the following two options is true:
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1. g is zero outside a bounded interval;

2. f is bounded on R.

For ε > 0,

gε(x) :=
g(x/ε)

ε
.

Then
lim
ε↘0

f ∗ gε(x) = αf(x+) + βf(x−) ∀x ∈ R.

Proof. Idea!
Do manipulations to get a “left side” statement and a “right side” statement.
We would like to show that

lim
ε→0

∫
R

f(x− y)gε(y)dy = αf(x+) + βf(x−)

which is equivalent to showing that

lim
ε→0

∫
R

f(x− y)gε(y)dy − αf(x+)− βf(x−) = 0.

We now insert the definitions of α and β, so we want to show that

lim
ε→0

∫
R

f(x− y)gε(y)dy −
0∫

−∞

f(x+)g(y)dy −
∞∫

0

f(x−)g(y)dy = 0.

We can prove this if we show that

♥ : lim
ε→0

∫
−∞

f(x− y)gε(y)dy −
0∫

−∞

f(x+)g(y)dy = 0

and also

? : lim
ε→0

∞∫
0

f(x− y)gε(y)dy −
∞∫

0

f(x−)g(y)dy = 0.

We will prove that ♥ holds. The argument is the same for both, so proving one of them is sufficient.

Exercise 115. To practice this proof on your own, work out the proof for ?.

Hence, we would like to show that by choosing ε sufficiently small, we can make

0∫
−∞

f(x− y)gε(y)dy −
0∫

−∞

f(x+)g(y)dy

as small as we like. To make this precise, let us assume that “as small as we like” is quantified by a very
small δ > 0. Then we show that for sufficiently small ε we obtain∣∣∣∣∣∣

0∫
−∞

f(x− y)gε(y)dy −
0∫

−∞

f(x+)g(y)dy

∣∣∣∣∣∣ < δ.
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Idea!

Smash the two integrals together:

0∫
−∞

(f(x− y)gε(y)− f(x+)g(y)) dy.

Well, this is a bit inconvenient, because in the first part we have gε, but in the second part it’s just g.

Idea!

Sneak gε into the second term. We make a small observation,

0∫
−∞

g(y)dy =

0∫
−∞

g(z/ε)
dz

ε
=

0∫
−∞

gε(z)dz

Above, we have made the substitution z = εy, so y = z/ε, and dz/ε = dy. The limits of integration don’t
change. By this calculation,

0∫
−∞

f(x+)g(y)dy =

0∫
−∞

f(x+)gε(y)dy.

(Above the integration variable was called z, but what’s in a name? The name of the integration variable
doesn’t matter!). Moreover, note that f(x+) is a constant, so it’s just sitting there doing nothing. Hence,
we have computed that

0∫
−∞

(f(x− y)gε(y)− f(x+)g(y)) dy =

0∫
−∞

gε(y) (f(x− y)− f(x+)) dy.

Remember that y ≤ 0 where we’re integrating. Therefore, x− y ≥ x.

Idea!

Use the definition of right hand limit:

lim
y↑0

f(x− y) = f(x+) =⇒ lim
y↑0

f(x− y)− f(x+) = 0.

By the definition of limit there exists y0 < 0 such that for all y ∈ (y0, 0)

|f(x− y)− f(x+)| < δ̃.

204



We are using δ̃ for now, to indicate that δ̃ is going to be something in terms of δ, engineered in such a way
that at the end of our argument we get that for ε sufficiently small,∣∣∣∣∣∣

0∫
−∞

gε(y) (f(x− y)− f(x+)) dy

∣∣∣∣∣∣ < δ.

To figure out this δ̃, we use our estimate on the part of the integral from y0 to 0,∣∣∣∣∣∣
0∫

y0

(f(x− y)− f(x+))gε(y)dy

∣∣∣∣∣∣ ≤
0∫

y0

|f(x− y)− f(x+)||gε(y)|dy

≤ δ̃
0∫

y0

|gε(y)|dy ≤ δ̃
∫
R

|gε(y)|dy = δ̃||g||.

Above, we have used the same substitution trick to see that∫
R

|gε(y)|dy =

∫
R

|g(z)|dz = ||g||,

where ||g|| is the L1(R) norm of g. By assumption, g ∈ L1(R), so this L1 norm is finite. So, let

δ̃ =
δ

2||g||+ 1
.

Note that we’re not dividing by zero. So, this is a perfectly decent number. Then, we have the estimate
(repeating the above estimate)∣∣∣∣∣∣

0∫
y0

(f(x− y)− f(x+))gε(y)dy

∣∣∣∣∣∣ ≤
0∫

y0

|f(x− y)− f(x+)||gε(y)|dy

≤ δ̃
0∫

y0

|gε(y)|dy ≤ δ̃
∫
R

|gε(y)|dy ≤ δ

2
.

Idea!

To deal with the other part of the integral, from −∞ to y0, consider the two cases given in the statement of
the theorem separately. It is important to remember that

y0 < 0.

So, we wish to estimate ∣∣∣∣∣∣
y0∫
−∞

(f(x− y)− f(x+))gε(y)dy

∣∣∣∣∣∣ .
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Assume that g vanishes outside a bounded interval. We retain the first part of our estimate, that is

0∫
y0

|f(x− y)− f(x+)||gε(y)|dy < δ

2
.

Next, we again observe that

lim
ε↓0

y0

ε
= −∞.

By assumption that g vanishes outside a bounded interval, here exists some R > 0 such that

g(x) = 0∀x ∈ R with |x| > R.

Hence, we may choose ε sufficient small so that

y0

ε
< −R.

Specifically, let

ε0 =
1

−Ry0
> 0.

Then for all ε ∈ (0, ε0) we compute that
y0

ε
< −R.

Hence for all y ∈ (−∞, y0/ε) we have g(y) = 0. Thus, we compute as before using the substitution z = y/ε,

y0∫
−∞

|f(x− y)− f(x+)||gε(y)|dy =

y0/ε∫
−∞

|f(x− εz)− f(x+)||g(z)|dz = 0,

because g(z) = 0∀z ∈ (−∞, y0/ε). Thus, we have the total estimate that for all ε ∈ (0, ε0),∣∣∣∣∣∣
0∫

−∞

gε(y) (f(x− y)− f(x+)) dy

∣∣∣∣∣∣
≤

0∫
−∞

|gε(y)||f(x− y)− f(x+)|dy ≤
y0∫
−∞

|f(x− y)− f(x+)||gε(y)|dy +

0∫
y0

|f(x− y)− f(x+)||gε(y)|dy

< 0 +
δ

2
≤ δ.

Finally, we assume that f is bounded, which means that there exists M > 0 such that |f(x)| ≤M holds
for all x ∈ R. Hence

|f(x− y)− f(x+)| ≤ |f(x− y)|+ |f(x+)| ≤ 2M.

So, we have the estimate∣∣∣∣∣∣
y0∫
−∞

(f(x− y)− f(x+))gε(y)dy

∣∣∣∣∣∣ ≤
y0∫
−∞

|f(x− y)− f(x+)||gε(y)|dy ≤ 2M

y0∫
−∞

|gε(y)|dy.

We shall do a substitution now, letting z = y/ε. Then, as we have computed before,

y0∫
−∞

|gε(y)|dy =

y0/ε∫
−∞

|g(z)|dz.
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Here the limits of integration do change, because y0 < 0. Specifically y0 6= 0, which is why the top limit
changes. We’re integrating between −∞ and y0/ε. We know that y0 < 0. So, when we divide it by a really
small, but still positive number, like ε, then y0/ε→ −∞ as ε→ 0. Moreover, we know that

0∫
−∞

|g(y)|dy <∞.

What this really means is that

lim
R→−∞

0∫
R

|g(y)|dy =

0∫
−∞

|g(y)|dy <∞.

Hence,

lim
R→−∞

0∫
−∞

|g(y)|dy −
0∫

R

|g(y)|dy = 0.

Of course, we know what happens when we subtract the integral, which shows that

lim
R→−∞

R∫
−∞

|g(y)|dy = 0.

Since
lim
ε→0

y0/ε = −∞,

this shows that

lim
ε→0

y0/ε∫
−∞

|g(y)|dy = 0.

Hence, by definition of limit there exists ε0 > 0 such that for all ε ∈ (0, ε0),

y0/ε∫
−∞

|g(y)|dy < δ

4(M + 1)
.

Then, combining this with our estimates, above, which we repeat here,∣∣∣∣∣∣
y0∫
−∞

(f(x− y)− f(x+))gε(y)dy

∣∣∣∣∣∣ ≤
y0∫
−∞

|f(x− y)− f(x+)||gε(y)|dy ≤ 2M

y0∫
−∞

|gε(y)|dy

< 2M
δ

4(M + 1)
<
δ

2
.

Therefore, we have the estimate that for all ε ∈ (0, ε0),∣∣∣∣∣∣
0∫

−∞

gε(y) (f(x− y)− f(x+)) dy

∣∣∣∣∣∣
≤

0∫
−∞

|gε(y)||f(x− y)− f(x+)|dy ≤
y0∫
−∞

|f(x− y)− f(x+)||gε(y)|dy +

0∫
y0

|f(x− y)− f(x+)||gε(y)|dy
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<
δ

2
+
δ

2
= δ.

Corollary 116. Assume the same hypotheses as for the Big Bad CAT, and in addition assume that f is
continuous everywhere, and that α = β = 1

2 . Then we have for all x ∈ R,

lim
ε↘0

f ∗ gε(x) = f(x).

Proof: We apply the theorem, noting that since f is assumed to be continuous, for all x the left and
right limits are equal to the value of the function, specifically

f(x+) = f(x−) = f(x) =⇒ αf(x+) + βf(x−) = f(x), ∀x ∈ R.

As another corollary we solve the initial value problem for the homogeneous heat equation.

Corollary 117. Assume that f is a bounded, continuous function defined on R. Then, let

f(x, t) :=

∫
R

f(x− y)
e−y

2/(4t)

√
4πt

dy.

This function satisfies

∂tf(x, t)− ∂xxf(x, t) = 0 ∀t > 0, x ∈ R,

and

lim
t↘0

f(x, t) = f(x).

Figure 9.4: Having proven the theorem and its corollary, it is perfectly reasonable to rest and ponder the meaning
of these powerful mathematical results.
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Proof: First, we note that for t > 0 the integral converges beautifully, so we can differentiate under
the integral. Since we don’t know anything about f being differentiable, we use the fact that convolution is
commutative so we can move the x into the exponential, specifically

f(x, t) =

∫
R

f(y)
e−(x−y)2/(4t)

√
4πt

dy.

Now we differentiate with respect to t:

∂tf(x, t) =

∫
R

f(y)

[
(x− y)2

4t2
e−(x−y)2/(4t)(4πt)−1/2 − 1

2

1√
4π
t−3/2e−(x−y)2/(4t)

]
dy

=

∫
R

f(y)

[
(x− y)2

t3/28
√
π
− 1

4
√
πt3/2

]
e−(x−y)2/(4t)dy.

Next we differentiate with respect to x:

∂xf(x, t) =

∫
R

f(y)
−2(x− y)

4t
e−(x−y)2/(4t)(4πt)−1/2dy

=

∫
R

f(y)e−(x−y)2/(4t)−(x− y)

4t3/2
√
π
dy

and

∂xxf(x, t) =

∫
R

f(y)e−(x−y)2/(4t)

(
− 1

4
√
πt3/2

+
−2(x− y)

4t

(
−(x− y)

4t3/2
√
π

))
dy

=

∫
R

f(y)

(
−1

4t3/2
√
π

+
(x− y)2

8t3/2
√
π

)
e−(x−y)2/(4t)dy.

Does this look familiar? It’s the same as our calculation of ∂tf(x, t). So, indeed this function satisfies the
heat equation. To see that it also satisfies the initial condition, in the sense that limt↘0 f(x, t) = f(x), let’s
express this with help from

g(y) :=
e−y

2

√
π
.

This function is certainly in L1(R). Moreover

0∫
−∞

g(y)dy =
1

2
=

∞∫
0

g(y)dy.

So, the convolution approximation theorem tells us that

lim
ε↘0

f ∗ gε(x) = f(x).

On the left side this is ∫
R

f(x− y)g(y/ε)
dy

ε
=

∫
R

f(x− y)e−y
2/ε2 dy

ε
√
π
.

All that matters here is that ε > 0 and it tends to zero. Well, what if we just call
√

4t = ε. Then since
ε→ 0 is equivalent to sending t→ 0 we get

lim
t↘0

∫
R

f(x− y)e−y
2/(4t) dy√

4πt
= f(x).
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9.5 Applications of the Fourier transform: the initial value prob-
lem for the heat equation

The order in which we are doing things may seem a little strange, because we rather amazingly pulled the
solution to the heat equation out of thin air. How did we obtain it?

9.5.1 Homogeneous heat equation solved with help from the Fourier transform

We wish to solve: {
ut(x, t)− uxx(x, t) = 0, x ∈ R, t > 0

u(x, 0) = f(x),

where our initial data f is assumed to be bounded and continuous.

Idea!

Fourier transform the PDE with respect to the x variable, because x ∈ R, whereas t > 0, but the Fourier
transform integrates over all of R, thus x is the wise choice. We just drive over the whole PDE with the
Fourier transform!

So, doing that we have
ût(ξ, t)− ûxx(ξ, t) = 0.

Now, we use the theorem which gave us the properties of the Fourier transform. It says that if we take the
Fourier transform of a derivative, f̂ ′(ξ) = iξf̂(ξ). Using this twice,

ûxx(ξ, t) = −ξ2û(ξ, t).

Now, those of you who are picky about switching limits may not like this, but it is in fact rigorously valid:

∂tû(ξ, t) + ξ2û(ξ, t) = 0.

Hence
∂tû(ξ, t) = −ξ2û(ξ, t).

This is a first order homogeneous ODE for u in the t variable. We can solve it!!! We do that and get

û(ξ, t) = e−ξ
2tc(ξ).

The constant can depend on ξ but not on t. To figure out what the constant should be, we use the IC:

û(ξ, 0) = f̂(ξ) =⇒ c(ξ) = f̂(ξ).

Thus, we have found

û(ξ, t) = e−ξ
2tf̂(ξ).

Now, we use another property of the Fourier transform which says

f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ).
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So, if we can find a function whose Fourier transform is e−ξ
2t, then we can express u as a convolution of

that function and f . So, we are looking to find

g(x, t) such that ĝ(x, t) = e−ξ
2t.

We know how to go backwards from the Fourier transform, and that is done by using the FIT! The FIT
guarantees that

g(x, t) =
1

2π

∫
R

eixξe−ξ
2tdξ.

We can use some complex analysis to compute this integral. To do this, we shall complete the square in the
exponent:

−ξ2t+ ixξ = −
(
ξ
√
t− ix

2
√
t

)2

− x2

4t
.

Therefore we are computing ∫
R

exp

(
−
(
ξ
√
t− ix

2
√
t

)2

− x2

4t

)
dξ.

Using a contour integral, we can in fact ignore the imaginary part. To see this, first note that we are
integrating with respect to ξ, so we can for the moment just consider:

∞∫
−∞

exp

(
−
(
ξt− ix

2
√
t

)2
)
dξ.

We draw a box. The box has vertices in the complex plane at the points ±R and ±R+ ix
2
√
t
. The integrand

above is holomorphic for all ξ inside this box. Therefore the integral around the boundary of the box is zero.
When ξ = ±R, the integrand is very small, thus the integrals on the vertical sides of the box tend to zero.
Hence the integrals along the two horizontal sides of the box are also adding up to zero, which shows that

∞∫
−∞

exp

(
−
(
ξt− ix

2
√
t

)2
)
dξ =

∞∫
−∞

exp(−ξ2t2)dξ.

So, we compute (using a change of variables to y = ξ
√
t so t−1/2dy = dξ)∫

R

e−ξ
2tdξ =

1√
t

∫
R

e−y
2

dy =

√
π√
t
.

Hence, ∫
R

exp

(
−
(
ξ
√
t− ix

2
√
t

)2

− x2

4t

)
dξ =

√
π√
t
e−

x2

4t .

Recalling the factor of 1/(2π) we have

g(x, t) =
1

2π

√
π√
t
e−

x2

4t =
1

2
√
πt
e−

x2

4t .

Hence the solution is

u(x, t) = f ∗ g(x) =

∫
R

1

2
√
πt
f(x− y)e−y

2/(4t)dy.

If we naively set t = 0, we obtain an expression that does not make sense. So, how do we know that this
expression indeed gives us our initial data at t = 0? We use the BB CAT and its corollary!
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The corollary shows that

lim
t↘0

∫
R

f(x− y)
e−

y2

4t

√
4πt

dy = f(x), ∀x ∈ R.

Moreover, we also obtain that u(x, t) is smooth in both x and t for all t > 0, because the function we are
convolving with has these properties. The solution is also the unique one if we require the solution of the
homogeneous heat equation is a non-increasing function of t > 0. That makes sense physically, because there
is no source in our heat equation, so the heat should not be increasing as time passes.

9.5.2 Inhomogeneous heat equation

If you have an inhomogeneous IVP for the heat equation, here are two ways to deal with that:

1. If the inhomogeneity is time independent, look for a steady state solution to solve the inhomogeneous
equation. Then, solve the homogeneous equation, but change your initial data. If f is your steady
state solution and v was your initial data (before f came along), solve the IVP for the homogeneous
heat equation with IC v − f rather than just v.

2. If the inhomogeneity is time dependent, you can solve by Fourier transforming the whole PDE!

The second method subsumes the first, in fact, because it works for both time dependent as well as time
independent inhomogeneities, so we focus on that more powerful method.

Consider an inhomogeneous heat equation on R:

ut − uxx = G(x, t), u(x, 0) = f(x) is continuous and bounded.

We begin by Fourier transforming the whole equation

∂tû(ξ, t) + ξ2û(ξ, t) = Ĝ(ξ, t).

This is a first order ODE, and there is a method for solving it. The mµthod, the method of integrating
factor that is often called µ begins by computing

e
∫
ξ2dt = eξ

2t.

At this stage one can ignore the constant of integration. The solution to the inhomogeneous ODE is then
obtained as ∫ t

0
eξ

2sĜ(ξ, s)ds+ C(ξ)

eξ2t
= e−ξ

2t

t∫
0

eξ
2sĜ(ξ, s)ds+ C(ξ)e−ξ

2t.

We would like the initial condition to be satisfied, so when t = 0 we should obtain that this is equal to the
Fourier transform of the initial data,

f̂(ξ).

Since the integral from 0 to 0 is just zero, this shows us that the constant (at least from the perspective of
time, this is a constant) should be

C(ξ) = û(ξ, 0) = f̂(ξ).

The last term is therefore

f̂(ξ)e−ξ
2t.

This is the same as what we obtained in solving the homogeneous heat equation. The properties of the
Fourier transform indicate that this is the Fourier transform of the convolution of f and the function whose
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Fourier transform is e−ξ
2t. We can either look back at how we solved the homogeneous heat equation or

look it up on a table, and either way we obtain that

f̂(ξ)e−ξ
2t is the Fourier transform in x at ξ of

∫
R

f(x− y)e−y
2/(4t)(4πt)−1/2dy.

We therefore just need to understand the first part of the solution,

e−ξ
2t

t∫
0

eξ
2sĜ(ξ, s)ds.

We can bring in that factor to the integral:

=

t∫
0

eξ
2(s−t)Ĝ(ξ, s)ds.

So, what we would really like to do right now is invert the Fourier transform, by computing

1

2π

∫
R

eixξ
t∫

0

eξ
2(s−t)Ĝ(ξ, s)dsdξ.

The convergence is absolute, so we can switch the orders of the integrals

t∫
0

1

2π

∫
R

eixξeξ
2(s−t)Ĝ(ξ, s)dξds.

Consequently, we just need to inverse Fourier transform eξ
2(s−t)Ĝ(ξ, s). This is a product, so by the properties

of the Fourier transform, if we can identify a function whose Fourier transform is eξ
2(s−t), then the inverse

Fourier transform of eξ
2(s−t)Ĝ(ξ, s) is the convolution of that function with G. Since 0 ≤ s ≤ t, we write

eξ
2(s−t) = e−ξ

2(t−s), because this makes it clear that the exponent is not positive. So, we know how to
inverse Fourier transform this! The function whose Fourier transform is this is our heat kernel at time t− s,

H(y, t− s) =
1√

4π(t− s)
e−y

2/(4(t−s).

Consequently the function whose Fourier transform is e−ξ
2(t−s)Ĝ(ξ, s) is the convolution∫

R

G(x− y, s)H(y, t− s)dy =

∫
R

G(x− y, s) 1√
4π(t− s)

e−y
2/(4(t−s)dy.

So, this part of the solution is therefore

t∫
0

∫
R

G(x− y, s) 1√
4π(t− s)

e−y
2/(4(t−s)dyds,

and the full solution is

u(x, t) =

t∫
0

∫
R

G(x− y, s) 1√
4π(t− s)

e−y
2/(4(t−s)dyds+

∫
R

f(x− y)e−y
2/(4t)(4πt)−1/2dy.
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This solution satisfies our initial data because

lim
t↓0

t∫
0

1

2
√
π(t− s)

∫
R

e−
(y)2

4(t−s)G(x− y, s)dyds = 0,

and the BB CAT helps us with its corollary that guarantees

lim
t↓0

∫
R

1

2
√
πt
e−

(y)2

4t f(x− y)dy = f(x) ∀x ∈ R.

9.5.3 Computing tricky integrals: sometimes π falls out of the sky!

In some of my research I wish to compute complicated integrals. Like in this pre-print, for example https:

//arxiv.org/abs/2010.02776. I wanted very much to cheat and make Mathematica compute some integrals
there, but it could not do it. So, we had to do them by hand. In that work we used the residue theorem
from complex analysis, and that is a wonderful technique for computing difficult integrals. Now, you can
add a further technique to your mathematical toolbox: the Fourier transform.

Idea!

The following is a very useful observation:

f̂(0) =

∫
R

f(x)dx.

So, if you have the integral of a function, this is equal to the value of its Fourier transform at ξ = 0. So,
if you can look up the Fourier transform of the function in a table or list of Fourier transforms, like the
Mathematical Handbook Beta, then to compute the integral, no need for fancy contour integrals, simply
pop ξ = 0 into the Fourier transform. Here we have collected some of the most common functions and their
Fourier transforms in Table 9.1. You are welcome to use these!

Here is an example:

compute:

∫
R

1

x2 + 9
dx. (9.5.1)

We see the integrand is an item in Table 9.1; it is number 10 with a = 3. On the right side of the table, we
get the Fourier transform (with a = 3) is given by

π

3
e−3|ξ|.

So, the integral in (9.5.1) is equal to the Fourier transform of 1
x2+9 evaluated when ξ = 0. So, to compute

the value of the integral, we just take the Fourier transform on the right side of the table and plug in ξ = 0.
When we do this we obtain π

3 . Hence the value of the integral is∫
R

1

x2 + 9
dx =

π

3
.

This could look surprising because the integral on the left is a rational function, and yet what comes out is
a transcendental number. (π is transcendental, and therefore π

3 is also transcendental.) If we think about
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1. f(x) f̂(ξ)

2. f(x− c) e−icξ f̂(ξ)

3. eicxf(x) f̂(ξ − c)

4. f(ax) a−1f̂(a−1ξ)

5. f ′(x) iξf̂(ξ)

6. xf(x) i(f̂)′(ξ)

7. (f ∗ g)(x) f̂(ξ)ĝ(ξ)

8. f(x)g(x) (2π)−1(f̂ ∗ ĝ)(ξ)

9. e−ax
2/2

√
2π/ae−ξ

2/(2a)

10. (x2 + a2)−1 (π/a)e−a|ξ|

11. e−a|x| 2a(ξ2 + a2)−1

12. χa(x) :=

{
1 |x| < a

0 |x| > a
2ξ−1 sin(aξ)

13. x−1 sin(ax) πχa(ξ) =

{
π |ξ| < a

0 |ξ| > a

Table 9.1: On the left we have functions and on the right are their Fourier transforms. Here a > 0 and c ∈ R are
constants.
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Figure 9.5: It might seem weird that when we compute the integral of a rational function, like (x2 + a2), over the
real line, the result involves π. This is somewhat similar to how computing seemingly impossible sums using Fourier
series, we has had π falling out of the sky. With the Fourier transform, to make a distinction, it’s savory π, like a
pizza pie, that falls out of the sky.

complex analysis, however, it makes sense, because there is a 2π in the residue theorem. So, this pizza π
falling out of the sky is not such a surprise, but still we enjoy Figure 9.5.

Here is another example, we wish to compute∫
R

f(x)g(x)dx,

with some complicated functions f and g (see extra övning # 9). Now, you can use that the Fourier transform
of a product is

(2π)−1(f̂ ∗ ĝ)(ξ).

Hence, what you have above is∫
R

f(x)g(x)dx =

∫
R

e−i(0)xf(x)g(x)dx = (2π)−1(f̂ ∗ ĝ)(0).

So, if the Fourier transforms of these functions are somewhat better than the functions f and g, then the
stuff on the right could be nicely computable and give you the integral on the left. We will see examples of
this in the exercises at the end of the chapter.

As another example, let’s say that somehow you know the Fourier transform of f(t) is 1
|w|3+1 . We then

would like to compute ∫
R

|f ∗ f ′|2dt.
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This may seem impossible at first, because we only know the Fourier transform of f(t). We could start by
trying to use the FIT, that says

f(t) =
1

2π

∫
R

eiwt
1

|w|3 + 1
dw.

In fact, if you are in love with complex analysis, you could compute this integral explicitly using the residue
theorem. Then, you would need to compute the integral of |f ∗ f ′|2, and I reasonably expect things could
become extremely complicated. There is an easier way to the solution.

By the Plancharel theorem, ∫
R

|f ∗ f ′|2dt =
1

2π

∫
R

|f̂ ∗ f ′|2dt. (9.5.2)

Now we use the theorem on the properties of the Fourier transform which says

f̂ ∗ f ′(ξ) = f̂(ξ)f̂ ′(ξ).

Now we use that same theorem to say that

f̂ ′(ξ) = iξf̂(ξ).

So, the stuff on the right in (9.5.2) is
1

2π

∫
R

|f̂(ξ)iξf̂(ξ)|2dξ.

We are given what the Fourier transform is, so we put it in there:

1

2π

∫
R

ξ2

(|ξ|3 + 1)4
dξ.

Now this isn’t so terrible. It’s an even function so this is

1

π

∞∫
0

ξ2

(ξ3 + 1)4
dξ.

It just so happens that the derivative of

1

(ξ3 + 1)3
is
−9ξ2

(ξ3 + 1)4
,

so
1

π

∫
R

ξ2

(ξ3 + 1)4
dξ =

−1

9π

1

(ξ3 + 1)3

∣∣∣∣∞
0

=
1

9π
.

Voilá, more (pizza) π falls out of the sky!

9.6 Fourier sine and cosine transforms and applications to PDEs
on half-spaces

Today we shall investigate some transforms related to the Fourier transform. The first two can be used to
solve PDEs on half lines, if the boundary condition is suitable.
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9.6.1 Fourier sine and cosine transforms and their inverse formulas

Similar to the Fourier sine and cosine series, the Fourier sine and cosine transforms are obtained by taking
a function that is in L2(0,∞), and extending it to L2(R) to be either odd (sine transform) or even (cosine
transform).

Definition 118. Let f be in L1 or L2 on (0,∞). The Fourier cosine transform,

Fc(f)(ξ) :=

∞∫
0

f(x) cos(ξx)dx.

The Fourier sine transform,

Fs(f)(ξ) :=

∞∫
0

f(x) sin(ξx)dx.

As with the Fourier transform, the Fourier sine and cosine transforms also have inversion formula.

Theorem 119. Assume that f ∈ L2[0,∞). Then we have the Fourier cosine inversion formula

f(x) =
2

π

∞∫
0

Fc(f)(ξ) cos(xξ)dξ.

We also have the Fourier sine inversion formula

f(x) =
2

π

∞∫
0

sin(xξ)Fs(f)(ξ)dξ.

Proof: First, let us extend f evenly to R, denoting this extension by fe, so that fe(−x) = fe(x). We
compute the standard Fourier transform:

f̂e(ξ) =

∫
R

fe(x)e−ixξdx =

∫
R

fe(x)(cos(xξ)− i sin(xξ))dx = 2

∞∫
0

f(x) cos(xξ)dx.

The term with the sine has dropped out because fe(x) sin(xξ) is an odd function of x. The term with the
cosine gets doubled because fe(x) cos(xξ) is an even function. So, all together we have computed:

f̂e(ξ) = 2

∞∫
0

f(x) cos(xξ)dx = 2Fc(f)(ξ).

Since the cosine is an even function,
f̂e(ξ) = f̂e(−ξ).

So, we also have that Fc(f) is an even function. The inversion formula (FIT) says that

fe(x) =
1

2π

∫
R

eixξ f̂e(ξ)dξ =
1

π

∫
R

eixξFc(f)(ξ)dξ

=
1

π

∫
R

(cos(xξ) + i sin(xξ))Fc(f)(ξ)dξ =
2

π

∞∫
0

eixξFc(f)(ξ)dξ.
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This is the cosine-FIT! Above we have used the fact that Fc(f) is an even function. Hence its product with
the cosine is also an even function, so that part of the integral gets a factor of two when we integrate only
over the positive real line. The product of an even function like Fc(f) with an odd function, like the sine, is
odd, so that integral vanishes.

On the other hand, we may also define the odd extension, fo which satisfies fo(−x) = −fo(x) (for x 6= 0).
The value of f at zero is not really important at this moment.4 We compute the standard Fourier transform
of the odd extension:

f̂o(ξ) =

∫
R

fo(x)e−ixξdx =

∫
R

fo(x)(cos(xξ)− i sin(xξ))dx = −2i

∞∫
0

f(x) sin(xξ)dx

= −2iFs(f)(ξ).

Above, we have used the fact that fo is odd, and therefore so is its product with the cosine. On the other
hand, the product with the sine is an even function, which explains the factor of 2. Since the sine itself is
odd, we have that f̂o is an odd function and similarly Fs(f)(ξ) is also an odd function. We apply the FIT:

fo(x) =
1

2π

∫
R

eixξ f̂o(ξ)dξ = − i
π

∫
R

(cos(xξ) + i sin(xξ))Fs(f)(ξ)dξ

=
1

π

∫
R

sin(xξ)Fs(f)(ξ)dξ =
2

π

∞∫
0

sin(xξ)Fs(f)(ξ)dξ).

This is the sine-FIT! Above we have used the fact that Fs(f) is an odd function, and therefore so is its
product with the cosine. On the other hand the product of two odd functions is an even function, so that is
the reason for the factor of 2.

9.6.2 Solving the heat equation on a semi-infinite rod with insulated end

We wish to solve the problem:

ut − uxx = 0, ux(0, t) = 0, u(x, 0) = f(x), x ∈ [0,∞).

Assume that by some method, we have obtained a solution u(x, t) defined on [0,∞)x × [0,∞)t. To see if we
may use a Fourier sine or cosine transform method, let us see what happens when we extend our solution
evenly or oddly. The even extension would satisfy, by the cosine-FIT:

ue(x, t) =
2

π

∞∫
0

Fc(u)(ξ) cos(xξ)dξ.

The odd extension would satisfy, by the sine-FIT

uo(x, t) =
2

π

∞∫
0

sin(xξ)Fs(f)(ξ)dξ.

4This is because we are working in L2 which ignores sets of measure zero, and a single point is a set of measure zero.
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OBS! The extension matches up with our original function on the positive real line (that is how an extension
works!) We need the derivative with respect to x to vanish at x = 0. Let’s just differentiate these expressions.
Note that the x dependence is only in the sine or cosine term so we have:

∂xue(x, t) = − 2

π

∞∫
0

Fc(u)(ξ)ξ sin(xξ)dξ =⇒ ∂xue(0, t) = 0.

On the other hand

∂xuo(x, t) =
2

π

∞∫
0

ξ cos(xξ)Fs(u)(ξ)dξ =⇒ ∂xuo(0, t) =
2

π

∞∫
0

ξFs(u)(ξ)dξ =???

The even extension automatically gives us the desired boundary condition whereas the odd extension leads
to something complicated looking, which we have no reason to know is zero.

Although we could try to work with the Fourier cosine transform to solve this problem, we would then
need to prove an analogue of Theorem 110 for the Fourier cosine transform, and that is rather a lot of work.
It is a bit easier to do this procedure instead:

1. Extending the initial data evenly to the real line.

2. Solving the problem using the Fourier transform on the real line.

3. Verifying that the solution satisfies all the conditions: the PDE, the IC, and the BC.

We do this. Extend f evenly, and write the extension as fe. Then the solution to the homogeneous heat
equation on the real line with initial data fe is

ue(x, t) =
1

2
√
πt

∫
R

fe(y)e−
(x−y)2

4t dy.

We split up the integral:
0∫

−∞

fe(y)e−(x−y)2/(4t)dy +

∞∫
0

fe(y)e−(x−y)2/(4t)dy

= −
0∫
∞

fe(z)e
−(z+x)2/(4t)dz +

∞∫
0

fe(y)e−(x−y)2/(4t)dy.

Above we made the substitution that z = −y in the first integral. Due to the evenness of fe, nothing happens
when we change y = −z. Reversing the limits of integration we obtain

−
0∫
∞

fe(z)e
−(z+x)2/(4t)dz =

∞∫
0

fe(z)e
−(z+x)2/(4t)dz =

∞∫
0

fe(y)e−(x+y)2/(4t)dy.

So, all together we have

ue(x, t) =
1

2
√
πt

∞∫
0

f(y)

(
e−

(x−y)2
4t + e−

(x+y)2

4t

)
dy.

Is this an even function? Let us verify:

e−
(x−y)2

4t + e−
(x+y)2

4t = e−
(−x−y)2

4t + e−
(−x+y)2

4t .
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AWESOME! Our solution to the heat equation in this way is EVEN. Therefore, it is the same on the left
and right sides. So, we can simply let

u(x, t) = ue(x, t) =
1

2
√
πt

∞∫
0

f(y)

(
e−

(x−y)2
4t + e−

(x+y)2

4t

)
dy.

The way we have built it, it satisfies the IC, BC, and the PDE!

Exercise 120. Solve:

ut − uxx = 0, u(0, t) = 0, u(x, 0) = φ(x), x ∈ [0,∞).

Above, we assume that φ is bounded, continuous, and in L2. Hint: extend φ oddly this time, and follow the
analogous procedure.

9.7 Dirichlet problem in a quadrant

Consider the problem

uxx + uyy = 0, x, y > 0, u(x, 0) = f(x), u(0, y) = g(y).

To deal with these inhomogeneities let us instead solve two nicer problems:

1. wxx + wyy = 0, x, y > 0, w(x, 0) = f(x), w(0, y) = 0.

2. vxx + vyy = 0, x, y > 0, v(x, 0) = 0, v(0, y) = g(y).

The full solution will then be obtained by setting

u(x, y) = w(x, y) + v(x, y).

Exercise 121. Verify that if w and v solve the problems above, then indeed u solves the original problem.

We would like to use Fourier methods, but the problems we have above x, y > 0. The Fourier transform
is defined on the whole plane. So, we may wish to use an even or odd extension.

Idea!

To solve a problem like wxx + wyy = 0, x, y > 0, w(x, 0) = f(x), w(0, y) = 0, look at the boundary
condition. The solution should vanish at x = 0. Now think about sine and cosine. Which of these vanishes
at x = 0? The sine. That is an odd function. So this gives us the clue to extend oddly.

We define therefore

fo(x) :=

{
f(x) x > 0

−f(−x) x < 0
.

Now, we take the Fourier transform of the PDE in the x variable. We obtain:

−ξ2ŵ(ξ, y) + ∂yyŵ(ξ, y) = 0 =⇒ ŵ(ξ, y) = A(ξ)e−ξy +B(ξ)eξy.

The boundary condition we have says that

ŵ(ξ, 0) = f̂(ξ) = A(ξ) +B(ξ).
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Now, in our problem, we have y > 0. So, if we look at the term eξy this grows exponentially as y →∞. Thus,
it did not come from a function in L2 or in L1. It did not come from something Fourier-transformable. So,
we shall try to solve the problem using only the part which decays as y → infty. The boundary condition
at y = 0 acts like an initial condition, at least from x’s perspective:

ŵ(ξ, 0) = A(ξ) = f̂o(ξ) =⇒ ŵ(ξ, y) = f̂o(ξ)e
−ξy.

We look at the table to find a function whose Fourier transform is e−ξy. OBS! The transform is occurring in
the x variable, from whose perspective y is a constant. Thus, the item on the table is a slight modification
of 10, in particular the function

y

π
(x2 + y2)−1 has Fourier transform in the x variable e−y|ξ|.

Thus, we have found

ŵ(ξ, y) = f̂o(ξ)
̂y

π
(x2 + y2)−1(ξ).

The Fourier transform sends convolutions to products, which tells us that

w(x, y) =

∞∫
−∞

fo(z)
y

π((x− z)2 + y2)
dz =

0∫
−∞

fo(z)
y

π((x− z)2 + y2)
dz +

∞∫
0

f(z)
y

π((x− z)2 + y2)
dz

We do a substitution in the first integral, with t = −z

=

0∫
−∞

fo(z)
y

π((x− z)2 + y2)
dz = −

0∫
∞

fo(−t)
y

π((x+ t)2 + y2)
dt

=

0∫
∞

f(t)
y

π((x+ t)2 + y2)
dt = −

∞∫
0

f(t)
y

π((x+ t)2 + y2
dt.

Re-naming the variable of integration z, we get

w(x, y) =

∞∫
0

f(z)

[
y

π((x− z)2 + y2)
− y

π((x+ z)2 + y2)

]
dz.

The other problem is basically identical, we simply Fourier transform in the y variable. Thus the solution
to the second problem is

v(x, y) =

∞∫
0

g(z)

[
x

π((y − z)2 + x2)
− x

π((y + z)2 + x2)

]
dz.

We obtain the full solution by adding:

u(x, y) = w(x, y) + v(x, y).

9.8 The Sampling Theorem and the discrete and fast Fourier trans-
forms

The Sampling Theorem is an amazing fact. It states that if the Fourier transform of a function lives in a
bounded interval, then the function is completely specified by its values at a discrete set of points. A few
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explanations are in order. We say that a function lives in a bounded interval if it is never seen outside that
interval, in other words, if it vanishes outside that interval. A function vanishes when it is equal to zero.
So, this means that such a function only assumes nonzero values within some interval (a, b) for some a < b
which are real numbers. By defining

L = max{|a|, |b|},

then we can also say that the function only assumes nonzero values on the (probably larger) interval [−L,L].
The discrete set of values mentioned is then the set of points{nπ

L

}
n∈Z

.

Sure, there are infinitely many such points, but they are discrete in the sense that they are evenly spaced,
they never cluster up. The theorem says that we can specify the value of f at all t ∈ R, including those
values that fall between these points. Now, the vast majority of points of R are not contained in this discrete
set, so this is a pretty amazing fact! The reason it is called the sampling theorem is that we can think of
measuring the value of f at these points as sampling f . We just need to sample f at these points, and
then we recover f completely on all of R. This is pretty amazing, and it is also related to the Heisenberg
uncertainty principle. The theorem is proven by expanding f̂ in a Fourier series, which can be done because
f̂ lives on a bounded interval. Then we do some clever manipulations and invoke the FIT to prove the
theorem. It is a beautiful interplay between Fourier series and the Fourier transform!

9.8.1 The sampling theorem

Theorem 122 (Sampling Theorem). Let f ∈ L2(R). We take the definition of the Fourier transform of f
to be ∫

R

e−ixξf(x)dx,

and we then assume that there is L > 0 so that f̂(ξ) = 0 ∀ξ ∈ R with |ξ| > L. Then:

f(t) =
∑
n∈Z

f
(nπ
L

) sin(nπ − tL)

nπ − tL
.

Proof:

Idea!

Since the Fourier transform f̂ has compact support, (meaning it lives inside a bounded interval and is zero
everywhere else) we can expand it as a Fourier series.

We therefore have

f̂(x) =

∞∑
−∞

cne
inπx/L, cn =

1

2L

L∫
−L

e−inπx/Lf̂(x)dx.

Idea!
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Use the FIT to express f in terms of its Fourier transform.
We therefore have

f(t) =
1

2π

∫
R

eixtf̂(x)dx =
1

2π

L∫
−L

eixtf̂(x)dx.

On the left we have used the fact that f̂ is supported in the interval [−L,L], thus the integrand is zero
outside of this interval, so we can throw that part of the integral away.

Idea!

Substitute the Fourier expansion of f̂ into the integral.
So, we have

f(t) =
1

2π

L∫
−L

eixt
∞∑
−∞

cne
inπx/Ldx.

From here until the end of the proof, we will essentially just be computing. The coefficients

cn =
1

2L

L∫
−L

e−inπx/Lf̂(x)dx =
1

2L

∫
R

eix(−nπ/L)f̂(x)dx =
2π

2L
f

(
−nπ
L

)
.

In the second equality we have used the fact that f̂(x) = 0 for |x| > L, so by including that part we don’t
change the integral. In the third equality we have used the FIT!!! So, we now substitute this into our formula
above for

f(t) =
1

2π

L∫
−L

eixt
∞∑
−∞

π

L
f

(
−nπ
L

)
einπx/Ldx

This is approaching the form we wish to have in the theorem, but the argument of the function f has a
pesky negative sign. That can be remedied by switching the order of summation, which does not change the
sum, so

f(t) =
1

2L

L∫
−L

eixt
∞∑
−∞

f
(nπ
L

)
e−inπx/Ldx.

We may also interchange the summation with the integral5

f(t) =
1

2L

∞∑
−∞

f
(nπ
L

) L∫
−L

ex(it−inπ/L)dx.

We then compute

L∫
−L

ex(it−inπ/L)dx =
eL(it−inπ/L)

i(t− nπ/L)
− e−L(it−inπ/L)

i(t− nπ/L)
=

2i

i(t− nπ/L)
sin(Lt− nπ).

5None of this makes sense pointwise; we are working over L2. The key property which allows interchange of limits, integrals,
sums, derivatives, etc is absolute convergence. This is the case here because elements of L2 have

∫
|f |2 < ∞. That is precisely

the type of absolute convergence required.
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Substituting,

f(t) =

∞∑
−∞

f
(nπ
L

) sin(Lt− nπ)

Lt− nπ
.

Of course my dyslexia has ended up with things being backwards, but it is not a problem because sine is
odd so

sin(Lt− nπ) = − sin(nπ − Lt),

so
sin(Lt− nπ)

Lt− nπ
=
− sin(nπ − Lt)

Lt− nπ
=

sin(nπ − Lt
nπ − Lt

.

9.8.2 Discrete and fast Fourier transforms

We have seen that computing the Fourier transform is not the easiest thing in the world. The example with
the Gaussian involving all those tricks: completing the square, complex analysis and contour integral is a
nice and easy case. However, in the real world you may come across functions and not know how to compute
the Fourier transform by hand, nor be able to find it in BETA. Or it could simply never have been computed
analytically. In this case you may compute something called the discrete Fourier transform.

We start with a function, f(t), and think of analyzing f(t) as time analysis, whereas analyzing f̂(ξ) as
frequency analysis. We shall consider a finite dimensional Hilbert space:

CN =

{
(sn)N−1

n=0 , sn ∈ C, 〈(sn), (tn)〉 :=

N−1∑
n=0

sntn

}
.

Now let

ek(n) :=
e2πikn/N

√
N

.

Proposition 123. Let
ek := (ek(n))N−1

n=0 .

Then
{ek}N−1

k=0

are an ONB of CN .

Proof: We simply compute. It is so cute and discrete!

〈ek, ej〉 =
1

N

N−1∑
n=0

e2πikn/Ne−2πijn/N =
1

N

N−1∑
n=0

e2πi(k−j)n/N .

If j = k the terms are all 1, and so the total is N which divided by N gives 1. Otherwise, we may without
loss of generality assume that k > j (swap names if not the case). Then we are staring at a geometric series!
We know how to sum it

N−1∑
n=0

e2πi(k−j)n/N =
1− e2πi(k−j)N/N

1− e2πi(k−j)/N = 0.

Here it is super important that k− j is a number between 1 and N − 1. We know this because 0 ≤ j < k ≤
N − 1. Hence when we subtract j from k, we get something between 1 and N − 1. So we are not dividing
by zero!
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Now we shall fix T small and N large and look at f(t) just on the interval [0, (N − 1)T ]. Let

f(tn) := f(nT ), tn = nT.

Basically, we’re going to identify f with an element of CN , namely

(f(tn))N−1
n=0 .

Definition 124. Let

wk :=
2πk

NT
.

The discrete Fourier transform of f at wk is defined to be

F (wk) := 〈(f(tn)), ek〉 =

N−1∑
n=0

f(tn)e−2πikn/N

√
N

.

This can also be written as
N−1∑
n=0

f(tn)e−iwktn√
N

.

Example 125. One of the fun facts about the discrete Fourier transform is that we can Fourier transform
functions which are neither in L2 nor in L1. For example, let’s compute the discrete Fourier transform of

f(x) = x, T =
1

10
, N = 5.

So, we identify f with the vector
(0, 0.1, 0.2, 0.3, 0.4).

Then,

F (wk) :=

4∑
n=0

ne−2πikn/5

10
√

5
.

So, we identify the Fourier transform of f with the vector(
4∑

n=0

n

10
√

5
,

4∑
n=0

ne−2πin/5

10
√

5
,

4∑
n=0

ne−4πin/5

10
√

5
,

4∑
n=0

ne−6πin/5

10
√

5
,

4∑
n=0

ne−8πin/5

10
√

5

)
.

Proposition 126. We have the inversion formula

f(tn) =

N−1∑
k=0

F (wk)en(k) = 〈(F (wk)), en〉.

Proof: We simply compute. By definition

〈(F (wk)), en〉 =

N−1∑
k=0

F (wk)en(k).

Now, we insert the definition of F (wk) which gives us another sum, so we use a different index there. Hence
we have

N−1∑
k=0

N−1∑
m=0

f(tm)e−iwktm√
N

e2πikn/N

√
N

=
1

N

∑∑
f(tm)e−2πikm/Ne2πikn/N
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=
1

N

∑∑
f(tm)e2πik(n−m)/N =

1

N

N−1∑
m=0

f(tm)

N−1∑
k=0

e2πik(n−m)/N

=

N−1∑
m=0

f(tm)

N−1∑
k=0

e−2πikm/N

√
N

e−2πikn/N

√
N

=

N−1∑
m=0

f(tm)〈em, en〉.

By the proposition we just proved before,

〈em, en〉 = δn,m =

{
0 n 6= m

1 n = m.

So, the only term which survives is when m = n, and so we get

f(tn).

Example 127. Now, let’s see if the inversion formula actually works for our example... First, we should
have

4∑
k=0

F (wk)e0(k) =

4∑
k=0

4∑
n=0

ne−2πikn/5

10
√

5

1√
5

=
1

50

4∑
n=0

n

4∑
k=0

e−2πikn/5 =
1

50

4∑
n=1

1− e−2πin

1− e−2πin/5
= 0 = f(t0).

Let’s try another value:
4∑
k=0

F (wk)e1(k) =

4∑
k=0

4∑
m=0

me−2πikm/5

10
√

5

e2πik/5

√
5

=
1

50

4∑
n=1

n

4∑
k=0

e−2πik(n−1)/5.

For n = 2, 3, 4, the sum over k gives

1− e−2πi(n−1)

1− e−2πi(n−1)/5
= 0.

For n = 1, the sum over k gives 5. Thus, the only term that survives is the term with n = 1, for which we
obtain

1

50
(1)(5) =

1

10
= f(t1).

So, it is indeed working as it should. This is rather tedious, however.

Now, we can see this as matrix multiplication. In the discrete Fourier transform, we sampled f at the
finitely many points t0, . . . , tN−1. We therefore identify f with a vector

f(t0)
f(t1)

...
f(tN−1)

 .
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Similarly, the Fourier transform can be identified with the vector:
F (w0)
F (w1)
. . .

F (wN−1)

 .
This vector is the product of the matrix [

ē0 ē1 . . . ēN−1

]
whose columns are

ēn =
1√
N



e0

e−2πin/N

e−2πi(2)n/N

. . . e−2πikn/N

. . .
e−2πin(N−1)/N


together with the vector 

f(t0)
f(t1)
. . .

f(tN−1)


That is 

F (w0)
F (w1)
. . .

F (wN−1)

 =
[
ē0 ē1 . . . ēN−1

] 
f(t0)
f(t1)
. . .

f(tN−1)


This entails a LOT of calculations. We can speed it up by being clever. Many calculations are repeated

in fact. Assume that N = 2X for some giant power X. The idea is to split up into even and odd terms. We
do this:

F (wk) =
1√
N

N
2 −1∑
j=0

f(t2j)e
−2πik(2j)/N +

N
2 −1∑
j=0

f(t2j+1)e−2πik(2j+1)/N

 .
We introduce the slightly cumbersome notation:

ekN (n) = e−2πikn/N .

Then,

ekN (2j) = e−2πik(2j)/N = e−2πikj/(N/2) = ekN/2(j).

Now we only need an N
2 ×

N
2 matrix! You see, writing this way,

F (wk) =
1√
N

N
2 −1∑
j=0

f(t2j)e
k
N/2(j) + ekN (1)

N
2 −1∑
j=0

f(t2j+1)ekN/2(j)

 .
We can repeat this many times because N is a power of 2. We just keep chopping in half. If we do this as
many times as possible, we will need to do on the order of

N

2
log2(N)
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computations. This is in comparison to the original method which had an N ×N matrix and was thus on
the order of N2 computations. For example, if N = 210, then comparing N2 = 220 to N

2 log2N = 29 ∗ 10,
we see that

210 ∗ 5

220
=

x

100
=⇒ 100 ∗ 210 ∗ 5 = 220x =⇒ 22 ∗ 53 ∗ 2102−20 = x,

so
532−8 = x ≈ 0.488.

This means the amount of work we are doing by using the FFT is less than 0.5% of the work done using the
standard DFT. In other words, we save over 99.5% by doing the FFT. That’s why it’s called FAST.

9.9 Fourier transforms in mathematical physics

In signal processing, it is impossible for a signal to be both band-limited and time-limited. Mathematically,
this means that it is impossible for both a function and its Fourier transform to vanish outside a finite
interval, unless the function is identically zero, meaning there is no signal. Here we prove this mathematical
fact, and therefore prove the real life consequence to signal processing.

9.9.1 A signal cannot be both band-limited and time-limited

It is convenient to introduce a common mathematical definition here.

Definition 128. A function is said to have compact support if it vanishes everywhere outside a compact set.
The aforementioned compact set is the support of the function, and we say that the function is supported on
that set. For functions from Rn to C, compact sets of Rn are those sets which are closed and bounded. A
function from R to C has compact support if and only if there is L > 0 such that f(x) = 0 for all x with
|x| > L.

The following proposition is of its own independent interest.

Proposition 129. Assume that f ∈ L2(R), and that f has compact support. Then f ∈ L1(R).

Proof: We will use the Cauchy & Schwarz inequality. Assume that f(x) = 0 for all x ∈ R with |x| > L
for some L. Then,∫

R

|f(x)|dx =

∫
R

χ[−L,L](x)|f(x)|dx ≤

√√√√∫
R

χ[−L,L](x)2dx

√√√√∫
R

|f(x)|2dx

=
√

2L||f ||L2(R) <∞.
Above we have used the characteristic function that is 1 inside the interval (−L,L) and zero outside of it

χ[−L,L](x) =

{
1 |x| < L

0 |x| > L.
.

We have also used the assumption that f ∈ L2(R), so its L2 norm is finite.

We consider the Fourier transform but now we wish to evaluate the transform at complex values z ∈ C,
so we begin by investigating

F (z) :=

∫
R

e−ixzf(x)dx =

∫
R

e−ixRe(z)ex Im(z)f(x)dx.
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Since f vanishes for |x| > L, we have the estimate∫
R

|ex Im(z)f(x)|dx ≤ eL| Im(z)|
∫
R

|f(x)|dx <∞,

because we have proven in the proposition that f ∈ L1(R).
Consequently, the function ex Im(z)f(x) ∈ L1(R) for any z ∈ C and therefore has a well defined Fourier

transform, and so

F (z) =

∫
R

e−ixzf(x)dx =

∫
R

e−ixRe(z)ex Im(z)f(x)dx

is a well defined function on C. We would like to prove that it is entire by applying the dominated convergence
theorem. Since

d

dz
e−ixzf(x) = (−ix)e−ixzf(x),

we similarly estimate
|(−ix)e−ixzf(x)| ≤ LeL| Im(z)||f(x)| ∈ L1(R),

because ∫
R

LeL| Im(z)||f(x)|dx = LeL| Im(z)|
∫
R

|f(x)|dx = LeL| Im(z)|||f ||L1(R).

The dominated convergence theorem therefore allows us to differentiate under the integral and proves that
F (z) is an entire function of z. If F (z) restricted to the real axis is zero outside of a bounded interval, then
it is zero everywhere in C by the identity theorem. If this is the case, then the FIT immediately implies that
the original function f was zero everywhere. Consequently, presuming f is non-zero, its Fourier transform
(on the real axis) cannot be confined to a bounded interval. This always makes me think of peanut butter.
If we start with a function that lives in a bounded interval, nice and neat and tidy, and then take its Fourier
transform, the values of the function that were constrained within the bounded interval get smeared out over
the whole real line. If you don’t like peanut butter, imagine some other tasty spread. If you really like it,
you want to spread it out over every corner of your cracker or bread, not missing a spot. This is what the
Fourier transform does; it takes the function that is constrained to its little container (interval) and smears
it out over the whole real line (bread).

Conversely, if we assume the Fourier transform of a function, say ĝ lives in a bounded interval, we apply
the same argument to the function

G(z) :=
1

2π

∫
R

eizxĝ(x)dx.

This function is equal to g(z) when z ∈ R, but it is also a holomorphic function on all of C by the same
arguments as above.

Exercise 130. Work out all the details of the proof in this case, mimicking the arguments for the case when
f lives in a bounded interval. That is, assuming that ĝ lives in a bounded interval, prove that g lives in a
bounded interval if and only if both g and ĝ are identically equal to zero.

9.9.2 The Heisenberg uncertainty principle

The fact that a signal cannot be both time-limited and band-limited is related to the uncertainty principle.
In quantum mechanics, a particle like an electron moving in one dimension is described by a wave function
f : R → C, such that the L2 norm is equal to one. The value of |f(x)|2 at x ∈ R is interpreted as the
probability density that the particle is found at the point x. For this reason the L2 norm is equal to one,
because the particle is somewhere. A slight modification of the Fourier transform of the wave function

1√
2π~

∫
R

f(x)e−ixp/~dx =: f̆(p) (9.9.1)
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Figure 9.6: The Fourier transform takes a function that is confined to a bounded interval, like a jar, and then
smears it out over the entire real like, like peanut butter. Or, if you prefer a more exotic spread for your bread,
try kaya! Kaya is a coconut jam made from a base of coconut milk, eggs and sugar. It is popular with Malaysians,
Indonesians and Singaporeans. There are two varieties: nyonya kaya, which is is a lighter-green colour as shown here,
and Hainanese kaya, which is a darker brown kind that uses caramelized sugar, changing the colour. Image license
and source: creative commons 1.0 https://openclipart.org
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is the probability density of the momentum of the particle. The position-momentum uncertainty principle
states that we cannot know both the position and the momentum of the particle. We make a precise
formulation of this that is known as Heisenberg’s inequality and prove it here!

Definition 131. The dispersion of a function f about a point a is defined to be

Daf =

∫
R(x− a)2|f(x)|2dx∫

R |f(x)|2dx
,

whenever the integrals on the right side are defined.

The reason we call this the dispersion of f near a is because it measures how much f is concentrated
near the point a. Let’s take a quantum wave function, for example, so the denominator is equal to one. If
the particle is very likely to be found near the point a, for example if f is zero everywhere outside of a small
interval around a, [a− ε, a+ ε], then for α ∈ (a− ε, a+ ε)

Dαf =

a+ε∫
a−ε

(x− α)2|f(x)|2dx ≤ ε2,

because the interval over R of |f |2 is equal to one. On the other hand, for α very far from a, let’s say

|α− a| > R+ ε =⇒ Dαf =

a+ε∫
a−ε

(x− α)2|f(x)|2dx ≥ R2.

So the farther α is from where f lives, the larger Dαf becomes. So, Da is small if the support of f is
concentrated around a, and Da is large if the support of f is far away from a. Heisenberg’s inequality states
that f and f̂ cannot both be concentrated near single points.

Theorem 132 (Heisenberg’s inequality). For any f ∈ L2(R) that is not identically zero, and for all a, α ∈ R,

(Daf)(Dαf̂) ≥ 1

4
. (9.9.2)

Proof: First, note that if xf(x) is not in L2(R), this means that∫
R

x2|f(x)|2dx =∞ =⇒ Da(f) =∞.

Note that since the integrand in the definition of Da is non-negative, Da is zero if and only if f = 0, and so
if xf(x) is not in L2(R) then f 6= 0 implying that f̂ 6= 0, and therefore in this case the left side of (9.9.2) is
infinite. So, henceforth we assume that xf(x) ∈ L2(R).

Since smooth functions are dense in L2, by a limiting argument using the dominated convergence theorem,
we assume that f is differentiable. We then have by the Plancherel theorem∫

R

|f ′(x)|2dx =
1

2π

∫
R

((̂f ′)(ξ))2dξ =
1

2π

∫
R

ξ2|f̂(ξ)|2dξ.

If ξf̂(ξ) is not in L2(R), then the right side of this equation is infinite, and by the same argument as above,
the left side of (9.9.2) is also infinite. So, we may henceforth assume that we also have f ′ ∈ L2(R).

For the sake of simplicity, let us now address the case in which a = α = 0. Then we compute using
integration by parts that for real numbers A and B

B∫
A

xf(x)f ′(x)dx = x|f(x)|2
∣∣B
A
−

B∫
A

(|f(x)|2 + xf(x)f ′(x))dx.
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Re-arranging
B∫
A

|f(x)|2dx = x|f(x)|2
∣∣B
A
−

B∫
A

xf(x)f ′(x)dx−
B∫
A

xf(x)f ′(x)dx.

Since x is real-valued we note that

B∫
A

xf(x)f ′(x)dx =

B∫
A

xf(x)f ′(x)dx.

Adding a number to its complex conjugate we obtain twice the real part, and so

B∫
A

(xf(x)f ′(x) + xf(x)f ′(x))dx =

B∫
A

2 Re(xf(x)f ′(x))dx = 2 Re

B∫
A

xf(x)f ′(x)dx.

Consequently,
B∫
A

|f(x)|2dx = x|f(x)|2
∣∣B
A
− 2 Re

B∫
A

xf(x)f ′(x)dx.

Since xf(x), f , and f ′ are all in L2(R), the limits exist

lim
A→−∞,B→∞

B∫
A

|f(x)|2dx, lim
A→−∞,B→∞

Re

B∫
A

xf(x)f ′(x)dx.

In the last integral, this is the L2 scalar product of xf(x) and f ′(x) which is finite since each of these
functions is in L2. Consequently, re-arranging, the limits

lim
A→−∞

A|f(A)|2, lim
B→∞

B|f(B)|2

both exist. These limits must both be zero, because otherwise, if A|f(A)|2 → c then for all large x,
|f(x)|2 ≈ c

x but the integral of c
x does not converge as x→∞. The same argument shows that B|f(B)|2 → 0

as well. So, we obtain ∫
R

|f(x)|2dx = −2 Re

∫
R

xf(x)f ′(x)dx.

By the Cauchy & Schwarz inequality,∫
R

|f(x)|2dx

2

≤ 4

∫
R

x2|f(x)|2dx

∫
R

|f ′(x)|2dx

 = 4

∫
R

x2|f(x)|2dx

∫
R

|f ′(x)|2dx


As we have seen with the Plancharel theorem calculation above,∫

R

|f ′(x)|2dx =
1

2π

∫
R

((̂f ′)(ξ))2dξ =
1

2π

∫
R

ξ2|f̂(ξ)|2dξ.

The Plancharel theorem also tells us that

1

2π

∫
R

|f̂(ξ)|2dξ =

∫
R

|f(x)|2dx.
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Figure 9.7: I could not resist these partycles. Quantum particles are rather like crazy partying partycles. They
dance around so much that if you see a partycle in one location, you have no idea where it is headed to next. If you
don’t know its location but know its momentum, like the beat to which it dances, you have no idea where it’s at.
Image license and source: creative commons 1.0 https://openclipart.org

Consequently∫
R

|f(x)|2dx

2

=

∫
R

|f(x)|2dx 1

2π

∫
R

|f̂(ξ)|2dξ ≤ 4

∫
R

x2|f(x)|2dx

 1

2π

∫
R

ξ2|f̂(ξ)|2dξ.

Since we have assumed that f is not identically zero, neither is its Fourier transform, and so we may divide
obtaining

1

4
≤
∫
R x

2|f(x)|2dx
|f(x)|2dx

∫
R ξ

2|f̂(ξ)|2dξ∫
R |f̂(ξ)|2dξ

= D0(f)D0(f̂).

To complete the proof, let F (x) := e−iαxf(x+ a). Then if f satisfies the hypotheses of the theorem, so does

F . Moreover Daf = D0F , and Dαf̂ = D0F̂ . We therefore apply the same arguments above to obtain that

(Daf)(Dαf̂) = (D0F )(D0F̂ ) ≥ 1

4
.

As a corollary we obtain the precise formulation of the position-momentum uncertainty principle for
quantum particles.

Corollary 133 (Position-momentum uncertainty principle). Let f(x) be a wave function associated to a
quantum particle, that is a function in L2(R) such that∫

R

|f(x)|2dx = 1,

so that f(x) is the probability density of the quantum particle. Then

(Daf)(Dαf̆) ≥ ~2

4
,
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with f̆ the probability distribution of the momentum of the quantum particle as defined in (9.9.1).

Proof: Recalling the definition of f̆ in (9.9.1) we see that

f̆(p) =
1√
2π~

f̂(p/~).

we compute that∫
R

(x− a)2|f̆(x)|2dx =
1

2π~

∫
R

(x− a)2|f̂(x/~)|2dx =
~

2π

∫
R

(x/~− a/~)2|f̂(x/~)|2dx

=
~2

2π

∫
(y − a/~)2|f̂(y)2|dy.

In the last step we made the change of variables y = x
~ . Similarly we compute that∫

R

|f̆(x)|2dx =
1

2π~

∫
R

|f̂(x/~)|2dx =
1

2π

∫
R

|f̂(y)|2dy.

Consequently

Da(f̆) =
~2

2π

∫
(y − a/~)2|f̂(y)2|dy

1
2π

∫
R |f̂(y)|2dy

= ~2Da/~(f̂).

By the Heisenberg inequality with α = a/~ we have

Da(f)Da(f̆) = ~2Da(f)Da/~(f̂) ≥ ~2

4
.

The uncertainty principle is often considered one of the mysteries of quantum mechanics, but the principle
itself is not so strange from the perspective of a wave. The strange part is the fact that quantum particles
behave like waves! From the perspective of a wave, the inverse relationship between its temporal or spatial
localization, that is the more localized it is in time the more spread out it is in space and vice versa, is
quite natural. We see this with the peanut butter smearing effect of the Fourier transform: start with a
function with compact support, then this support gets smeared out over the whole real line creating a Fourier
transform that does not have compact support but rather is smeared out over the whole real line. Similarly,
if a quantum particle is localized in space, then its momentum distribution is impossible to predict, and
vice versa. You can know where the particle is, but you can’t know where it’s going. Or you could know
where the particle is going, but then you don’t know its starting point! This seems mysterious, but the real
mystery is: why do quantum particles display these wave-like features?

9.9.3 Quantization of pseudodifferential operators

With all this investigation of quantum mechanics and quantum particles, I’d like to connect with the same
‘quantum’ terminology that is used in my field of research. Researchers in my field talk about ‘quantizing’
operators. When I first heard this, I was very confused. How on earth do you quantize, for example, a
differential operator? And why on earth is it called quantizing? Well, it actually makes quite a lot of
sense and connects with the rather strange fact that quantum particles can act like waves. The process
of quantization makes sense for a very general class of operators known as pseudodifferential operators;
all partial differential operators and ordinary differential operators are pseudodifferential operators but not
the other way around. The process of quantization allows us to represent the operator with an integral
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that involves a wave function! So, we take the operator, and we make it wave-like, similar to the way
quantum particles behave wave-like. I am not sure if the people who invented the terminology ‘to quantize
a pseudodifferential operator’ justified their terminology with this explanation, but I think it makes sense.
The quantization of a pseudodifferential operator is, for an operator Ψ,

Ψu(x) =
1

2π

∫
R

∫
R

ei(x−y)ξσ(x, y, ξ)u(y)dydξ.

As an operator, Ψ acts on functions, and so for such a function Ψu is another function. The value of this
function at the point x is given by the integral expression on the right. The function σ(x, y, ξ) is a function
that depends on the variables x, y, and ξ. We can interpret the product ei(x−y)ξσ(xy, ξ) as a wave with the
amplitude of the wave given by the function σ. This is intimately related to the Fourier transform, as we
will illustrate with an example. Assume that f and its derivative are Fourier transformable. Then by the
FIT,

f ′(x) =
1

2π

∫
R

eixξ (̂f ′)(ξ)dξ =
1

2π

∫
R

∫
R

ei(x−y)ξf ′(y)dydξ =
1

2π

∫
R

∫
R

(iξ)ei(x−y)ξf(y)dydξ,

having used integration by parts in the last step. So, with this example the quantization of the differential
operator d

dx is obtained by taking σ = iξ, a function that depends only on ξ. Representing the differential
operator in this way we have replaced differentiation with integration of the product of a wave function,
e−(x−y)ξ, a symbol function (in this case σ = iξ), and the function that we are operating on (in this case f).
This is pretty awesome. Essentially we can transform differential operators into integral operators that act by
integrating the product of the function we’re operating on together with a wave, viewing σ as the amplitude
of the wave function ei(x−y)ξ. Quantum particles have wave-like characteristics, and (pseudo)-differential
operators are quantized by representing them as integration with the product of an wave function and its
amplitude function.

9.10 Exercises

1. (EO 6a, b) Compute the Fourier transforms of:

t

(t2 + a2)2
,

1

(t2 + a2)2
.

2. [4, 7.2.8] Given a > 0 let f(x) = e−xxa−1 for x > 0, f(x) = 0 for x ≤ 0. Show that f̂(ξ) = Γ(a)(1+iξ)−a

where Γ is the Gamma function.

3. (EO 6d,e) Compute the Fourier transform of:

e−a|t| sin(bt), (a, b > 0),
t

t2 + 2t+ 5
.

4. [4, 7.2.12] For a > 0 let

fa(x) =
a

π(x2 + a2)
, ga(x) =

sin(ax)

πx
.

Use the Fourier transform to show that: fa ∗ fb = fa+b and ga ∗ gb = gmin(a,b).

5. (EO 12) Let

f(t) =

1∫
0

√
wew

2

cos(wt)dw.

Compute ∫
R

|f ′(t)|2dt.
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6. [4, 7.2.13.b] Use Plancharel’s theorem to compute:∫
R

t2

(t2 + a2)(t2 + b2)
dt =

π

a+ b
.

7. (EO 7) A function has Fourier transform

f̂(ξ) =
ξ

1 + ξ4
.

Compute ∫
R

tf(t)dt, f ′(0).

8. (EO 9) Compute (with help of Fourier transform)∫
R

sin(x)

x(x2 + 1)
dx.

9. (EO 15) Find a solution to the equation

u(t) +

t∫
−∞

eτ−tu(τ)dτ = e−2|t|.

10. (EO 55) The function f(x) is continuous and has Fourier transform equal to

f̂(ξ) =
ln(1 + ξ2)

ξ2
.

Determine f(0) and
∫
R f(x)dx.

11. [4, 7.3.1] Use the Fourier transform to find a solution of the ordinary differential equation u′′ − u +
2g(x) = 0 where g ∈ L1(R). The solution obtained in this way is the one that vanishes at ±∞.

12. [4, 7.4.1.a.b] Compute the Fourier sine and cosine transforms of e−kx. These are defined, respectively,
to be

Fs[f ](ξ) =

∞∫
0

f(x) sin(ξx)dx, Fc[f ](ξ) =

∞∫
0

f(x) cos(ξx)dx.

13. [4, 7.4.4] Solve the heat equation ut = kuxx on the half line x > 0 with boundary conditions u(x, 0) =
f(x) and initial condition u(0, t) = 0. Do the same for the inhomogeneous heat equation ut = kuxx +
G(x, t) with the same initial and boundary conditions.

14. [4, 7.4.6] Solve Laplace’s equation uxx + uyy = 0 in the semi-infinite strip x > 0, 0 < y < 1 with
the boundary conditions ux(0, y) = 0, uy(x, 0) = 0, u(x, 1) = e−x. Express the answer as a Fourier
integral.

15. (EO 11) For the function

f(t) =

2∫
0

√
w

1 + w
eiwtdw,

compute ∫
R

f(t) cos(t)dt,

∫
R

|f(t)|2dt.

237



16. (EO 14) Solve for u:

∞∫
0

e−τu(t− τ)dτ −
0∫

−∞

eτu(t− τ)dτ =
√

3u(t)− e−|t|.

17. (EO 45) Find a bounded solution to{
ut = kuxx, x ∈ R, t > 0,

u(x, 0) = (1− 2x2)e−x
2

, x ∈ R.

18. [4, 7.4.7] Solve Laplace’s equation uxx + uyy = 0 in the semi-infinite strip x > 0, 0 < y < 1 with the
boundary conditions u(0, y) = 0, u(x, 0) = 0, u(x, 1) = e−x. Express the answer as a Fourier integral.

19. (EO 47) Assume that f ∈ L2(R). Find a solution to{
uxx + uyy = 0 x ∈ R, 0 < y < a,

u(x, 0) = 0, u(x, a) = f(x).

Show that ∫
R

|u(x)|2dx ≤
∫
R

|f(x)|2dx.

20. [4, 7.1.2] Let f(x) = |x|−p where 1
2 < p < 1. Show that f is in neither L1(R) nor L2(R) but that f

can be expressed as the sum of an L1(R) function and an L2(R) function.

21. (EO 67) Compute the Fourier transform of the characteristic function for the interval (a, b) both directly
and by using the known case for the interval (−a, a).

22. [4, 7.3.2] Use the Fourier transform to derive the solution of the inhomogeneous heat equation ut =
kuxx +G(x, t) with initial condition u(x, 0) = f(x) (assume f ∈ L2(R):

u(x, t) = f ∗H(x) +

∫
R

t∫
0

G(y, s)Kt−s(x− y)dsdy.

Here the heat kernel (with the heat conductivity parameter k) is

H(x) =
1√

4πkt
e−x

2/4kt.

23. [4, 7.1.1] Which of the following functions are in L1(R)? In L2(R)?

(a) sin(x)
|x|3/2

(b) (1 + x2)−1/2

(c) 1
x2−1

(d) 1−cos x
x2

24. [4, 7.1.3] Let

f(x) =

{
1 |x| < 1

0 |x| > 1.
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(a) Compute f ∗ f and f ∗ f ∗ f .

(b) Let fε(x) = ε−1f(ε−1x) as in the BBC, and let g(x) = x3 − x. Compute fε ∗ g and check that
fε ∗ g → 2g as ε→ 0. Note that

∫
f
(x)dx = 2.

25. [4, 7.1.4] Let f(x) = e−x
2

and g(x) = e−2x2

. Compute f ∗ g. (Hint: complete the square in the
exponent as done here in the text.)

26. [4, 7.1.5] For t > 0 let ft(x) = (4πt)−1/2e−x
2/(4t). Show that ft ∗ fs = ft+s. (Hint: the preceding

exercise is helpful.)

27. [4, 7.1.6] For t > 0 let ft(x) = x1−t/Γ(t) for x > 0 and ft(x) = 0 for x ≤ 0. Show that ft ∗ fs = ft+s.
(Hint: you may need to call upon the beta function).

28. [4, 7.1.7] Show that for any δ > 0 there is a function φ on R with the following properties: φ ∈ C∞,
0 ≤ φ ≤ 1, φ(x) = 1 for all x ∈ [0, 1], φ(x) = 0 for all x < −δ and x > 1 + δ. (Hint: start with an
f(x) = 1 for − 1

2δ ≤ x ≤ 1 + δ
2 and 0 otherwise. Show that f ∗Kε does the job for

K(y) =

{
C−1e−1/(1−y2) |y| < 1

0 |y| ≥ 1,
C =

1∫
−1

e−1/(1−y2)dy,

and for ε < δ
2 . This may seem weird but this type of function is very useful in quite a lot of analysis

and geometry. One can do the same to create so-called bump functions that are 1 on an interval of our
choice, quickly vanish to zero outside the interval, and are smooth. In particular these are often used
to create partitions of unity in analysis and geometry.

29. [4, 7.1.8] Show that for any f ∈ L2(R) and any δ > 0 there is a function g such that g ∈ C∞, g vanishes
outside a finite interval, and ||f − g|| < δ. This is the L2 norm. (Hint: start with F (x) = f(x) for
|x| < N and 0 otherwise. Show that ||F − f || < δ

2 if N is sufficiently large. Then show that g = F ∗Kε

does the job if K is as in the preceding exercise and ε is sufficiently small.) This might also seem weird,
but it shows us that we can approximate L2 functions with smooth ones. That is extremely useful.

30. [4, 7.2.3] Assume that g ∈ L1(R) has
∫
R g(x)dx = 1, and that ĝ ∈ L1(R). Show that ĝ(δξ) → 1 as

δ → 0 for all ξ ∈ R. Show that for any continuous f ∈ L1(R)

lim
δ→0

1

2π

∫
R

eixξ ĝ(δξ)f̂(ξ)dξ = f(x).

What happens if f is only piecewise continuous?

31. [4, 7.2.6] Show that sin(x)
x is not in L1(R). (Hint: Show that

∫ nπ
(n−1)π

x−1| sin(x)|dx > 2
n for n ∈ N.)

32. [4, 7.2.7] Assume that f is continuous and piecewise C1, with f and f ′ both in L2(R). Show that

f̂ ∈ L1(R). (Hint: first show that
∫
R(1+ξ2)|f̂(ξ)|2dξ <∞ and then use the Cauchy-Schwarz inequality.)

33. [4, 7.2.9] Use the Residue Theorem to compute the Fourier transform of (x4 + 1). You should obtain

π√
2
e−|ξ|

2/
√

2

(
cos

ξ√
2

+ sin
|ξ|
2

)
.

34. [4, 7.2.10] Let f(x) = (sinh(ax))/(sinh(πx)) for some 0 < a < π. Use the Residue Theorem to show
that

f̂(ξ) = 2i
∑
n≥1

(−1)ne−n|ξ| sinh(ina).
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Use the fact that 2 sinh(ina) = eina − e−ina and sum the geometric series to show that

f̂(ξ) =
sin(a)

cosh ξ + cos a
.

35. [4, 7.2.11] Given ν > − 1
2 let f(x) = (1− x2)ν−1/2 for |x| < 1 and 0 otherwise. Show that

f̂(ξ) = 2ν
√
πΓ(ν + 1/2)ξ−νJν(ξ).

36. [4, 7.2.14] Let hn be the nth Hermite function, that is defined to be e−x
2/2Hn(x), where Hn is the nth

Hermite polynomial. Show that
ĥn(ξ) =

√
2π(−i)nhn(ξ).

(Hint: use induction on n.) This shows that the Hermite functions are eigenfunctions for the Fourier
transform. In fact, they are a basis of eigenfunctions for L2(R).

37. [4, 7.2.15] Let `n(x) = e−x/2L0
n(x) for x > 0, and 0 otherwise, where L0

n denotes the Laguerre polyno-

mial, and let φn(ξ) = (2π)−1/2 ˆ̀
n(ξ). Show that

φn(ξ) =

√
2

π

(2iξ − 1)n

(2iξ + 1)n+1
.

(Hint: plug the definition of L0
n into the formula defining ˆ̀

n and integrate by parts n times).

38. [4, 7.3.3] Consider the wave equation utt = c2uxx with initial conditions u(x, 0) = f(x) and ut(x, 0) =
g(x). Assuming that all Fourier transforms in question exist, show that

û(ξ, t) = f̂(ξ) cos(ctξ) + ĝ(ξ)(cξ)−1 sin(ctξ).

Invert the Fourier transform to obtain d’Alembert’s formula for u.

39. [4, 7.3.4] Solve the Dirichlet problem in an infinite strip: uxx + uyy = 0 for x ∈ R and 0 < y < b with
u(x, 0) = f(x) and u(x, b) = g(x). (Hint: first do the case f = 0. The case g = 0 reduces to this one
by the substitution y → b− y, and the general case is obtained by superposition.)

40. [4, 7.3.5] Let S be the infinite cylinder of radius a, given in cylindrical coordinates by the equation
r = a. Solve the problem

urr + r−1ur + uzz = 0 inside S, u(a, z) = 1 if |z| < `, u(a, z) = 0 otherwise.

Physically, the function u is the electrostatic potential inside S if the portion of S with |z| < ` is held
at potential 1, and the rest of S is held at potential 0. Use the Fourier transform in z, and express the
answer as an integral.

41. [4, 7.3.6] Suppose f ∈ L2(R) represents a signal. Show that the best approximation to f in the L2(R)
norm among all signals that are band-limited in the interval [−Ω,Ω] is

g0(t) = (2π)−1

Ω∫
−Ω

f̂(ω)eiωtdω.

That is show that ||g0−f || ≤ ||g−f || for all g such that ĝ(ω) = 0 for |ω| > Ω. (Hint: use the Plancharel
theorem.)

42. [4, 7.3.7] State and prove a version of the sampling theorem for signals whose Fourier transforms vanish
outside an interval [a, b]. (Hint: consider g(t) = e−i(b−a)t/2f(t).)
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43. [4, 7.4.1] Compute the Fourier cosine transform of (1 + x)e−x. Compute the Fourier sine transform of
xe−x.

44. [4, 7.4.2] Let f and g be in L1(0,∞). Show that the product of the Fourier sine transform of f and
the Fourier cosine transform of g is the Fourier sine transform of h where

h(x) =

∞∫
0

f(y)
g(|x− y|)− g(x+ y)

2
dy,

and that the product of the Fourier sine transform of f and the Fourier sine transform of g is

H(x) =

∞∫
0

f(y)
sgn(x− y)g(|x− y|)− g(x+ y)

2
dy,

where sgn(t) = 1 if t > 0, and sgn(t) = −1 if t < 0.

45. [4, 7.4.3] Suppose f is continuous and piecewise smooth, and that both f and f ′ are in L1(0,∞). Show
that

Fc[f ′](ξ) = ξFs[f ](ξ)− f(0), Fs[f ′](ξ) = −ξFc[f ](ξ),

where Fc denotes the Fourier cosine transform, and Fs denotes the Fourier sine transform.

46. [4, 7.4.5] Solve the Dirichlet problem in the first quadrant: uxx+uyy = 0 for x, y > 0, with u(x, 0) = f(x)
and u(0, y) = g(y). (Hint: start with the special cases f = 0 and g = 0. Then use superposition.)

47. [4, 7.4.8] Find the steady-state temperature in a plate occupying the semi-infinite strip x > 0, 0 < y < 1
if the edges y = 0 and x = 0 are insulated, the edge at y = 1 is maintained at temperature for 1 for
x < c and at temperature 0 for x > c, and the faces of the plate lose heat to the surroundings according
to Newton’s law with proportionality constant h. That is solve

uxx + uyy − hu = 0, ux(0, y) = uy(x, 0) = 0,

u(x, 1) = 1 if x < c, u(x, 1) = 0 if x ≥ c.

The answer may be expressed as an integral.
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Chapter 10

The Laplace transform can be applied
as long as we stay on the heavyside!

Another useful transform, known as the Laplace transform, is a very close relative of the Fourier transform.
There is an important distinction, and that is that we can only apply the Laplace transform to functions
that stay on the heavyside. The heavyside function

Θ(x) =

{
1 x > 0

0 x < 0.

Therefore the heavyside function stays on the heavyside, which is the positive real axis, because it vanishes
everywhere else. The Laplace transform is defined for functions that also stay on the heavyside.

Definition 134. Assume that
f(t) = 0 ∀t < 0, (10.0.1)

and that there exists a,C > 0 such that

|f(t)| ≤ Ceat ∀t ≥ 0. (10.0.2)

Then for we define for z ∈ C with Re(z) > a the Laplace transform of f at the point z to be

Lf(z) = f̂(−iz) =

∞∫
0

f(t)e−ztdt.

We may also use the notation
f̃(z) = Lf(z).

It is in general a good idea to check that this transform is well-defined, and for this we estimate

|Lf(z)| ≤
∞∫

0

|f(t)e−zt|dt ≤
∞∫

0

Ceat|e−zt|dt =

∞∫
0

eate−Re(z)tdt

=
et(a−Re(z))

a− Re(z)

∣∣∣∣∞
0

=
1

Re(z)− a
.

Above we have used the fact that ∣∣ecomplex number
∣∣ = ereal part.
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Figure 10.1: The Laplace transform can be applied, as long as we stay on the heavyside. Here, the elephant is
on the right side, similar to the heavyside function that lives on the right side of the real line, in the sense that it
vanishes everywhere else. So, it is only ever seen on the right side of the real line, the positive real axis. It lives on
the heavyside! Image license and source: creative commons 1.0 https://openclipart.org.

Due to this beautiful convergence, Lf(z) is holomorphic in the half plane Re(z) > a. This is because we
may differentiate under the integral sign due to the absolute convergence of the integral. The assumption
that f(t) = 0 for all negative t is not actually necessary, we could just make it so. For this purpose we define
the heavyside function, commonly denoted by

Θ(t) :=

{
1 t ≥ 0

0 t < 0
.

If we have some f defined on R which satisfies (10.0.2) but is not (10.0.1), we can apply the Laplace transform
to Θf . Another thing which can happen is that we have a function which is only defined on [0,∞). In that
case, we can just extend it to be identically zero on (−∞, 0).

10.1 Properties of the Laplace transform

We will become familiar with the Laplace transform by demonstrating some of its fundamental properties.

Proposition 135 (Properties of L). Assume f and g satisfy (10.0.2) and (10.0.1), then

1. Lf(x+ iy)→ 0 as |y| → ∞ for all x > a.

2. Lf(x+ iy)→ 0 as x→∞ for all y.

3. L(Θ(t− a)f(t− a))(z) = e−azLf(z).

4. L(ectf(t))(z) = Lf(z − c).

5. L(f(at)) = a−1Lf(a−1z).

6. *** If f is continuous and piecewise C1 on [0,∞), and f ′ satisfies (10.0.2) and (10.0.1), then

L(f ′)(z) = zLf(z)− f(0).

244

https://openclipart.org


7. L(
∫ t

0
f(s)ds)(z) = z−1Lf(z).

8. L(tf(t))(z) = −(Lf)′(z).

9. L(f ∗ g)(z) = Lf(z)Lg(z).

10. If t−1f(t) satisfies (10.0.1) and (10.0.2), then

L(t−1f(t))(z) =

∞∫
z

Lf(w)dw.

The integral is any contour in the w-plane which starts at z along which Imw stays bounded and
Rew →∞.

Proof: There’s a bunch of stars next to #6 because it’s the reason the Laplace transform is useful for
solving PDEs and ODEs. It’s quite similar to how the Fourier transform takes in derivatives and spits out
multiplication. Intuitively, this fact about L should jive with the similar fact about F because well, the
Laplace transform is just the Fourier transform evaluated at a complex number.

(1) The first statement

Lf(z) =

∞∫
0

e−(x+iy)tf(t)dt =

∞∫
0

e−xtf(t)e−iytdt = ĝ(y),

for the function
g(t) = e−xtf(t).

The Riemann-Lebesgue Lemma says that ĝ(y)→ 0 when |y| → ∞.
(2) The second statement is more satisfying because we just compute and estimate directly. We did this

estimate above already, where we got

|Lf(z)| ≤ 1

Re(z)− a
→ 0 when Re(z) = x→∞.

(3) The third statement is also a direct computation:

L(Θ(t− a)f(t− a))(z) =

∞∫
0

Θ(t− a)f(t− a)e−ztdt =

∞∫
−a

Θ(s)f(s)e−z(s+a)ds.

Above we did the substitution s = t−a so ds = dt. Since f and the Heavyside function are zero for negative
s, and the Heavyside function is 1 for positive s, this is

e−za
∞∫

0

f(s)e−zsds = e−zaLf(z).

(4) Similarly, we directly compute

L(ectf)(z) =

∞∫
0

ecte−ztf(t)dt =

∞∫
0

e−(z−c)tf(t)dt = Lf(z − c).

(5) Again no surprise, we compute

L(f(at))(z) =

∞∫
0

e−ztf(at)dt =

∞∫
0

e−zs/af(s)
ds

a
= a−1Lf(z/a).

245



Here we used the substitution s = at so a−1ds = dt.
(6) Now we are finally getting to the important one:

L(f ′)(z) =

∞∫
0

e−ztf ′(t)dt = e−ztf(t)
∣∣∞
0

+

∞∫
0

ze−ztf(t)dt.

We have used integration by parts above. By (10.0.2) and since Re(z) > a, the limit as t→∞ is zero, and
so we get

L(f ′)(z) = −f(0) + zLf(z).

Awesome.
(7) Next we define

F (t) =

t∫
0

f(s)ds.

Then, we use the preceding fact:

L(F ′)(z) = zLF (z)− F (0) = zLF (z).

Since F ′ = f we get

z−1L(f)(z) = L(

t∫
0

f(s)ds)(z).

(8) Next, we compute:

L(tf(t))(z) =

∞∫
0

te−ztf(t)dt =

∞∫
0

d

dz

(
−e−zt

)
f(t)dt

=
d

dz

− ∞∫
0

e−ztf(t)dt

 = −(Lf)′(z).

Yes, we have used the absolute convergence of the integral to swap limits. It’s legit yo.
(9) Nearing the finish line, we compute

L(f ∗ g)(z) = F(f ∗ g)(−iz) = f̂(−iz)ĝ(−iz) = Lf(z)Lg(z).

(10) Finally, note that by (10.0.2), if t−1f(t) satisfies this, then at the point t = 0 apparently the function
f vanishes, so that the function t−1f(t) is well defined. So, don’t panic about this point!!! We next define
the holomorphic function

F (z) =

∞∫
z

f̃(w)dw.

Since f̃(w)→ 0 when Re(w)→∞ and Im(w) stays bounded, the fundamental theorem of calculus says that

F ′(z) = −f̃(z).

On the other hand,

d

dz

∞∫
0

t−1f(t)e−ztdt =

∞∫
0

−f(t)e−ztdt = −f̃(z).
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Figure 10.2: There is a saying that an elephant never forgets. This elephant is to remind us that the Laplace
transform can be applied as long as we stay on the heavyside. If we have any doubt about this, we should include
heavyside functions together with every function we Laplace transform, and just transform f(t)Θ(t) where Θ(t) = 0
for t < 0 and Θ(t) = 1 for t > 0, is the heavyside function.

Hence,

F (z) =

∞∫
0

t−1f(t)e−ztdt+ c,

for some constant c. Since

lim
Re z→∞

F (z) = 0 = lim
Re(z)→∞

∞∫
0

t−1f(t)e−ztdt =⇒ c = 0.

10.1.1 Laplace transform tables

Here we present some Laplace transforms; the function is on the left, its transform on the right.

Definition 136. There are two important functions known as the error function, denoted

erf(z) :=
2√
π

z∫
0

e−t
2

dt,

and the complementary error function, denoted

erfc(z) := 1− erf(z) =
2√
π

∞∫
z

e−t
2

dt.
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1. f(t) Lf(z) = f̃(z)

2. Θ(t− a)f(t− a) e−az f̃(z))

3. ectf(t) ˜f(z − c)

4. f(at) a−1 ˜f(a−1z)

5. f ′(t) zf̃(z)− f(0)

6. f (k)(t) zkf̃(z)−
∑k−1

0 zk−1−jf (j)(0)

7.
∫ t

0
f(s)ds z−1f̃(z)

8. tf(t) −f̃ ′(z)

9. t−1f(t)
∫∞
z
f̃(w)dw

10. f ∗ g(t) f̃(z)g̃(z)

11. tνect Γ(ν + 1)(z − c)−ν−1

12. (t+ a)−1 eaz
∫∞
az

e−u

u du

13. sin(ct) c
z2+c2

14. cos(ct) z
z2+c2

Table 10.1: Here a > 0 is constant and c ∈ C.

10.2 Application to solving linear constant coefficient ordinary
differential equations

By the properties of the Laplace transform we have demonstrated

L(f ′)(z) = zLf(z)− f(0).

If we differentiate again, we obtain

L(f ′′)(z) = zL(f ′)(z)− f ′(0) = z (zLf(z)− f(0))− f ′(0) = z2Lf(z)− zf(0)− f ′(0).

A pattern is emerging.

Proposition 137. Assume that f and all derivatives of f up to the kth satisfy the assumptions of Definition
134, so that we may apply the Laplace transform. Then

L(f (k))(z) = zkLf(z)−
k∑
j=1

f (k−j)(0)zj−1.
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15. sinh(ct) c
z2−c2

16. cosh(ct) z
z2−c2

17. sin(
√
at)

√
πa(4z3)−1/2e−a/(4z)

18. t−1 sin(
√
at) π erf(

√
a/(4z)

19. e−a
2t2 (

√
π/(2a))ez

2/(4a2) erfc(z/2a)

20. erf(at) z−1ez
2/(4a2) erfc(z/(2a))

21. erf(
√
t) (z

√
z + 1)−1

22. et erf(
√
t) ((z − 1)

√
z)−1

23. erfc(a/(2
√
t)) z−1e−a

√
z

24. t−1/2e−
√
at

√
π/zea/(4z) erfc(

√
a/(4z))

25. t−1/2e−a
2/(4t)

√
π/ze−a

√
z

26. t−3/2e−a
2/(4t) 2a−1

√
πe−a

√
z

27. tνJν(t) 2νπ−1/2Γ(ν + 1/2)(z2 + 1)−ν−1/2

28. J0(
√
t) z−1e−1/(4z)

Table 10.2: Here a > 0 is constant and c ∈ C.

Proof: It is reasonable to prove this using induction, because we have already established the base case

L(f ′)(z) = zLf(z)− f(0).

Here k = 1 and the sum has only one term with j = k = 1. It works. Now we assume the above formula
holds for k, and we show it then also holds for k + 1. We compute

L(f (k+1))(z) = L((f (k))′)(z) = zL(f (k))(z)− f (k)(0).

By the assumption that the formula holds for k, this is

z

zkLf(z)−
k∑
j=1

f (k−j)(0)zj−1

− f (k)(0).

This is

zk+1Lf(z)−
k∑
j=1

f (k−j)(0)zj − f (k)(0).
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Let us change our sum: let j + 1 = l. Then our sum is

k+1∑
l=2

fk−(l−1)(0)zl−1 =

k+1∑
l=2

f (k+1−l)(0)zl−1.

Observe that
f (k)(0) = fk+1−1(0)z1−1.

Hence

−
k∑
j=1

f (k−j)(0)zj − f (k)(0) = −
k+1∑
l=1

f (k+1−l)(0)zl−1.

So, we have computed

L(f (k+1))(z) = zk+1Lf(z)−
k+1∑
l=1

f (k+1−l)(0)zl−1.

That is the formula for k + 1, which is what we needed to obtain.

For this reason one can use L to solve all linear constant coefficient ODEs which can be non-homogeneous!
Any linear, constant coefficient ODE of order n can be re-arranged to take the form

n∑
k=0

cku
(k)(t) = f(t).

In order for the solution to be unique, there must be specified initial conditions on u, that is the values of

u(0), u′(0), . . . u(n−1)(0)

should all be specified. The right side of the equation is a function f(t) that is given. If it is the zero function,
then the equation is called homogeneous. If that is not the case, then the equation is inhomogeneous. General
inhomogeneous ODEs of this type are notoriously difficult to solve! Well, not anymore! With the power
of the Laplace transform, here we give a recipe to solve any and every linear constant coefficient ODE,
homogeneous or not!

The first step is to hit the entire equation with the Laplace transform. With our motto reminding us to
stay on the heavyside like in Figure 10.1, we can imagine the Laplace transform is like a great big elephant
that tramples across the whole equation:

n∑
k=0

ckL(u(k))(z) = f̃(z).

Let’s write out the left side using our proposition.
First we have

c0ũ(z).

Then we have
c1 (zũ(z)− u(0)) .

By our proposition, we computed that for k ≥ 1,

L(cku
(k))(z) = ck

zkũ(z)−
k∑
j=1

u(k−j)(0)zj−1

 .
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Figure 10.3: To solve a linear, constant coefficient ordinary differential equation, we start by trampling over the
whole equation with the Laplace transform. It is like a great big elephant that runs across the whole equation, and it
is not bothered in case the right side of the equation is non-zero. The elephant can trample an inhomogeneous ODE,
that is one whose right side is non-zero, just as well as it can trample a homogeneous ODE, that is one whose right
side is zero!

Therefore the left side of the ODE becomes

c0ũ(z) +

n∑
k=1

ck

zkũ(z)−
k∑
j=1

u(k−j)(0)zj−1


=

n∑
k=0

ckz
kũ(z)−

n∑
k=1

ck

k∑
j=1

u(k−j)(0)zj−1.

We therefore define two polynomials

P (z) :=

n∑
k=0

ckz
k,

Q(z) := −
n∑
k=1

ck

k∑
j=1

u(k−j)(0)zj−1.

Our ODE has been LAPLACE-TRANSFORMED, or Laplace-trampled by the elephant in Figure 10.3 into

P (z)ũ(z) +Q(z) = f̃(z).

We can solve this for ũ(z):

ũ(z) =
f̃(z)−Q(z)

P (z)
.

Hence to get our solution u(t) we just need to invert the Laplace transform of the right side, that is our
solution will be

u(t) = L−1

(
f̃(z)−Q(z)

P (z)

)
.
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This is one of the reason that literal entire books have been written dedicated solely to computing Laplace
transforms of functions; see for example [17] noting that it is over 400 pages.

10.3 Application of the Laplace transform to solving PDEs

It is a bit more work, but we can also use the Laplace transform to solve partial differential equations.
The telegraph equation, generalizes both the homogeneous heat equation as well as the homogeneous wave
equation, by taking certain choices of the constants in the equation below

uxx = αutt + βut + γu.

The equation reduces to the heat equation if we take α = γ = 0, and β = 1. It becomes the wave equation
if β = γ = 0, and α = 1. In its full generality, with the coefficients α, β and γ all non-zero, this equation
describes an electromagnetic signal on a cable.

We wish to solve the problem on a half line with the following boundary and initial conditions:

u(0, t) = f(t), u(x, 0) = ut(x, 0) = 0.

Idea!

If we have a half-line problem with boundary condition at x = 0 that is a function of t try using the Laplace
transform in the t variable.

We follow the hint and hit the whole PDE with the Laplace transform in the t variable; here comes the
elephant! This gives

ũxx(x, z) = αL(utt)(x, z) + βL(ut)(x, z) + γũ(x, z).

We use the properties of the Laplace transform and the initial conditions which say

u(x, 0) = 0, ut(x, 0) = 0,

so
ũxx(x, z) = αz2ũ(x, z) + βzũ(x, z) + γũ(x, z).

This is simply
ũxx(x, z) =

(
αz2 + βz + γ

)
ũ(x, z).

It’s a second order, linear, constant coefficient, homogeneous ODE for the x variable. Let

q =
√
αz2 + βz + γ.

Our solution to the ODE is of the form

ũ(x, z) = a(z)eqx + b(z)e−qx.

We have that lovely BC at x = 0: u(0, t) = f(t). Hence,

ũ(0, z) = f̃(z) =⇒ a(z) + b(z) = f̃(z).

Note that here we are extending f to (−∞, 0) to be identically equal to zero so that we may Laplace transform
it. Assume that Re(q) > 0. (If this weren’t the case, just swap q and −q). To be able to invert the Laplace
transform and get the solution to our PDE, we will not want ũ(x, z) → ∞ when x → ∞. Hence, we throw
out the eqx solution and just use

ũ(x, z) = b(z)e−qx.
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Therefore, b(z) = f̃(z). So, our Laplace-transformed solution is

ũ(x, z) = f̃(z)e−qx.

By the properties of the Laplace transform, if we can find g(x, t) such that

g̃(x, z) = e−qx,

then the solution to this PDE will be

u(x, t) = f ∗ g(x, t) =

∫
R

f(t− s)Θ(t− s)g(x, s)Θ(s)ds =

t∫
0

f(t− s)g(x, s)ds. (10.3.1)

The reason for those heavyside functions is that f(∗) = 0 for ∗ < 0 and g(x, ∗) = 0 for ∗ < 0. To guarantee
that this holds, we multiply f(t− s) by Θ(t− s) and multiply g(x, s) by Θ(s).

Now, recalling the definition of q, we are looking for

g(x, t) with g̃(x, z) = e−x
√
αz2+βz+γ .

To find such a g, we would like to invert the Laplace transform.

10.3.1 Inverting the Laplace transform

The Laplace transform is closely related to the Fourier transform, and it is this fact, together with the FIT,
that will light our way to the LIT (Laplace Inverse Theorem).

f̃(z) =

∞∫
0

f(t)e−ztdt =

∞∫
0

f(t)e−Re(z)t−i Im(z)tdt.

For this reason, let’s define
g(t) = e−Re(z)tf(t),

so we also have
f(t) = eRe(z)tg(t).

Then

Lf(z) = ĝ(Im(z)) =

∫
R

f(t)e−Re(z)e−i Im(z)tdt,

because f(t) = 0 for all t < 0. Let’s apply the FIT to the function, g:

g(t) =
1

2π

∫
R

ĝ(ξ)eiξtdξ =
1

2π

∫
R

Lf(Re(z) + iξ)eiξtdξ.

To make this look less imposing, let us write y = ξ. So, we have

g(t) =
1

2π

∞∫
−∞

f̃(Re(z) + iy)eiytdy.

Since f(t) = eRe(z)tg(t), we have

f(t) = eRe(z)t 1

2π

∞∫
−∞

f̃(Re(z) + iy)eiytdy =
1

2π

∞∫
−∞

f̃(Re(z) + iy)eRe(z)t+iytdy.
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Figure 10.4: Inverting the Laplace transform is tricky business. This little elephant is here to remind us to stay on
the heavyside as we apply the Fit to light our way to the LIT (Laplace Inverse Theorem).
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We would like to understand this as a complex integral. If we parametrize the vertical path for w ∈ C with
Re(w) = Re(z) by w = Re(z) + iy, then dw = idy. We do not have an i. Hence, what we are computing is

f(t) =
1

2πi

∫
Γz

f̃(w)ewtdw,

where Γz is the upward vertical path along the line Re(w) = Re(z). This is the LIT: Laplace inversion
formula:

f(t) =
1

2πi

∫
Γz

f̃(w)ewtdw.

By definition of the Laplace transform, this should hold for z ∈ C with Re(z) > a where a comes from the
growth estimate on f , that is |f(t)| ≤ Ceat for all t ≥ 0 for constants a and C. If we naively look at this
equation, we see that the left side is independent of z. So, the right side ought to be as well. It is.

Theorem 138 (LIT). Assume that f is Laplace-transformable. Denote by f̃ its Laplace transform. Then
for b > a,

f(t) =
1

2πi

b+i∞∫
b−i∞

f̃(z)eztdz.

Conversely, assume that F (z) is analytic in Re(z) > a. For b > a, R > 0, and t ∈ R, let

fR,b(t) =
1

2πi

b+iR∫
b−iR

F (z)eztdz.

Assume that for some α > 1/2 and C > 0 we have

|F (z)| ≤ C(1 + |z|)−α, ∀z ∈ C with Re(z) > a,

and assume that for some b > a, fR,b(t) converges pointwise as R→∞ to f(t) for a Laplace transformable
f . Then

lim
R→∞

fR,b(t) = f(t) ∀b > a,

and
F (z) = Lf(z).

Proof: Let us draw and define a contour, with our amazing tikz skillz yo.
By assumption the function F is analytic inside the box, and ezt is an entire function. Therefore∫

ΓR

F (z)eztdz = 0.

So, we wish to show that the limit as R → ∞ of the top and bottom integrals is zero. To obtain this, we
either wave our hands like Folland or actually estimate:

c±iR∫
b±iR

|F (z)||ezt|dz ≤ |c− b|ect max
b≤x≤c

C

(1 + |x± iR|)α
.

Above we used the fact that between b± iR and c± iR, |ezt| ≤ ect together with the estimate assumed on
F . Next, we note that

|x± iR| =
√
x2 +R2 ≥ R.
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b− iR

b+ iR c+ iR

c− iR

Figure 10.5: The contour over which we integral. Call the contour ΓR. As one can see, we assume that c > b.
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Therefore we estimate from above by

|c− b|ect C

(1 +R)α
→ 0 as R→∞.

Therefore, if for some b > a,
lim
R→∞

fR,b(t) = f(t),

this means that

lim
R→∞

b+iR∫
b−iR

F (z)eztdz −
c+iR∫
c−iR

F (z)eztdz = 0.

To see this, observe that ∫
ΓR

F (z)eztdz = 0 ∀R.

Moreover, the top and bottom integrals go to zero as R→∞. Hence the sum of the left and right integrals
also tends to zero as R→∞. So,

lim
R→∞

b+iR∫
b−iR

F (z)eztdz = lim
R→∞

c+iR∫
c−iR

F (z)eztdz =⇒ lim
R→∞

fR,b(t) = f(t) = lim
R→∞

fR,c(t).

Now, let us parametrize the complex integral. We use γ(s) = b+ is so γ̇(s) = ids. Hence

b+iR∫
b−iR

F (z)eztdz =

R∫
−R

F (b+ is)e(b+is)tids = iebt
R∫
−R

F (b+ is)eistds.

Moreover, we have assumed that

lim
R→∞

fR,b(t) = lim
R→∞

iebt

2πi

R∫
−R

F (b+ is)eistds = f(t)

so

lim
R→∞

R∫
−R

F (b+ is)eistds = 2πe−btf(t).

Let us define here

gR,b(s) =

{
F (b+ is) |s| ≤ R
0 |s| > R

.

Then
R∫
−R

F (b+ is)eistds =

∫
R

gR,b(s)e
istds = ĝR,b(−t).

Moreover,

lim
R→∞

̂gR,b(−t) = 2πe−btf(t).

Similarly

lim
R→∞

ĝR,b(t) = 2πebtf(−t).
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On the other hand,
lim
R→∞

gR,b(s) = F (b+ is).

By the FIT,

F (b+ it) =
1

2π

∫
R

2πebsf(−s)eitsds.

It is more natural to do a change of variables, letting σ = −s, so dσ = −ds, and we get

F (b+ it) =

σ=−∞∫
σ=∞

e−bσf(σ)e−itσ(−dσ) =

∞∫
−∞

e−σ(b+it)f(σ)dσ

=

∞∫
0

e−σ(b+it)f(σ)dσ = Lf(b+ it).

Here we use the fact that f satisfies the growth estimate needed to be Laplace transformable.

10.4 Computing an inverse Laplace transform to solve the heat
equation

For the case in which our telegraph equation is the heat equation, we have α = γ = 0, and β = 1.
Consequently, the square rooted polynomial in z we had named q is of the simple form:

q =
√
z.

Our Laplace-transformed solution is:
f̃(z)e−

√
zx.

Since the Laplace transform turns convolutions into multiplication, we would like to find g(x, t) so that

g̃(x, z) = e−
√
zx.

Then, the solution will be given as in (10.3.1).
We are therefore looking for g(x, t) so that

g̃(x, z) = e−
√
zx.

If we try to apply the LIT directly, we should compute

b+i∞∫
b−i∞

e−x
√
zeztdz.

Do you know how to integrate that? I do not. It is pretty scary looking. For starters, there is the
√
z. This

really needs to be understood using the complex logarithm which is, as the name suggests, complex.

Idea!
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Always be careful with log(z) in C. It is not entire. It is a log. Logs come from trees which have branches.
Complex logs always have branches and branch cuts. You have been warned.

So, since trying to compute the inverse Laplace transform directly seems impossible, let us try to make a
reasonable guess at a function whose Laplace transform might be what we need to solve the heat equation.
To solve the heat equation on R we used

e−x
2/(4t)(4πt)−1/2.

So, since the Laplace and Fourier transforms are closely related, and we are solving the heat equation on
[0,∞), which is an unbounded interval, this is a good candidate. We shall compute its Laplace transform
and see what we get. If we are super lucky, it will just give us the function we want. If we are less lucky,
but still pretty lucky, the process of computing the Laplace transform together with the properties of the
Laplace transform will show us how to get g(x, t) whose Laplace transform is g̃(x, z) = e−

√
zx.

Let us therefore define:

? =

∞∫
0

e−tze−x
2/(4t)(4πt)−1/2dt.

We are computing the Laplace transform of Θ(t)h(x, t) where

h(x, t) = e−x
2/(4t)(4πt)−1/2.

Now, we see that

? =

∞∫
0

(4πt)−1/2 exp

(
−(
√
tz)2 −

(
x

2
√
t

)2
)
dt.

We do the completing the square trick in the exponent:

? =

∞∫
0

(4πt)−1/2 exp

(
−
(√

tz − x

2
√
t

)2

− x
√
z

)
dt

= e−x
√
z

∞∫
0

1

2
√
πt

exp

(
−
(√

tz − x

2
√
t

)2
)
.

To compute this we need to use a very very clever trick. First, let us clean up our integral just a little bit
to remove that pesky

√
t which is getting divided. We let s =

√
t. Then

ds =
dt

2
√
t

So,

? =
e−x
√
z

√
π

∞∫
0

e−(s
√
z−x/(2s))2ds.

Theorem 139 (Cauchy & Schlömilch transform).

∞∫
0

af((as− b/s)2)ds =

∞∫
0

f(y2)dy.

Proof: The proof is so clever.1

1I don’t know if Cauchy and Schlömilch actually had anything to do with this formula. Oscar Schlömilch was elected a
foreign member of the Royal Swedish Academy of Sciences in 1862. He was a German mathematician who lived from April 13,
1823 until February 7, 1901. Augustin-Louis Cauchy was a French mathematician who lived August 21, 1789 until May 23,
1857. Did they ever meet? Why is this named after them?
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We do a substitution in the integral. Let t = b
as . Then

dt = − b

as2
ds =⇒ −as

2

b
dt = ds.

We see that

t2 =
b2

a2s2
=⇒ a2s2

b2
= t−2 =⇒ as2

b
=

b

at2
.

Next, when s→ 0 and s > 0 we see that t→∞. On the other hand, when s→∞, t→ 0. We also see that

as =
t

b
, − b

s
= −ta.

So, let us call

♥ =

∞∫
0

af((as− b/s)2)ds =

0∫
∞

af((t/b− ta)2)

(
− b

at2

)
dt

=

∞∫
0

f((t/b− at)2)
b

t2
dt.

Note that
(t/b− at)2 = (−(at− t/b))2 = (at− t/b)2.

Hence we have computed

♥ =

∞∫
0

f((at− t/b)2)
b

t2
dt.

Therefore

2♥ =

∞∫
0

af((as− b/s)2)ds+

∞∫
0

f((at− t/b)2)
b

t2
dt

= a

∞∫
0

f((as− b/s)2)ds+ b

∞∫
0

f((as− b/s)2)
ds

s2
.

As a consequence,

♥ =
1

2

∞∫
0

f((as− b/s)2)

(
a+

b

s2

)
ds.

Now we let

y = as− b

s
=⇒ dy =

(
a+

b

s2

)
ds.

We note that when s→ 0, y → −∞, and on the flip side, when s→∞, y →∞. Therefore

♥ =
1

2

∞∫
−∞

f(y2)dy =

∞∫
0

f(y2)dy,

since f(y2) is an even function.
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We will use the Cauchy & Schlömilch transform with

a =
√
z, b =

x

2
, f(s) = e−s

2

.

Then, it says that
∞∫

0

√
z exp(−(as− b/s)2)ds =

∞∫
0

√
z exp

(
−
(
s
√
z − x

2s

)2
)
ds

=

∞∫
0

e−y
2

dy =

√
π

2
.

Now we were computing

? =
e−x
√
z

√
π

∞∫
0

e−(s
√
z−x/(2s))2ds =

e−x
√
z

√
πz

∞∫
0

√
ze−(s

√
z−x/(2s))2ds

=
e−x
√
z

2
√
z
.

So, we have computed

L (Θ(t)h(x, t)) (z) =
e−x
√
z

2
√
z
.

This is almost what we wanted, except for the 2
√
z in the denominator. Here we use the properties of the

Laplace transform. Consider the function:

∞∫
z

e−x
√
w

2
√
w
dw = −e

−x
√
w

x

∣∣∣∣∣
∞

w=z

=
e−x
√
z

x
.

By the properties of the Laplace transform

L(t−1f(t))(z) =

∞∫
z

f̃(w)dw.

So,

L(t−1Θ(t)h(x, t))(z) =

∞∫
z

e−x
√
w

2
√
w
dw =

e−x
√
z

x
.

because we computed

L (Θ(t)h(x, t)) (z) =
e−x
√
z

2
√
z
.

We can simply multiply both sides by x to get

L(t−1xΘ(t)h(x, t))(z) = e−x
√
z

as desired. Let us summarize this phenomenal calculation as a theorem for future reference.

Theorem 140. The Laplace transform of

g(x, s) :=
x

s
Θ(s)h(x, s), h(x, s) =

1√
4πs

e−
x2

4s , Θ(s) =

{
0 x < 0

1 x ≥ 0

in the variable s is
L(g)(x, z) = e−x

√
z.
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Therefore going back to our problem, the solution

u(x, t) = (f(s) ∗ (s−1xΘ(s)h(x, s))(t) =

∫
R

f(t− s)g(x, s)ds

=

t∫
0

f(t− s)
2
√
πs3/2

xe−
x2

4s ds.

This is because f is zero for negative times since we are remembering to stay on the heavyside.

Remark 4. One of the things I love about this class is that you begin to approach actual research mathematics.
I think that must be exciting for you, because calculus (envariabelanalys) is like 300 years old. Cauchy’s
complex analysis is also a few hundred years old. That’s not very close to actual current math! Here is an
example of how the Cauchy-Schlömilch transform is super awesome https://arxiv.org/abs/1004.2445.
This paper is recent, showing that this transform is interesting even from a modern day research perspective!

10.5 The Laplace transform in mathematical biology: how many
elephants?

We have seen how the Fourier transform can be used to solve integral equations for unknown functions, like

u(x) +

∫
R

f(x− y)u(y)dy = g(x),

where u is the unknown function we wish to find, and f and g are specified. To solve this equation using the
Fourier transform, we take the Fourier transform of both sides with respect to x, obtaining the transformed
equation

û(ξ) + f̂(ξ)û(ξ) = ĝ(ξ).

We solve this equation for û(ξ) and obtain

û(ξ) =
ĝ(ξ)

1 + f̂(ξ)
.

The function u is then obtained by taking the inverse Fourier transform, and so

u(x) =
1

2π

∫
R

eixξ
ĝ(ξ)

1 + f̂(ξ)
.

Since the Laplace transform is simply the Fourier transform evaluated at a complex value, for functions
that live on the heavy side, that is vanish on the negative real axis, it is reasonable to expect that the
Laplace transform could also be used to solve integral equations. A large class of integral equations are
called Volterra equations, and have the general form

u(t)− λ
t∫
a

K(t, s)u(s)ds = f(t).

The functions K and f would be specified, and the task at hand is to solve for the unknown function
u. Equations of this type are ubiquitous in physics, chemistry, biology, finance, and engineering. Volterra
equations were first studied in the beginning of the twentieth century but remain a hot research topic to
this day. We explore one of Volterra’s first such equations, that is known as the renewal equation, because
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it describes renewal processes. In biology, this could be birth and death, whereas in engineering, this could
describe mechanical equipment wearing out and being replaced.

(a) An African elephant can be recognized due to its large
ears in comparison to those of Asian elephants.

(b) Asian elephants can be distinguished from African ele-
phants by their generally smaller ears.

Figure 10.6: African and Asian elephants are equally wonderful beings. They have the longest gestation period of
any mammal: 22 months. Images are licensed under creative commons 1.0 obtained from https://openclipart.org.

Let’s think about our heavyside elephants; this is quite important because currently Asian elephants are
classified as endangered, and African elephants are vulnerable. Suppose at time t = 0 we have a community
of N0 elephants. We can set up an equation to predict the elephant population at later times if we collect
some information:

1. For t > 0 the probability p(t) that an elephant will live for at least t units of time after it is born.
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2. At time t = 0, we need to know the ages of the elephants in our community. We call this a(t).

3. For the sake of simplicity, we will assume the birth rate R is constant, and we need to know this
information as well. We could relax this assumption by calculating the average birth rate over time,
and if this average over long periods of time does not change drastically, then it is not really a loss of
generality to assume the birth rate is just a constant.

At time t, the population will be comprised of the elephants from the community that have survived
since t = 0, minus those who have died, and plus those cute new elephants that have been born. With all
considerations in mind, the population

N(t) = N0

∞∫
0

p(s+ t)a(s)ds+R

t∫
0

p(t− s)N(s)ds.

Since the functions p and a are known from the information we collected, the first part of the equation can
be calculated from these known functions by computing the integral. So, we call this part

n(t) := N0

∞∫
0

p(s+ t)a(s)ds.

Then, our equation for N is

N(t) = n(t) +R

t∫
0

p(t− s)N(s)ds.

Note that we can re-write the integral as a convolution by introducing some heavyside functions

t∫
0

p(t− s)N(s)ds =

∫
R

p(t− s)Θ(t− s)N(s)Θ(s)ds.

This works because Θ(s) vanishes for all s < 0, and Θ(t− s) vanishes for all t− s < 0 ⇐⇒ t < s. Then we
use the properties of the Laplace transform to conclude that the transformed equation is simply

LN(z) = Ln(z) +RLp(z)LN(z).

We solve the equation:

LN(z) =
Ln(z)

1−RLp(z)
.

Consequently, we obtain our equation for the elephant population is illuminated by the LIT

N(t) = L−1

(
Ln(z)

1−RLp(z)

)
(t).

10.5.1 If the Laplace and Fourier transform are so closely related, why do we
need both?

The Laplace and Fourier transforms apply in different contexts. They are therefore both useful and comple-
mentary; in contexts where we cannot apply the Fourier transform, we might be able to use Laplace, and
vice-versa! For example, one reason to solve the Volterra equation for the elephant population is because
populations can grow exponentially, and so the equation need not be Fourier transformable. A second reason
is that the functions all depend on time, and therefore we can simply set everything to zero for negative time
and guarantee that all functions in the equation live on the heavyside.
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Figure 10.7: The Laplace transform has numerous applications; this is one of the reasons there are entire books
dedicated to their calculation like [17]. Here we investigate the application to solving the renewal equation, to
understand elephant populations.

Fourier transform can be used Laplace transform can be used
Functions are in L1(R) or L2(R) Functions live on the heavyside and have at most exponential growth

Table 10.3: On the one hand, we can Fourier transform functions that live on the entire real line, whereas we can
only Laplace transform functions that live on the heavyside, meaning they must be identically zero on the negative
real line. On the other hand, we can Laplace transform functions that grow as much as ∼ Ceax as x → ∞ for
constants a,C > 0. So, this includes polynomials and functions that grow exponentially, none of which are Fourier-
transformable. The Fourier and Laplace transform are complementary in this sense; sometimes we can use Fourier,
sometimes we can use Laplace, and it depends on the precise problem at hand. We still need to do a ‘sound check’
to determine which method to use!

10.6 Exercises

1. [4, 8.4.2] Find the temperature in a semi-infinite rod, mathematicized as the half line [0,∞) if its
initial temperature is 0 and the end temperature at x = 0 is held at temperature 42 for 0 < t < 1 and
thereafter held at temperature zero.

2. [4, 8.4.4] A semi-infinite rod is initially at temperature 1. Its end is in contact with a medium at
temperature zero and loses heat according to Newton’s law of cooling:

ut = kuxx for x > 0, u(x, 0) = 1, ux(0, t) = cu(0, t).

Show that

Lu(x, z) =
1

z
− c

√
k

z(c
√
k +
√
z)
e−x
√
z/k.

Show that the temperature at the end is given by u(0, t) = ec
2kt erfc(c

√
kt), where erfc is the comple-

mentary error function. Hint: multiply and divide by
√
z − c

√
k.

3. [4, 8.4.1] Solve:
ut = kuxx − au, x > 0, u(x, 0) = 0, u(0, t) = f(t).

4. [4, 8.4.3] Consider heat flow in a semi-infinite rod when heat is supplied to the end at a constant rate
c:

ut = kuxx for x > 0, u(x, 0) = 0, ux(0, t) = −c.
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With the aid of the computation:

L

(
1√
πt
e−a

2/(4t)

)
(z) =

e−a
√
z

√
z
,

show that

u(x, t) = c

√
k

π

t∫
0

s−1/2e−x
2/(4ks)ds.

By substituting

σ =
x√
4ks

and then integrating by parts, show that

u(x, t) = c

√
4kt

π
e−x

2/(4kt) − cx erfc

(
x√
4kt

)
.

5. [4, 8.5.3] Solve the following equation for u

u(t) + 2

t∫
0

u(t− s) cos(as)ds = sin(at), a > 0.

6. [4, 8.5.4] Solve the following equation for u:

t∫
0

u(s)u(t− s)ds = t5e−3t.

7. [4, 8.1.1] Compute the Laplace transforms of sinh(at) and cosh(at).

8. [4, 8.1.2] Compute the Laplace transform of cos2 t. (Hint: double angle formula!)

9. [4, 8.1.3] Compute the Laplace transform of e−a
2t2 .

10. [4, 8.1.4] Compute the Laplace transforms of (t+ a)−1 and (t+ a)−2.

11. [4, 8.1.5] Compute the Laplace transform of

f(t) :=

{
t 0 ≤ t ≤ 1

e1−t t > 1.

12. [4, 8.1.6] Compute the Laplace transform of t−1/2e−
√
at.

13. [4, 8.1.7] Compute the Laplace transform of tαLαn(t) for the Laguerre polynomial Lαn.

14. [4, 8.1.8] Use partial fraction decompositions to find the exponential polynomial whose Laplace trans-
form is

(a) 2(z+1)
z2+2z

(b) 4
z(z+2)2

(c) 1
z(z2+1)
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15. [4, 8.1.9] Let f(t) = eat and g(t) = ebt. Compute f ∗ g per definition and by using the Laplace
transform.

16. [4, 8.1.10] Compute f ∗ t using the Laplace transform for

(a) f(t) = g(t) = J0(t)

(b) f(t) = ta−1, g(t) = tb−1 for a, b > 0

(c) f(t) = sin(t), g(t) = sin(2t).

17. [4, 8.1.11] Assume that f is a-periodic on the positive real axis. Show that

Lf(z) =
F (z)

1− e−az
, F (z) =

a∫
0

f(t)e−ztdt.

(Hint: one way to do this is to use the fact
∫∞

0
=
∑∞

0

∫ (n+1)a

na
.)

18. [4, 8.1.12] Use the preceding exercise to compute the Laplace transforms of the 2π periodic functions
that are equal to:

(a) f(t) = t for 0 < t < π and t− 2π for π < t < 2π

(b) f(t) = 1 for 0 < t < π, and −1 for π < t < 2π

(c) f(t) = t for 0 < t < π and 2π − t for π < t < 2π.

19. [4, 8.2.2–7] Use the residue theorem to evaluate the inverse Laplace transforms

(a) 3z2+12z+8
(z+2)2(z+4)

(b) 4z2+z+15
z(z2−2z+5

(c) z2 tanh(πz/2)

(d) (z cosh(
√
z))−1

(e) e−a
√
z and z−1e−a

√
z.

(f) z−1 log(1 + z).

20. [4, 8.2.10] Let F (z) = ez
2

and f(t) = 1
2
√
π
e−t

2/4. Show that for any real b

f(t) =
1

2πi

b+i∞∫
b−i∞

F (z)eztdz,

but F is not the Laplace transform of f . Show that F cannot be the Laplace transform of any function
that satisfies the conditions in the definition of the Laplace transform. This example shows that one
must be careful in applying the LIT to a function F if you do not know in advance that F is the
Laplace transform of a Laplace transformable function. If you’re going to apply the LIT, make sure
your F is legit!

21. [4, 8.3.1–5] Solve the initial value problems using the Laplace transform.

(a) u′′ + 4u = sin(ωt), u(0) = u′(0) = 0, with ω > 0.

(b) u′′ + 4u′ + 4u = f(t), u(0) = c0, u′(0) = c1.

(c) u′′ + 2u′ + 2u = Θ(t− π)−Θ(t− 2π), u(0) = 0, u′(0) = 1.

(d) u′′′ − u′ = f(t), u(0) = 1, u′(0) = −1, u′′(0) = 0.
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(e) u(4) − u = t, u(j)(0) = 0, j = 0, 1, 2, 3.

22. [4, 8.3.9] Consider the differential equation t2u′′− 2u = 2t for t > 0. Use the Laplace transform to find
a family of solutions containing one arbitrary constant. What is the general solution of this equation,
and why does the procedure you just did not yield it? (Hint: t2u′′ − 2u = 0 is of Euler type.)

23. [4, 8.3.10] Solve the equation tu′′ − (1 + t)u′ + u = 0 by Laplace transform.

24. [4, 8.4.5] Consider heat flow in a rod of length ` with initial temperature zero when one end is held at
temperature zero, and the other end at a variable temperature f(t),

ut = kuxx, u(x, 0) = 0, u(0, t) = 0, u(`, t) = f(t).

Let v(x, t) be the solution to this problem in the special case f(t) = 1. Use the Laplace transform to
obtain Duhamel’s formula for u in terms of v,

u(x, t) =
∂

∂t

t∫
0

f(s)v(x, t− s)ds.

25. [4, 8.4.6] Consider heat flow in an infinite rod, ut = kuxx for x ∈ R with u(x, 0) = f(x). Obtain the
differential equation kUxx = zU − f(x) for U = Lu, and show that the only solution of this equation
that tends to zero as Re z →∞ is

U(x, z) =
1√
4kz

 x∫
−∞

e(y−x)
√
z/kf(y)dy +

∞∫
x

e(x−y)
√
z/kf(y)dy

 .
Invert the Laplace transform to obtain the solution

u(x, t) =

∫
R

(4πkt)−1/2e−(x−y)2/(4kt)f(y)dy.

26. [4, 8.4.7] Consider flow in a rod of length `: ut = kuxx, u(x, 0) = 0, u(0, t) = 0, u(`, t) = A. Show that

Lu(x, z) =
A sinh(x

√
z/k)

z sinh(`
√
z/k)

.

27. [4, 8.5.1] Solve:

u(t)− a2

t∫
0

(t− s)u(s)ds = t2.

28. [4, 8.5.2] Solve:

u(t)− 1

6

t∫
0

(t− s)3u(s)ds = f(t).

29. [4, 8.5.7] A company buys N0 new light bulbs at time t = 0 and thereafter buys new bulbs at the rate
r(t). Suppose the probability that a light bulb will last T units of time after purchase is p(T ). Let
N(t) be the number of light bulbs in use at time t. Show that

N(t) = N0p(t) +

t∫
0

r(s)p(t− s)ds.

30. [4, 8.5.8] In the preceding exercise, suppose that p(T ) = e−cT . What should the replacement rate
r(t) be if the number of light bulbs needed for use at time t is N(t) = N0? Same question but with
N(t) = N0(2− e−t)?
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Appendix A

Linear algebra

We recall some fundamental facts from linear algebra. Some concepts are well-defined for Hilbert spaces,
that are the infinite dimensional analogue of finite dimensional vector spaces. When this is the case we
present the concepts in their most general form.

A.1 Linear independence and bases

Definition 141. Let H be a Hilbert space. Then u, v ∈ H are linearly independent if they are both non-zero
and the only complex numbers λ, µ such that

λu+ µv = 0

are λ = µ = 0. A finite set of non-zero vectors in a Hilbert space, {vn}Nn=1 are linearly independent if the
only complex numbers {λn}Nn=1 such that

N∑
n=1

λnvn = 0,

are λn = 0 for all n = 1, . . . , N . A collection of non-zero vectors {vn}n∈Z ⊂ H is linearly independent if
{vn}|n|≤N is linearly independent for all N ∈ N.

Proposition 142. Assume that {vk}nk=1 ⊂ H for some Hilbert space H are non-zero and orthogonal, that
is

〈vk, vj〉 = 0 for any k 6= j.

Then {vk}nk=1 is linearly independent.

Proof: Assume that
n∑
k=1

λkvk = 0.

We take the scalar product with vj , for some j ∈ {1, . . . , n},

〈
n∑
k=1

λkvk, vj〉 =

n∑
k=1

λk〈vk, vj〉 = λj ||vj ||2.

On the other hand since we assumed that the sum is zero, this vanishes because

〈
n∑
k=1

λkvk, vj〉 = 〈0, vj〉 = 0.

Since vj 6= 0 its length is positive, that is ||vj ||2 > 0, and so this forces λj = 0. This argument works for
each j ∈ {1, . . . , n} hence all λj = 0.
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Corollary 143. Assume that {vk}k∈Z ⊂ H for some Hilbert space H are non-zero and orthogonal. Then
they are linearly independent.

Proof: Similarly, let N ∈ N, and assume that for some complex numbers {cn}|n|≤N we have∑
|n|≤N

cnvn = 0.

Let k ∈ Z with |k| ≤ N . We take the scalar product of the sum with vk,

0 = 〈
∑
|n|≤N

cnvn, vk〉 =
∑
|n|≤N

cn〈vn, vk〉 = ck||vk||2.

Since vk 6= 0, and thus ||vk||2 6= 0 this forces ck = 0. The same argument works for any N ∈ N and k ∈ Z
with |k| ≤ N . This shows the definition of linearly independent is satisfied.

Definition 144. An orthogonal base for a Hilbert space H is a set of non-zero orthogonal vectors {vn} such
that the three conditions in Theorem 28 are satisfied for{

vn
||vn||

}
.

A basis for a Hilbert space H is a set of non-zero linearly independent vectors {vn} such that every v ∈ H
is equal to

v =
∑
〈v, vn〉

vn
||vn||2

.

Proposition 145. Every basis of CN is comprised of exactly N linearly independent non-zero vectors, and
any set of N linearly independent non-zero vectors in CN is a basis for CN .

Proof: Consider first a set of N linearly independent non-zero vectors in CN , {vn}. Let these vectors
be the column vectors of a matrix M . Then for any c ∈ CN with c = (c1, . . . , cn) the product

Mc =

N∑
n=1

cnvn

is a linear combination of these vectors. By the assumption that these vectors are linearly independent, the
only solution to Mc = 0 is c = 0. Consequently the dimension of the kernel of the linear operator defined
by matrix multiplication by M is zero. By the Rank-Nullity Theorem, the dimension of the image of this
operator is therefore N . This means that for any v ∈ CN there exists some c ∈ CN such that Mc = v.
Therefore every v ∈ CN can be expressed as a linear combination of the vectors {vn} and they therefore
comprise a basis.

The elements of a basis are by definition linearly independent and non-zero. Assume that we have K
linearly independent non-zero vectors in CN for some K < N . Let these vectors be the columns of a matrix
A. Then the dimension of the image of CN under A is K < N . In particular we have the closed subspace,

ACN := {Ac : c ∈ CN} ⊂ CN , ACN ∼= CK 6∼= CN .

These vectors therefore do not form a basis as they cannot span the whole space; there are vectors in CN
that cannot be expressed as a linear combination of them.
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On the other hand if we have K vectors in CN for some K > 0, then consider the matrix B with these
vectors as its column vectors. By the dimension of the image BCN is at most N , but the number of columns
of B is K > N . Consequently, the dimension of the kernel of B is positive, so there exists c 6= 0, c ∈ CN
such that

Bc = 0.

Since Bc is a linear combination of the column vectors, and c 6= 0, this shows that the vectors are not linearly
independent, and therefore they cannot be a basis.

Corollary 146. Any set of N (non-zero) orthogonal vectors is a basis for CN .

Proof: A set of N non-zero orthogonal vectors is linearly independent. The corollary therefore follows
immediately from the preceding proposition.

A.2 The spectral theorem for hermitian matrices

An n×n matrix M defines a linear function that sends vectors in Cn to vectors in Cn. That is, it is a linear
map from Cn to Cn, defined by

M(v) = Mv.

So, M sends v to the matrix-vector product Mv. Since M is n× n, and v ∈ Cn, the result is also a vector
in Cn. This map is linear because if we multiply two vectors by scalars and add them:

M(av + bw) = M(av + bw) = aMv + bMw = aM(v) + bM(w).

When the matrix is hermitian, the spectral theorem says that there exists an orthogonal basis of Cn that
consists of eigenvectors of M . Recall that eigenvectors are vectors that satisfy

Mv = λv, for some λ ∈ C.

If we have a orthogonal basis of eigenvectors for Cn, this means that by normalizing, we also have an
orthonormal basis of eigenvectors {vk}nk=1. We can therefore express every x ∈ Cn as

x =

n∑
k=1

〈x,vk〉vk.

Moreover, if the eigenvalue for vk is λk, then it becomes much more simple to compute

M(x) = Mx =

n∑
k=1

〈x,vk〉λkvk.

Theorem 147 (Spectral Theorem for Cn). Assume that A is a Hermitian matrix. Then there exists an
orthonormal basis of Cn which consists of eigenvectors of A. Moreover, each of the eigenvalues is real.

Proof: Remember what Hermitian means. It means that for any u, v ∈ Cn, we have

〈Au, v〉 = 〈u,Av〉.
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By the Fundamental Theorem of Algebra, the characteristic polynomial

p(x) := det(A− xI)

factors over C. The roots of p are {λk}nk=1. These are by definition the eigenvalues of A. First, we consider
the case when A has zero as an eigenvalue. If this is the case, then we define

K0 := Ker(A) = {u ∈ Cn : Au = 0}.

We note that all nonzero u ∈ K0 are eigenvectors of A for the eigenvalue 0. Since K0 is a k-dimensional
subspace of Cn, it has an ONB {v1, . . . , vk}. If k = n, we are done. So, assume that k < n. Then we consider

K⊥0 = {u ∈ Cn : 〈u, v〉 = 0∀v ∈ K0}.

Note that if u ∈ K⊥0 then
〈Au, v〉 = 〈u,Av〉 = 0 ∀v ∈ K0.

Hence A : K⊥0 → K⊥0 . Moreover, if

u ∈ K⊥0 , Au = 0 =⇒ u ∈ K0 ∩K⊥0 =⇒ u = 0.

Hence A is bijective from K⊥0 to itself. Since A has eigenvalues {λj}nj=1, and 0 appears with multiplicity k,
λk+1 6= 0. It has some non-zero eigenvector. Let’s call it u. Since it is an eigenvector it is not zero, so we
define

vk+1 :=
u

||u||
.

Proceeding inductively, we define K1 to be the span of the vectors {v1, . . . , vk+1}. We look at A restricted
to K⊥1 . We note that A maps K1 to itself because if

v =

k+1∑
1

cjvj =⇒ Av =

k+1∑
1

cjAvj =

k+1∑
1

cjλjvj ∈ K1.

Similarly, if w ∈ K⊥1 ,
〈Aw, v〉 = 〈w,Av〉 = 0∀v ∈ K1.

So, A maps K⊥1 into itself. Since the kernel of A is in K1, A is a surjective and injective map from K⊥1
into itself. We note that A restricted to K⊥1 satisfies the same hypotheses as A, in the sense that it is still
Hermitian, and it has a characteristic polynomial of degree equal to the dimension of K⊥1 So, there is an
eigenvalue λk+2, for A as a linear map from K⊥1 to itself. It has an eigenvector, which we may assume has
unit length, contained in K⊥1 . Call it vk+2. Continue inductively until we reach in this way {v1, . . . , vn} to
span Cn.

Why are the eigenvalues all real? This follows from the fact that if λ is an eigenvalue with eigenvector u
then

〈Au, u〉 = λ||u||2 = 〈u,Au〉 = λ||u||2.

Since u is an eigenvector it is not zero, so this forces λ = λ.

272



Appendix B

Computer code

Here we include a collection of computer code that can be used to visualize some of the topics from the text.

B.1 Matlab code to graph a Fourier series

To create Figure 4.6, Anton Rosén used the following Matlab code:

%S e t t i n g s to ena b l e sa v in g as v e c t o r i z e d pdf
f i g 1=f igure ( 1 ) ;
f i g 1 . Renderer=’ Pa inte r s ’ ;

%Define f u n c t i o n t h a t g i ven n and x computes the n+1 f i r s t terms in the
%Fourier expansion o f abs ( x )
syms x k n
absF = @(x , n) pi/2 − 4/pi∗symsum( cos ( (2∗k−1)∗x )/ ( (2∗ k−1)ˆ2) ,k , 1 , n ) ;

%Plot the Fourier expansion o f abs ( x ) a g a i n s t abs ( x )
fplot ( absF (x ,8) , [ −8 8 ] )
hold on
f = abs ( x ) ;
fplot ( f , [ −4 .5 4 . 5 ] )
hold o f f
set (gca , ’ Xcolor ’ , ’ none ’ )
set (gca , ’ Ycolor ’ , ’ none ’ )
orient ( f i g 1 , ’ landscape ’ )
print ( f i g 1 , ’ absFour ie r ’ , ’−dpdf ’ , ’−b e s t f i t ’ )

B.2 Python code

The initial value problem for the homogeneous heat equation on a circular rod can be visualized using python.
This physically represents a rod supplied with an initial temperature distribution function f(x) that is then
left to disperse throughout the rod with no sinks or sources of heat.

import numpy as np
import matp lo t l i b as mpl
import matp lo t l i b . pyplot as p l t

# Set p l o t params
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p l t . rc ( ’ f ont ’ , s i z e =16) # c o n t r o l s d e f a u l t t e x t s i z e s
p l t . rc ( ’ axes ’ , t i t l e s i z e =16) # f o n t s i z e o f the axes t i t l e
p l t . rc ( ’ axes ’ , l a b e l s i z e =18) # f o n t s i z e o f the x and y l a b e l s
p l t . rc ( ’ x t i c k ’ , l a b e l s i z e =16) # f o n t s i z e o f the t i c k l a b e l s
p l t . rc ( ’ y t i c k ’ , l a b e l s i z e =16) # f o n t s i z e o f the t i c k l a b e l s
p l t . rc ( ’ l egend ’ , f o n t s i z e =16) # l ege nd f o n t s i z e

def alpha0 (x , f ) :
return np . t rapz ( y=f , x=x ) / (2∗np . p i )

def alpha (n , x , f ) :
return np . t rapz ( y=f ∗np . cos (n∗x ) , x=x ) / np . t rapz ( y=np . abs (np . cos (n∗x ) )∗∗2 , x=x )

def beta (n , x , f ) :
return np . t rapz ( y=f ∗np . s i n (n∗x ) , x=x ) / np . t rapz ( y=np . abs (np . s i n (n∗x ) )∗∗2 , x=x )

def un(x , t , n , k , f ) :
i f n == 0 :

alpha n = alpha0 (x , f )
beta n = 0

else :
a lpha n = alpha (n , x , f )
beta n = beta (n , x , f )

return np . exp(−n∗∗2 ∗ t ∗k ) ∗ ( a lpha n ∗ np . cos (n∗x ) + beta n ∗ np . s i n (n∗x ) )

def u(x , t , n max , k , f ) :
u xt = np . z e ro s ( len ( x ) )
for n in range ( n max ) :

u xt += un(x , t , n , k , f )
return u xt

def c i r c u l a r r o d h e a t s o l u t i o n (n max , x , f , f l a b e l , f i l ename ) :
’ ’ ’
P l o t s the s o l u t i o n to the heat equat ion on a c i r c u l a r one dimensiona l rod , f o r a g iven v e c t o r o f x−v a l u e s [−pi , p i ]
and an i n i t i a l f u n c t i o n f d e f i n e d on t h o s e x−v a l u e s wi th a corresponding l a b e l f l a b e l .
Args :

n max ( number ) : I n t e g e r f o r the maximum n ( i . e . the number o f b a s i s f u n c t i o n s ) t h a t w i l l be used .
x ( l i s t ) : x−domain , v e c t o r o f v a l u e s in the range [−pi , p i ] .
f ( l i s t ) : an i n i t i a l v a l u e f u n c t i o n d e f i n e d on the x−domain .
f l a b e l ( s t r i n g ) : Labe l o f the i n i t i a l v a l u e f u n c t i o n f o r naming the output f i l e .

’ ’ ’
# Define c o n s t a n t s − here one can c o n t r o l the number o f ns , i . e . the accuracy o f the s o l u t i o n
k = 1
t s = [ 0 , 1 , 1 0 0 ]

# C a l c u l a t e heat equat ion s o l u t i o n f o r the t i m e s t e p s
s o l s = np . z e ro s ( ( len ( t s ) , len ( x ) ) )

for i , t in enumerate( t s ) :
s o l = u(x , t , n max , k , f )
s o l s [ i , : ] = s o l
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# Plot s o l u t i o n s
f i g , ax = p l t . subp lo t s ( f i g s i z e =(8 ,6))

cs = [ ’ r ’ , ’ y ’ , ’ b ’ ]
s t y l e s = [ ’− ’ , ’ −. ’ , ’ : ’ ]
ax . p l o t (x , f , c=’ k ’ , l i n e s t y l e=’−− ’ , l i n ew id th =2, alpha =1, l a b e l=r ’ $ f ( x)=$ ’+f l a b e l )
for i , s o l in enumerate( s o l s ) :

ax . p l o t (x , so l , c=cs [ i ] , a lpha =0.6 , l i n e s t y l e=s t y l e s [ i ] , l i n ew id th =2, l a b e l=r ’ $u (x , t=$ ’+f ’ { t s [ i ] : . 0 f } ’+r ’ $ ) $ ’ )
ax . l egend ( l o c=’ best ’ )
ax . s e t x l a b e l ( r ’ $x$ ’ )
ax . s e t y l a b e l ( r ’ $u (x , t )$ , arb . un i t s ’ )
t i c k p l a c e s = [−np . pi , −np . p i /2 , 0 , np . p i /2 , np . p i ]
my xt icks = [ r ’$−\pi$ ’ , r ’$−\ f r a c {\ pi }{2}$ ’ , ’ 0 ’ , r ’ $\ f r a c {\ pi }{2}$ ’ , r ’ $\ pi$ ’ ]
p l t . x t i c k s ( t i c k p l a c e s , my xt icks )

# D i s a b l e y t i c k s
# frame1 = p l t . gca ()
# frame1 . axes . g e t y a x i s ( ) . s e t t i c k s ( [ ] )

# Save f i g u r e
p l t . t i g h t l a y o u t ( )
p l t . s a v e f i g ( f ’ . / images / pdf / f { f i l ename } n={n max} k={k } . pdf ’ ) # Save as pdf
p l t . s a v e f i g ( f ’ . / images /png/ f { f i l ename } n={n max} k={k } . png ’ ) # and png
p l t . c l o s e ( )

def main ( ) :
n max = 10 # number o f ns − i . e . NOT i n c l u d i n g n = n max
x = np . l i n s p a c e (−np . pi , np . pi , 500)
# I n i t i a l f u n c t i o n v a l u e s − add/ modify t h e s e and the l a b e l s / f i l e n a m e s be low a p p r o p r i a t e l y
f s = [

2∗np . ones ( len ( x ) ) , # Constant
x , # Linear
np . s i n ( x ) , # Sine
np . h e a v i s i d e (x , 0 . 5 ) , # Heav i s ide − x2 i s the v a l u e at f ( x=0)
x∗∗2 , # Quadratic
np . cosh ( x ) , # Cosh
np . abs ( x ) , # Abso lu te v a l u e

]
f l a b e l s = [

’ constant ’ ,
r ’ $x$ ’ ,
r ’ $\ s i n ( x ) $ ’ ,
r ’$H( x ) $ ’ ,
r ’ $xˆ2$ ’ ,
r ’ $\ cosh ( x ) $ ’ ,
r ’ $ | x | $ ’

]
f i l enames = [

’ constant ’ ,
’ l i n e a r ’ ,
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’ s i n e ’ ,
’ h e a v i s i d e ’ ,
’ quadrat i c ’ ,
’ cosh ’ ,
’ abs ’

]

for i , f in enumerate( f s ) :
c i r c u l a r r o d h e a t s o l u t i o n (n max , x , f , f l a b e l s [ i ] , f i l enames [ i ] )

i f name == ” main ” :
main ( )

# |\__/,| (‘\

# |_ _ |.--.) )

# ( T ) /

# (((^_(((/(((_/

#

# Thank you for checking out this script!

# Author: Eric Lindgren, F16, 2021
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Appendix C

Distributions and weak solutions to
PDEs

The mathematical concept of a distribution, or, as they are sometimes called, generalized function, has been
badly abused not only by physicists but also by mathematicians. You may have already heard about the
so-called “delta function.” It’s not really a function. It’s not a ‘generalized function.’ It has its very own
terminology, and that is that it is a distribution. Now, distributions are not as mysterious and weird as the
mystique in which they are often shrouded.

Distributions are functions which themselves take as input a function. A particularly nice class of
distributions are the tempered distributions. These distributions take in a Schwarz class function and spit
out a number.

Definition 148. Assume that f is a smooth function on R. Then, we say that f ∈ S if for all k and for all
n,

lim
|x|→∞

xnf (k)(x) = 0.

In other words, f and all its derivatives decay rapidly at ±∞. There are quite a few functions which
satisfy this. For example, all smooth functions which live on a bounded interval (compactly supported)
satisfy this property.

Exercise 149. Show that if f ∈ S then all of the derivatives of f are in S. Show that if f ∈ S then its
Fourier transform is also in S.

Definition 150. A tempered distribution is a function which maps S to C, which satisfies the following
conditions:

• It is linear, so for a distribution denoted by L, we have

L(αf + βg) = αL(f) + βL(g),

for all f and g in C∞c (R) and for all complex numbers α and β.

• There is a non-negative integer N and a constant C ≥ 0 such that for all f ∈ S

|L(f)| ≤ C
∑

j+k≤N

sup
x∈R
|xjf (k)(x)|.

Let’s do an example. We define a distribution in the following way. For f ∈ C∞c (R),

L(f) := f(0).

277



That is, the distribution takes in the function, f , and spits out the value of f at the point 0 ∈ R. This
distribution satisfies for any f and g in C∞c (R) and for any α and β ∈ C,

L(αf + βg) = αL(f) + βL(g).

Moreover, we have the estimate that

|L(f)| ≤ |f(0)| ≤ sup
x∈R
|f(x)|.

So the estimate required is satisfied with N = 0 and C = 1. This distribution has a name. It is called the
delta distribution. It is usually written with the letter δ. It is nothing other than a function which takes a
function as its input and spits out a number as its output.

Exercise 151. Assume that f ∈ C∞c (R). Show that by defining

Lf (g) =

∫
R

f(x)g(x)dx, g ∈ C∞c (R),

Lf is a tempered distribution.

In fact, the assumption that f ∈ C∞c (R) wasn’t even necessary. You can show that for f ∈ L2(R) or
f ∈ L1(R), the distribution, Lf defined above (it takes in a function g ∈ C∞c (R) and integrates the product
with f over R), is a distribution. So, here’s something which is rather cool. The elements in L2(R) and L1(R)
are in general not differentiable at all. However, the distributions we can make out of them are differentiable.
Here’s how we do that.

Definition 152. The derivative of a tempered distribution, L is another tempered distribution, denoted by
L′ ∈ D(R), which is defined by

L′(g) = −L(g′), g ∈ S.

To see that this definition makes sense, we think about the special case where L = Lf , and f ∈ S. Then,
we can take the derivative of f , and it is also an element of S. So, we can define Lf ′ in the analogous way.
Let’s write it down when it takes in g ∈ S,

Lf ′(g) =

∫
R

f ′(x)g(x)dx.

We can do integration by parts. The boundary terms vanish, so we get

Lf ′(g) =

∫
R

f ′(x)g(x)dx = −
∫
R

f(x)g′(x)dx.

So,
Lf ′(g) = −Lf (g′) = (Lf )′(g).

This is why it makes a lot of sense to define the derivative of a distribution in this way. For the heavyside
function, we define

LH , LH(g) =

∞∫
0

g(x)dx.

Then, we compute that

L′H(g) = −LH(g′) = −
∞∫

0

g′(x)dx.
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Due to the fact that g ∈ S,
lim
x→∞

g(x) = 0.

Hence, we have

−
∞∫

0

g′(x)dx = −(0− g(0)) = g(0) = δ(g).

So, we see that the derivative of LH is the δ distribution! Pretty neat!
In this way, distributions can solve differential equations! For example, we’d say that a distribution L

satisfies the equation
L′′ + λL = 0

if, for every g ∈ S we have
L′′(g) + λL(g) = 0.

This turns out to be incredibly useful and important in the theory of partial differential equations. However,
the way it usually works is that instead of actually finding a distribution which solves the PDE, one shows
by abstract mathematics that there exists a distribution which solves the PDE. Then, one can use clever
methods to show that the mere existence of a distribution solving the PDE, which is called a weak solution,
actually implies that there exists a genuinely differentiable solution to the PDE. We don’t want to get ahead
of ourselves here, so conclude with one last exercise, which proves that you can differentiate distributions as
many times as you like!

Exercise 153. Use induction to show that you can differentiate a distribution as many times as you like,
by defining

L(k)(g) := (−1)kL(g(k)).

In a similar way, we can define the Fourier transform of a distribution.

Definition 154. Assume that L is a tempered distribution. The Fourier transform of L is the distribution,
L̂ which for f ∈ S acts as follows

L̂(f) := L(f̂).

In this way, we can compute the Fourier transform of our favorite distribution, δ.

δ̂(f) := δ(f̂) = f̂(0) =

∫
R

f(x)dx.

So, we could think of the Fourier transform of δ as the distribution which acts by

δ̂ : f ∈ S 7→
∫
R

f(x)dx.

On the other hand, by the FIT,

δ(f) = f(0) =
1

2π

∫
R

f̂(ξ)dξ =
1

2π
δ̂(f̂) =

1

2π
ˆ̂δ(f).

So that’s kind of cute. It says that

δ =
1

2π
ˆ̂δ.
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Appendix D

The Lebesgue and Hausdorff measures

Measures are as the name suggests: a method for measuring the size of sets. They are defined on collections
of sets known as sigma algebras.

D.1 Algebras, sigma algebras, and measures

To get started, we define the set of all sets:

P (X) = the set of all subsets of X.

Definition 155. Let X be a set. A subset A ⊂ P (X) is called an algebra if

1. X ∈ A

2. Y ∈ A =⇒ X \ Y =: Y c ∈ A

3. A, B ∈ A =⇒ A ∪B ∈ A

A is a σ-algebra if in addition

{An}n∈N ⊂ A =⇒
⋃
n∈N

An ∈ A.

Remark 5. First, note that since X ⊂ A, and algebras are closed under complementation, (yes it is a real
word), one always has

∅ = Xc ∈ A.

Moreover, we note that algebras are always closed under intersections, since for A,B ∈ A,

A ∩B = (Ac ∪Bc)c ∈ A,

since algebras are closed under complements and unions. Consequently, σ-algebras are closed under countable
intersections.

We will often use the symbol σ in describing countably-infinite properties.

Exercise 156. What is the smallest possible algebra? What is the next-smallest algebra? Continue building
up algebras. Now, let X be a topological space. The Borel σ-algebra is defined to be the smallest σ-algebra
which contains all open sets. What other kinds of sets are contained in the Borel σ-algebra?

With the notion of σ-algebra, we can define a measure.
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Definition 157. LetX be a set andA ⊂ P (X) a σ-algebra. A measure µ is a countably additive, set function
which is defined on the σ-algebra, A, such that µ(∅) = 0. The elements of A are known as measurable sets.
We will only work with non-negative measures, but there is such a thing as a signed measure. Just so you
know those beasties are out there. Countably additive means that for a countable disjoint collection of sets
in the σ-algebra

{An} ⊂ A such that An ∩Am = ∅∀n 6= m =⇒ µ
(⋃

An

)
=
∑

µ(An).

We shall refer to (X,A, µ) as a measure space. What this means is that a measure space is comprised of a
big set, X, and a certain collection of subsets of X, which is the σ-algebra, A. Moreover, there is a measure,
µ, which is a countably additive set function that is defined on all elements of A.

Proposition 158 (Measures are monotone). Let (X,A, µ) be a measure space. Then µ is finitely additive,
that is if A ∩B = ∅ for two elements A, B ∈ A, we have

µ(A ∪B) = µ(A) + µ(B).

Moreover, µ is monotone, that is for any A ⊂ B which are both elements of A we have

µ(A) ≤ µ(B).

Proof: First we make the rather trivial observation that if A and B are two elements of A with empty
intersection, then

A ∪B = ∪Aj , A1 = A, A2 = B, Aj = ∅∀j ≥ 3.

Then we have
µ(A ∪B) = µ(∪Aj) =

∑
j

µ(Aj) = µ(A) + µ(B),

since µ(∅) = 0. For the monotonicity, if A ⊂ B are two elements of A, then

µ(B) = µ(B \A ∪A) = µ(B \A) + µ(A) ≥ µ(A),

since µ ≥ 0.
So, in layman’s terms, when we’ve got a measure space, we have a big set, X, together with a collection

of subsets of X (note that X is a subset of itself, albeit not a proper subset), for which we have a notion of
size. This size is the value of the function µ. So, if Y ∈ A, then µ(Y ) is the measure of Y . Roughly speaking,
µ(Y ) tells us how much space within X the set Y is occupying. For the case of the Lebesgue measure on
Rn, and the n-dimensional Hausdorff measure, we shall see that measure coincides with our usual notion of
n-dimensional volume.

Proposition 159 (How to disjointify sets and countable sub-additivity). If {An} ⊂ A is a countable
collection of sets, then we can find a disjoint collection {Bn} ⊂ A such that

∪An = ∪Bn.

Let µ be a measure defined on the σ-algebra, A. Then countable sub-additivity holds for not-necessarily-
disjoint countable collections of sets, which means that for all such {An} as above,

µ(∪An) ≤
∑

µ(An).

Proof: We do this by setting

B1 := A1, Bn := An \ ∪n−1
k=1Bk, n ≥ 2.
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Then for m > n, note that
Bm ∩Bn =

(
Am \ ∪m−1

k=1 Bk
)
∩Bn = ∅

since
Bn ⊂ ∪m−1

k=1 Bk,

since n ≤ m− 1. Thus they are in fact disjoint. Moreover,

B1 = A1, B2 ∪B1 = A2 \A1 ∪A1 = A2 ∪A1.

Similarly, by induction, assuming that
∪nk=1Bk = ∪nk=1Ak,

we have
∪n+1
k=1Bk = Bn+1 ∪ ∪nk=1Bk = An+1 ∪ ∪nk=1Bk = An+1 ∪ ∪nk=1An

where in the last equality we used the induction hypothesis. Thus,

∪n≥1Bn = ∪n≥1An.

Moreover, the way we have defined Bn together with the definition of the σ-algebra, A, shows that Bn ∈ A
for all n. By the monotonicity of µ,

Bn ⊂ An∀n =⇒ µ(Bn) ≤ µ(An).

By the countable additivity for the disjoint sets, {Bn}, and since ∪Bn = ∪An

µ(∪An) = µ(∪Bn) =
∑

µ(Bn) ≤
∑

µ(An).

So, for not-necessarily disjoint sets, we have countable subadditivity, which means that

µ(∪An) ≤
∑

µ(An),

for all countable collections of sets {An} ⊂ A.

Definition 160. A measure space (X,A, µ) is σ-finite if there exists a collection of sets {An} ⊂ A such that

X = ∪An, and µ(An) <∞ ∀n.

Exercise 161. What are some examples of σ-finite measure spaces? What are some examples of measure
spaces which are not σ-finite?

One unfortunate fact about measures is that they’re not defined on arbitrary sets, only on measurable
sets (remember, those are the ones in the associated σ algebra). However, there is a way to define a set
function which is almost like a measure and is defined for every imaginable or unimaginable set. This thing
is called an outer measure.

Definition 162. Let X be a set. An outer measure µ∗ on X is a map from P (X)→ [0,∞] such that

µ∗(∅) = 0, A ⊂ B =⇒ µ∗(A) ≤ µ∗(B),

and
µ∗(∪An) ≤

∑
µ∗(An).

Whenever things are indexed with n or some other letter and are not obviously indicated to be uncountable
or finite, we implicitly are referring to a set indexed by the natural numbers.
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D.1.1 Carathéodory’s outer measures

We will require techniques from a Greek mathematician, Constantin Carathéodory.

Proposition 163 (Outer Measures). Let E ⊂ P (X) such that ∅ ∈ E. Let ρ be a map from elements of E
to [0,∞] such that ρ(∅) = 0. Then we can define for every element A ∈ P (X)

ρ∗(A) := inf
{∑

ρ(Ej) : Ej ∈ E,A ⊂ ∪Ej
}
,

where we assume that inf{∅} = ∞, so that if it is impossible to cover a set A by elements of E then
ρ∗(A) :=∞. So defined, ρ∗ is an outer measure.

Proof: Note that ρ∗ is defined for every set. Now since ∅ ⊂ ∅ = ∪Ej , taking all Ej = ∅ ∈ E we have the
cover for ∅ given by this particular choice of {Ej} ⊂ E. Therefore, since ρ ≥ 0, we have that ρ∗ ≥ 0, and on
the other hand since it is an infimum,

0 ≤ ρ∗(∅) ≤
∑
j

ρ(∅) = 0 =⇒ ρ∗(∅) = 0.

This is the first condition an outer measure must satisfy.
Next, let’s assume A ⊂ B. (By ⊂ we always mean ⊆). Then, since any covering of B by elements of

E is also a covering of A by elements of E, it follows that the infimum over coverings of A is an infimum
over a potentially larger set of objects (namely coverings) as compared with the infimum over coverings of
B. Hence we have

ρ∗(A) = inf{
∑

ρ(Ej) : Ej ∈ E,A ∈ ∪Ej} ≤ inf{
∑

ρ(Ej) : Ej ∈ E,B ∈ ∪Ej} = ρ∗(B).

This is the second condition.
Finally, we must show that ρ∗ is countably subadditive. So, let {An} be a collection of sets in P (X). If

for any n we have no cover of An by elements of E, then since

An ⊂ ∪kAk,

there is no cover of ∪kAk by elements of E either. Hence we have

ρ∗(∪An) =∞, ρ∗(An) =∞ ≤
∑

ρ∗(Ak) =⇒ ρ∗(∪An) =∞ =
∑

ρ∗(An).

Thus countable subadditivity is verified in this case.
So, to complete the proof, we assume that each An admits at least one covering by elements of E. Let

ε > 0. Since the definition of ρ∗ is by means of an infimum, for each j ∈ N there exists a countable collection
of sets {Ekj }∞k=1 where each Ekj ∈ E, such that

ρ∗(Aj) ≥
∑
k≥1

ρ(Ekj )− ε

2j
=⇒ ρ∗(Aj) +

ε

2j
≥
∑
k≥1

ρ(Ekj ).

Well then, the collection {Ekj } is a countable collections of elements of E which covers

∪Aj .

Therefore by the definition of ρ∗ as the infimum over such covers, we have

ρ∗(∪Aj) ≤
∑
j,k≥1

ρ(Ekj ).

Since for each Ekj we have

ρ∗(Aj) +
ε

2j
≥
∑
k≥1

ρ(Ekj ),
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summing over k we have ∑
j,k≥1

ρ(Ekj ) ≤
∑
j≥1

ρ∗(Aj) +
ε

2j
= ε+

∑
j≥1

ρ∗(Aj).

Thus following all the inequalities we have

ρ∗(∪Aj) ≤ ε+
∑
j

ρ∗(Aj).

Since this inequality holds for arbitrary ε > 0, we may let ε→ 0, and the inequality also holds without that

pesky ε. Hence we have verified countable subadditivity in this last case as well.
For each measure space, there is a canonically associated outer measure.

Corollary 164. Let (X,A, µ) be a measure space. Then, there is a canonically associated outer measure
induced by µ defined by

µ∗(A) := inf{
∑

µ(Ej), {Ej} ⊂ A, A ⊂ ∪Ej}.

Proof: By the definition of measure space, we have that ∅ ∈ A, and µ(∅) = 0. Moreover, µ : A → [0,∞].
Finally, we note that since for any A ∈ P (X), A ⊂ X ∈ A, we can always find a covering of such A by
elements of A. (In particular, one covering is to take Ej = X for all j). Thus, µ∗ is defined for all A ∈ P (X).
Moreover, µ and A satisfy the hypotheses of the preceding proposition. Therefore, since µ∗ is defined in an

analogous way to ρ∗, by the preceding proposition we also have that µ∗ is an outer measure.

Remark 6. For a measure space (X,A, µ), we shall use µ∗ to denote the canonically associated outer measure,
which is defined according to the corollary. One of the reasons we require the notion of an outer measure is
because it is used to define what it means for a measure space to be complete.

D.1.2 Completeness

If our notion of size (volume) defined in terms of the measure of sets belonging to a sigma algebra is a good
notion, then if a certain set has size zero, anything contained within that set ought to also have size zero.
It is precisely this observation that motivates the definition of a complete measure, which can be formulated
in two different but equivalent ways.

Proposition 165 (Completeness Proposition). The following are equivalent for a measure space (X,M, µ).
If either of these hold, then µ is called complete.

1. If there exists N ∈M with µ(N) = 0, and Y ⊂ N , then Y ∈M.

2. If µ∗(Y ) = 0 then Y ∈M.

Proof:
First let us assume (1) holds. Then if Y ⊂ X with µ∗(Y ) = 0, by the definition of µ∗ for each k ∈ N

there exists
{Ekn}n≥1 ⊂M, Y ⊂ ∪nEkn,

∑
n

µ(Ekn) < 2−k.

Well, then
Y ⊂ N := ∩k ∪n Ekn ∈M,

where the containment holds because M is a σ-algebra. Since N ⊂ ∪nEkn for each k ∈ N, by monotonicity
of the measure

µ(N) ≤ µ(∪nEkn) < 2−k∀k ∈ N =⇒ µ(N) = 0.
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By the assumption of (1) since Y ⊂ N ∈M and µ(N) = 0, it follows that Y ∈M. So, every set with outer
measure zero is measurable (that’s what (2) says!)

Next, we assume (2) holds. Then if there exists N ∈M with µ(N) = 0 and Y ⊂ N , then

Y ⊂ ∪Aj , A1 := N, Aj = ∅∀j ≥ 2,

and {Aj} ⊂ M. So, by definition of outer measure,

0 ≤ µ∗(Y ) = inf . . . ≤
∑

µ(Aj) = µ(N) = 0.

Consequently µ∗(Y ) = 0, and by the assumption (2), Y ∈ M. This shows that (2) =⇒ (1). Hence, they

are equivalent.

D.1.3 Exercises: Measure theory basics

1. Let X be a finite set. How many elements does P (X) contain? Prove your answer!

2. Given a measure space (X,A, µ) and E ∈ A, define

µE(A) = µ(A ∩ E)

for A ∈ A. Prove that µE is a measure.

3. Prove that the intersection of arbitrarily many σ-algebras is again a σ-algebra. Does the same hold for
unions?

4. Let A be an infinite σ-algebra. Prove that A contains uncountably many elements.

5. Let X = N, and define the algebra A = P (X). Prove that all elements of A are either countably
infinite, finite, or empty. Define the measure to be 1 on a single element of N and 0 on the empty set.
Prove that this satisfies the definition of a measure space. Will it also work to take X = R, and let
A = P (R), using the same definition of the measure? Do we get a measure space? Why or why not?

D.2 Completion of a measure, creating a measure from an outer
measure, and pre-measures

There is a natural way to complete a measure; this is the content of the following theorem.

Theorem 166 (Completion of a measure). Let (X,M, µ) be a measure space. Let N := {N ∈M | µ(N) =
0} and

M̄ = {E ∪ F | E ∈M and F ⊂ N for some N ∈ N}.

Then M̄ is a σ-algebra and ∃! extension µ̄ of µ to a complete measure on M̄. Moreover, if A is a σ-algebra
which containsM, such that (X,A, ν) is a complete measure space, and ν restricted toM is equal to µ, then
A ⊃ M̄. In this sense, (X,M̄, µ̄) is the minimal complete extension of (X,M, µ) to a complete measure
space.

Proof: First we show that M is a σ-algebra. We observe that every element of M can be written as
itself union with ∅, and ∅ ⊂ ∅ ∈ N . So it follows that every element ofM is an element of M̄. Next, assume
that {An} ⊂ M̄ and {En, Nn} ⊂ M such that

An = En ∪ Fn, Fn ⊂ Nn ∈ N .
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Then
N := ∪Nn ∈M, and µ(∪Nn) ≤

∑
µ(Nn) = 0.

Since ∅ ⊂ N , we have by the monotonicity of µ that

0 = µ(∅) ≤ µ(N) ≤
∑

µ(Nn) = 0.

We also have that
E := ∪En ∈M.

Then, let us define F := ∪Fn ⊂ N . It follows that

∪An = E ∪ F ∈ M̄.

Consequently M̄ is closed under countable unions. What about complements? If A = E ∪ F ∈ M̄ with
F ⊂ N ∈ N then note that

(E ∪ F )c = Ec ∩ F c = ((Ec ∩N) ∪ (Ec ∩N c)) ∩ F c,

and since F ⊂ N =⇒ F c ⊃ N c, the intersection of the last two terms is just Ec ∩N c, so

(E ∪ F )c = (Ec ∩N ∩ F c) ∪ (Ec ∩N c).

Since E,N ∈ M =⇒ Ec ∩ N c ∈ M, and Ec ∩ N ∩ F c ⊂ N ∈ N we see that (E ∪ F )c ∈ M̄. So, M̄ is
closed under complements. Hence, we have shown that M̄ is a σ-algebra which contains M.

Next, we must demonstrate that µ̄ is a well-defined, complete, and unique extension of µ. It is natural
to ignore the subset of the zero-measure set, so we define

µ̄(E ∪ F ) := µ(E).

If we have another representation of E ∪ F = G ∪H with G ∈M and F,H ⊂ N,M ∈ N , respectively, then

µ̄(E ∪ F ) = µ(E).

Since E ⊂ E ∪ F = G ∪H ⊂ G ∪M , with G ∪M ∈M, we have by the monotonicity of µ,

µ(E) ≤ µ(G ∪M) ≤ µ(G) + µ(M) = µ(G).

Above, we have used countable subadditivity and the fact that M ∈ N . Then, we note that

µ̄(G ∪H) = µ(G),

as we have defined µ̄. So, following the equalities and inequalities, we have

µ̄(E ∪ F ) = µ(E) ≤ µ(G) = µ̄(G ∪H).

To complete the argument, we use the Shakespeare technique: what is in a name? Would not a rose by any
other name smell as sweet? Simply repeat the same argument above, replacing E by G and F by H, that is
we do the same mathematical argument but we simply swap the names. Then we obtain

µ̄(G ∪H) ≤ µ̄(E ∪ F ).

Hence we have shown that
µ̄(E ∪ F ) = µ̄(G ∪H).

We conclude that µ̄ is well-defined.
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Now, let’s show that µ̄ is a measure which extends µ. By definition, for E ⊂M

µ̄(E) = µ̄(E ∪ ∅) = µ(E).

So, this shows that
µ̄|M = µ.

We also observe that since
∅ ∈ M =⇒ µ̄(∅) = µ(∅) = 0.

Next we wish to show monotonicity. If

A = E ∪ F, E ∈M, F ⊂ N ∈ N ,

and
A ⊂ B = G ∪H, G ∈M, H ⊂M ∈ N ,

then we have
E ⊂ A ⊂ B = G ∪H ⊂ G ∪M =⇒

µ̄(A) = µ(E) ≤ µ(G ∪M) ≤ µ(G) + µ(M) = µ(G) = µ̄(B).

We therefore have shown that µ̄ is monotone.
Next we wish to show that µ̄ is countably additive. Assume that {An} = {En ∪ Fn} ⊂ M̄ are disjoint.

Then
An ∩Am = En ∪ Fn ∩ (Em ∪ Fm) ⊃ En ∩ Em,

which shows that
En ∩ Em = ∅, ∀n 6= m.

Consequently,

µ̄(∪An) = µ(∪En) =
∑

µ(En) =
∑

µ̄(An).

So, µ̄ is countably additive. We have therefore proven that µ̄ is a measure on M̄.
Let’s show that µ̄ is complete. Assume that Y ∈ M̄ with µ̄(Y ) = 0. Then we can write

Y = E ∪ F, E ∈ N , F ⊂ N ∈ N .

Hence, in particular,
Y ⊂ E ∪N ∈ N .

Therefore Z ⊂ Y ⊂ N . We can therefore write Z as

Z = ∅ ∪ Z, ∅ ∈ M, Z ⊂ N ∈ N .

It follows from the definition of M that Z ∈ M̄. Thus, any subset of a M̄ measurable set which has µ̄
measure zero is also an element of M̄, which is the first of the equivalent conditions required to be a complete
measure.

Finally the uniqueness. Let’s assume ν also extends µ to a complete measure on M. This means that

ν|M = µ̄|M = µ.

For Y = E ∪ F ∈ M̄, we also have Y ⊂ E ∪N , so by countable subadditivity,

ν(Y ) ≤ ν(E) + ν(N) = µ(E) + µ(N) = µ(E) = µ̄(Y ).

Conversely
µ̄(Y ) = µ(E) = ν(E) ≤ ν(E ∪ F ) = ν(Y ).

So, we’ve got equality all across, and in particular, ν(Y ) = µ̄(Y ).
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Finally, let us assume that there is some other extension, ϕ, of µ to a complete measure on some σ-algebra
A which contains M. Thus, (X,A, ϕ) is a complete measure space, and

ϕ|M = µ.

Then
ϕ(N) = 0 ∀N ∈ N .

Now, let E ∪ F ∈M. Then E ∈M, and thus E ∈ A is also true. Moreover, F ⊂ N ∈ N , and so

N ∈ A, ϕ(N) = µ(N) = 0.

Since A is complete, by the completeness proposition, we have that

F ∈ A =⇒ E ∪ F ∈ A.

We have therefore proven that M̄ ⊂ A.

Proposition 167 (Null Set Proposition). Let (X,M, µ) be a non-trivial measure space, meaning there exist
measurable subsets of positive measure. Then

N := {Y ∈M : µ(Y ) = 0}

is not a σ-algebra, but it is closed under countable unions.

Proof: If {Nn} ⊂ N is a countable collection, then since M is a σ-algebra,

∪Nn ∈M.

Moreover, we have

µ(∪Nn) ≤
∑

µ(Nn) = 0 =⇒ µ(∪Nn) = 0.

This shows that N is closed under countable unions. Why is it however, not a σ-algebra? It’s not even
an algebra! This is because it is not closed under complements. What is always an element of N ? The ∅
is always measurable and has measure zero. Hence ∅ ∈ N . What about its complement? This is where
the non-triviality hypothesis plays a role. There is some Y ∈ M such that µ(Y ) > 0. Since Y ⊂ X, by
monotonicity

µ(X) ≥ µ(Y ) > 0 =⇒ X = ∅c /∈ N .

We shall now see that once we have an outer measure, we can build a sigma algebra and a measure, and
obtain a complete measure space!

Theorem 168 (Carathéodory: creating a measure from an outer measure). Let µ∗ be an outer measure on
X. A set A ⊂ X is called measurable with respect to µ∗ ⇔ ∀ E ⊂ X the following equation holds:

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac). (∗)

Then M := {A ⊂ X|A is µ∗ measurable} is a σ-algebra and µ∗
∣∣
M is a complete measure.

Proof: Note that A ∈M⇒ Ac ∈M because (*) is symmetric in A and Ac. Since µ∗(∅) = 0, we have

µ∗(E ∩ ∅) + µ∗(E ∩ ∅c) = µ∗(∅) + µ∗(E ∩X) = 0 + µ∗(E) = µ∗(E).

289



Consequently, ∅ ∈ M.
Next we will show that M is closed under finite unions of sets. For A,B ∈ M and E ⊂ X we get, by

multiple use of (*):

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac) = µ∗((E ∩A) ∩B) + µ∗((E ∩A) ∩Bc)
+ µ∗((E ∩Ac) ∩B) + µ∗((E ∩Ac) ∩Bc).

Furthermore, we can write A ∪B = (A ∩B) ∪ (A ∩Bc) ∪ (Ac ∩B), so that

E ∩ (A ∪B) = (E ∩ (A ∩B)) ∪ (E ∩ (A ∩Bc)) ∪ (E ∩ (Ac ∩B)),

so by countable subadditivity of outer measures, we have

µ∗(E ∩A ∩B) + µ∗(E ∩Ac ∩B) + µ∗(E ∩A ∩Bc) ≥ µ∗(E ∩ (A ∪B))

Since E ∩Ac ∩Bc = E ∩ (A ∪B)c, using this inequality in the above equation gives us:

µ∗(E) ≥ µ∗(E ∩ (A ∪B)) + µ∗(E ∩ (A ∪B)c).

Moreover, by countable subadditivity of outer measures,

µ∗(E) = µ∗[(E ∩ (A ∪B)) ∪ (E ∩ (A ∪B)c)] ≤ µ∗(E ∩ (A ∪B)) + µ∗(E ∩ (A ∪B)).

So the inequality is actually an equality, since we have shown that

µ∗(E) ≥ µ∗(E ∩ (A ∪B)) + µ∗(E ∩ (A ∪B)c) ≥ µ∗(E).

Hence A ∪B ∈M.
Next we show that µ∗ is finitely-additive:

∀A,B ∈M, A ∩B = ∅ ⇒ µ∗(A ∪B) = µ∗((A ∪B) ∩A) + µ∗((A ∪B) ∩Ac) = µ∗(A) + µ∗(B).

Now we will show thatM is actually a σ-algebra: For {Aj}j∈N ⊂M we can define a sequence of disjoint
sets {Bj}j∈N ⊂M fulfilling

⋃
j∈NAj =

⋃
j∈NBj by:

B1 := A1, Bn := An \ ∪n−1
k=1Bk, n ≥ 2.

Let us also define

B̃n :=

n⋃
j=1

Bj .

Then since M is closed under finite unions of sets and also closed under complementation, both

B̃n ∈M, Bn ∈M.

So, we need to show that ⋃
j∈N

An =
⋃
j∈N

Bj ∈M.

For E ⊂ X, since Bn ∈M,

µ∗(E ∩ B̃n)
(∗)
= µ∗(E ∩ B̃n ∩ Bn) + µ∗(E ∩ B̃n ∩ Bn

c) = µ∗(E ∩ Bn) + µ∗(E ∩ B̃n−1)
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Thus µ∗(E ∩ B̃n) = µ∗(E ∩ Bn) + µ∗(E ∩ B̃n−1). Repeating this argument, we have µ∗(E ∩ B̃n−1) =
µ∗(E ∩Bn−1) + µ∗(E ∩ B̃n−2). Continuing inductively, we have:

µ∗(E ∩ B̃n) = µ∗(E ∩Bn) + µ∗(E ∩Bn−1) + µ∗(E ∩ B̃n−2) = ... =

n∑
k=1

µ∗(E ∩Bk)

Using this result together with the fact that B̃n ∈M, we get:

µ∗(E) = µ∗(E ∩ B̃n) + µ∗(E ∩ B̃cn) =

n∑
k=1

µ∗(E ∩Bk) + µ∗(E ∩ B̃cn)

≥
n∑
k=1

µ∗(E ∩Bk) + µ∗(E \ (

∞⋃
k=1

Bk))

Above, we have used that

E ∩ B̃cn = E ∩ (∪nk=1Bn)c = E \ ∪nk=1Bn ⊃ E \
∞⋃
k=1

Bk,

together with the fact that outer measures are monotone. This inequality holds for any n ∈ N, so we obtain

(∗∗) µ∗(E) ≥
∞∑
k=1

µ∗(E ∩Bk) + µ∗(E \ (

∞⋃
k=1

Bk)).

Since
E ∩ (∪∞k=1Bk) = ∪∞k=1E ∩Bk,

by countable subadditivity of out measures,

µ∗(E ∩ (

∞⋃
k=1

Bk)) ≤
∞∑
k=1

µ∗(E ∩Bk).

We therefore obtain, combining this with the above inequality

µ∗(E) ≥ µ∗(E ∩ (

∞⋃
k=1

Bk)) + µ∗(E \ (

∞⋃
k=1

Bk)) = µ∗(E ∩ (

∞⋃
k=1

Bk)) + µ∗(E ∩ (

∞⋃
k=1

Bk)c).

Since E ⊂ (E ∩ Y ) ∪ (E ∩ Y c), by countable subadditivity of outer measures, for any Y we have

µ∗(E) ≤ µ∗(E ∩ Y ) + µ∗(E ∩ Y c).

We therefore also have the inequality

µ∗(E) ≤ µ∗(E ∩ (

∞⋃
k=1

Bk)) + µ∗(E ∩ (

∞⋃
k=1

Bk)c).

Combining with the reverse inequality we demonstrated above, we obtain

µ∗(E) = µ∗(E ∩ (

∞⋃
k=1

Bk)) + µ∗(E ∩ (

∞⋃
k=1

Bk)c).

This shows that ∪Bk satisfies the definition of M, so we have

∞⋃
k=1

Ak =

∞⋃
k=1

Bk ∈M.
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Hence M is a σ-algebra.

Now we want to show that µ∗
∣∣
M is a measure. First we note that since µ∗ is an outer measure, we

have µ∗(∅) = 0. Moreover, outer measures are also monotone, so µ∗ is monotone. Thus, we only need to
show that µ∗ restricted to M is countably additive. Let {Bk}k∈N ⊂ M be pairwise disjoint sets. Defining
E :=

⋃∞
k=1Bk and using (**), we get

µ∗(

∞⋃
k=1

Bk) = µ∗(E)
(∗∗)
≥

∞∑
k=1

µ∗(E ∩Bk) + µ∗(∅) =

∞∑
k=1

µ∗(Bk) ≥ µ∗(
∞⋃
k=1

Bk)

=⇒ µ∗(

∞⋃
k=1

Bk) =

∞∑
k=1

µ∗(Bk)

So µ∗
∣∣
M is a measure.

Finally, we show that it is a complete measure: For Y ⊂ X such that µ∗(Y ) = 0, and for arbitrary E ⊂ X
we have by countable subadditivity of outer measures

µ∗(E) ≤ µ∗(E ∩ Y ) + µ∗(E ∩ Y c) ≤ µ∗(Y ) + µ∗(E) = µ∗(E)

Therefore Y ∈M.

Remark 7. We briefly discussed the proof of completion, and I shall add a remark here. Technically speaking,
we should be considering

µ∗∗ : P (X)→ [0,∞], µ∗∗(A) = inf{
∑
j≥1

µ∗(Ej) : A ⊂ ∪j≥1Ej , Ej ∈M}.

If some set has µ∗∗(Y ) = 0, then for each k ∈ N there exists {Ekj } ∈ M such that

Y ⊂ ∪j≥1E
k
j ,

∑
j≥1

µ∗(Ekj ) < 2−k.

Since M is a σ-algebra,
Ak := ∪j≥1E

k
j ∈M,

and
µ∗(Ak) ≤

∑
j≥1

µ∗(Ekj ) < 2−k.

Moreover, since Y ⊂ Ak for all k, we have
Y ⊂ ∩k≥1Ak,

and we also have that since M is a σ-algebra

∩k≥1Ak ∈M.

Since
∩k≥1Ak ⊂ An ∀n ∈ N,

by monotonicity,
µ∗(Y ) ≤ µ∗(∩k≥1Ak) ≤ 2−n ∀n ∈ N.

This shows that µ∗(Y ) = 0. It is pretty straightforward to show that the converse holds as well, that is if
µ∗(Z) = 0 then µ∗∗(Z) = 0. So, by the completeness proposition, our µ∗ is complete!
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Another important concept in measure theory is that of a pre-measure.

Definition 169. Let A ⊂ P (X) be an algebra. A function µ0 : A → [0,∞] is called a pre-measure if

1. µ0(∅) = 0

2. If {Aj} is a countable collection of disjoint elements of A such that

∪Aj ∈ A,

then
µ0(∪Aj) =

∑
µ0(Aj).

Exercise 170. We have shown how, given a measure space (X,M, µ), we can obtain a minimal complete
measure space, (X,M̄, µ̄). We have also shown how, given a measure, µ, we can canonically construct an
outer measure, µ∗.

1. Using the canonically associated outer measure, µ∗, determine whether or not the set

A := {A ∈ P (X) : µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac) holds true for all E ⊂ X}

is equal to the set
M̄ := {E ∪ F : E ∈M, and F ⊂ N ∈ N},

where again N is the set of elements of M which have µ-measure zero.

2. In this way, determine whether or not the spaces

(X,A, µ∗)

and
(X,M̄, µ̄)

are the same? My sneaking suspicion is that they are the same, but I shall not spoil your fun in
investigating this question.

D.2.1 Exercises: Constructing the Lebesgue measure

The n-dimensional Lebesgue measure is the unique, complete measure which agrees with our intuitive notion
of n-dimensional volume. To make this precise, first we define a generalized interval and our notion of intuitive
volume.

Definition 171. A generalized interval in Rn is a set for which there exist real numbers ak ≤ bk for
k = 1, . . . n, such that this set has the form

I = {x ∈ Rn, x =
∑

xkek, ak < or ≤ xk < or ≤ bk, k = 1, . . . , n}.

Above we are using ek to denote the standard unit vectors for Rn. The intuitive volume function on Rn is
defined on such a set to be

vn(I) =
∏

(bk − ak).

Next we can extend our intuitive notion of volume to elementary sets.

Definition 172. An elementary subset of Rn is a set which can be expressed as a finite disjoint union of
generalized intervals. The collection of all of these is denoted by En.

Exercise 173. Prove that vn is well-defined on En.
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Exercise 174. To make an algebra containing En, in particular the smallest algebra containing En, it is
necessary to include compliments. Define

A := {Y ⊆ Rn | Y ∈ εn or ∃Z ∈ εn s.t. Y = Zc}

Prove that A is an algebra.

Exercise 175. Show that νn is well-defined on A where

νn(

n∏
Iai, αiI) :=

{
0, if ai = αi for some i∏

(αi − ai), else

Exercise 176. Show that νn is a pre-measure on A.

D.2.2 Hints

1. ∅ =
∏
Ix, xI for x ∈ Rn. Notation: we use Ia, bI to denote either ]a, b[, [a, b], ]a, b] or [a, b[. Notation

which is unnecessary shall be simplified when possible.

2. Show that A is closed under compliments

3. Let A,B ∈ A. If A,B ∈ εn then first consider the case where A,B are each single intervals i.e.
A =

∏
Iai, αiI,B =

∏
Ibi, βiI for ai ≤ αi, bi ≤ βi. For each i, if Ibi, βiI ⊂ Iai, αiI then note that

Iai, αiI\Ibi, βiI = Iai, biI ∪ Iβi, αiI

If Ibi, βiI 6⊂ Iai, αiI, then either Ibi, βiI ∩ Iai, αiI = ∅ in which case Iai, αiI\Ibi, βiI = Iai, αiI, or
Ibi, βiI ∩ Iai, αiI 6= ∅ so that

Iai, αiI\Ibi, βiI =

{
Iai, biI if bi ≤ αi(⇒ βi > αi)

Iβi, αiI if ai ≤ betai(⇒ bi < ai)

In both cases Iai, αiI\Ibi, βiI is the disjoint union of intervals. Repeating for each i = 1, ..., n gives
A\B ∈ εn, and similarly B\A ∈ εn. Note that A ∩ B =

∏
Ixi, yiI with xi = max{ai, bi}, yi =

min{αi, βi} (and should xi ≥ yi then it is understood that Ixi, yiI = ∅. Therefore,

A ∪B = (A\B) ∪ (B\A) ∪ (A ∩B) ∈ εn.

In fact, for A =
∏
Iai, αiI ∈ εn note that

Ac =Rn\A

=
∏

I −∞, aiI ∪
∏

Iαi,∞I

Allowing the endpoints xi and/or yi of Ixi, yiI to be ±∞, the same arguments for A,B as above show
that Ac ∪B and Ac ∪Bc are elements of A.

More generally, for A =
k⋃
j=1

Ij ∈ εn with Ij ∩
k 6=j

Ik = ∅ and B =
m⋃
l=1

Jl ∈ εn with Jl ∩
m6=l

Jm = ∅

with end points possibly ±∞, repeated application of the above arguments shows that I1 ∪ J1 ∈ εn,
(I1 ∪ J1) ∪ I2 ∈ εn, and so forth. Therefore, A ∪B ∈ εn. So A is closed under finite unions and hence
A is an algebra.

4. To show that νn is well-defined on A and that it is a pre-measure, first show that νn(∅) = 0.
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5. Next, let {Am}m≥1 ⊂ A such that ∪
m≥1

Am ∈ A, Am ∩
k 6=m

Ak = ∅ then ∃{Ij}kj=1 disjoint in A such that

k⋃
j=1

Ij =
∞⋃
m=1

Am.

By definition, νn(
M⋃
m=1

Am) =
M∑
m=1

vn(Am) ≤ νn(
k⋃
j=1

Ij) =
k∑
j=1

vn(Ij)

∀M ∈ N,
M∑
m=1

vn(Am) ≤
k∑
j=1

vn(Ij) = νn(
∞⋃
m=1

Am) ≤
M∑
m=1

vn(Am)

⇒ νn(
∞⋃
m=1

Am) =
M∑
m=1

vn(Am)

D.3 Pre-measure extension theorem and metric outer measures

The name pre-measure is appropriate because it’s almost a measure, it’s just possibly not countably additive
for every disjoint countable union, since these need not always be contained in a mere algebra (which is not
necessarily a σ-algebra). However, Carathéodory can help us to extend pre-measures to measures. First, we
require the following.

Proposition 177. Let µ0 be a pre-measure on the algebra A ⊂ P (X), and define

µ∗(Y ) := inf{
∑
j

µ0(Aj) : Aj ∈ A∀j, Y ⊂ ∪jAj},

where the infimum is taken to be ∞ if there is no such cover of Y . Then we have:

1. µ∗ is an outer measure.

2. µ∗(A) = µ0(A)∀A ∈ A.

3. Every set in A is µ∗ measurable in the same sense as above, being that for arbitrary E ⊂ X, for A ∈ A,

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac).

Proof: First, note that ∅ ∈ A since A is an algebra. Moreover, the map µ0 is defined on A, with
µ0 : A → [0,∞], and has µ0(∅) = 0. Therefore by the Outer Measure Proposition, as we have defined µ∗, it
is an outer measure.

Next, we wish to show that µ∗ and µ0 are the same when we restrict to the algebra, A. To do this we
will show that (1) pre-measures are finitely additive and (2) pre-measures are monotone.

Finite additivity of pre-measures: Next, we show that pre-measures are by definition finitely additive
since for A,B ∈ A with A ∩B = ∅, then

A ∪B = ∪Aj , A1 = A,A2 = B,Aj = ∅∀j > 2,

gives

µ0(A ∪B) = µ0(∪Aj) =
∑

µ0(Aj) = µ0(A) + µ0(B).

Monotonicity of pre-measures: Assume that A ⊂ B are both elements ofA. Then B\A = B∩Ac ∈ A,
so finite additivity gives

µ0(B) = µ0(B \A) + µ0(A) =⇒ µ0(A) = µ0(B)− µ0(B \A) ≤ µ0(B).

Showing that µ∗ = µ0 on A: Now, let E ∈ A. If E ⊂ ∪Aj with Aj ∈ A ∀j, then let

Bn := E ∩ (An \ ∪n−1
1 Aj).
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Then
Bn ∈ A∀n, Bn ∩Bm = ∅∀n 6= m.

The union
∪Bn = ∪E ∩ (An \ ∪n−1

1 Aj) = E ∩ ∪(An \ ∪n−1
1 Aj) = E ∩ ∪An = E ∈ A.

So by definition of pre-measure,

µ0(E) = µ0(∪Bn) =
∑

µ0(Bn) ≤
∑

µ0(An),

since Bn ⊂ An∀n. Taking the infimum over all such covers of E comprised of elements of A, we have

µ0(E) ≤ µ∗(E).

On the other hand, E ⊂ ∪Aj with A1 = E ∈ A, and Aj = ∅∀j > 1. Then, this collection is considered in
the infimum defining µ∗, so

µ∗(E) ≤
∑

µ0(Aj) = µ0(E).

We’ve shown the inequality is true in both directions, hence µ∗(E) = µ0(E) for any E ∈ A.
Showing that A sets are µ∗ measurable: Let A ∈ A, E ⊂ X, and ε > 0. Since we always have by

countable subadditivity
µ∗(E) ≤ µ∗(E ∩A) + µ∗(E ∩Ac),

if µ∗(E) =∞, then we also have

∞ ≤ µ∗(E ∩A) + µ∗(E ∩Ac) =⇒ µ∗(E ∩A) + µ∗(E ∩Ac) =∞,

so the equality holds. Now, let us assume that µ∗(E) < ∞. Then, by its definition, there exists {Bj} ⊂ A
with E ⊂ ∪Bj and ∑

µ0(Bj) ≤ µ∗(E) + ε.

Since µ0 is additive on A,

µ∗(E) + ε ≥
∑

µ0(Bj ∩A) + µ0(Bj ∩Ac) =
∑

µ0(Bj ∩A) +
∑

µ0(Bj ∩Ac) ≥ µ∗(E ∩A) + µ∗(E ∩Ac).

Above we have used the definition of µ∗ as an infimum, together with the fact that since A ∈ A and Bj ∈ A
for all j, we have Bj ∩A ∈ A and Bj ∩Ac ∈ A for all j, and we also have

E ∩A ⊂ ∪Bj ∩A, E ∩Ac ⊂ ∪Bj ∩Ac.

This is true for any ε > 0, so we have

µ∗(E) ≥ µ∗(E ∩A) + µ∗(E ∩Ac) ≥ µ∗(E).

So, these are all equal, which shows that A satisfies the definition of being µ∗ measurable since E was

arbitrary.
Now we will prove that we can always extend a pre-measure to a measure. You will use this in the first

exercise to complete the construction of the Lebesgue measure.

Theorem 178 (Pre-measure extension theorem). Let A ⊂ P (X) be an algebra, µ0 a pre-measure on A, and
M the smallest σ-algebra generated by A. Then there exists a measure µ on M which extends µ0, namely

µ := µ∗ restricted to M.

If ν also extends µ0 then ν(E) ≤ µ(E)∀E ∈ M with equality when µ(E) <∞. If µ0 is σ-finite, then ν ≡ µ
on M, so µ is the unique extension.
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Proof: By its very definition, M is a σ-algebra, and all elements of A are contained in M. Moreover,
by the proposition,

µ∗(A) = µ0(A), ∀A ∈ A.

Since ∅ ∈ A, we have
µ∗(∅) = 0.

Moreover, since µ∗ is an outer measure, by the proposition, it is monotone. Consider the set

{A ⊂ X|µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac) holds true for all E ⊂ X}.

By the preceding proposition, this set contains all elements of A. Moreover, since µ∗ is an outer measure, in
Caratheodory’s Theorem, we proved that this set is a σ algebra, and µ∗ restricted to this set is a measure.
Hence, since it is a σ algebra which contains A, it also containsM. Therefore, µ∗ restricted toM is countably
additive, since µ∗ on this larger (Carathéodory-Theorem-σ-algebra-set) is countably additive. Hence µ is a
measure.

So, we only need to consider the statements about a possibly different extension ν which coincides with
µ0 on A and is a measure on M. If E ∈M and

E ⊂ ∪Aj , Aj ∈ A∀j,

then
ν(E) ≤

∑
ν(Aj) =

∑
µ0(Aj).

This holds for any such covering of E by elements of A, so taking the infimum we have

ν(E) ≤ µ∗(E) = µ(E) since E ∈M.

If µ(E) < ∞, let ε > 0. Then we may choose {Aj} ⊂ A which are WLOG (without loss of generality)
disjoint (why/how can we do this?) such that

E ⊂ ∪Aj , µ(∪Aj) =
∑

µ0(Aj) < µ∗(E) + ε = µ(E) + ε,

since E ∈M. Note that E ∈M, {Aj} ⊂ A, and M is a σ algebra containing A. We therefore have

A := ∪Aj ∈M.

Then, we also have

ν(A) = lim
n→∞

ν(∪n1Aj) = lim
n→∞

n∑
1

ν(Aj) = lim
n→∞

n∑
1

µ0(Aj) = µ(A).

Then we have since E ∈M, and {Aj} ⊂ A, and M is a σ algebra containing A that A ∈M. By countable
additivity of the measure µ, we have

µ(∪Aj) = µ(A) = µ(A ∩ E) + µ(A \ E) = µ(E) + µ(A \ E) < µ(E) + ε

which shows that
µ(A \ E) < ε.

Consequently, using monotonicity, the fact that µ(A) = ν(A), the additivity of ν, and the fact that ν ≤ µ,
we obtain

µ(E) ≤ µ(A) = ν(A) = ν(E ∩A) + ν(A \ E) ≤ ν(E) + µ(A \ E) < ν(E) + ε.

This holds for all ε > 0, so
µ(E) ≤ ν(E).

Consequently in this case µ(E) = ν(E), whenever these are finite.
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Finally, if X = ∪Aj with Aj ∈ A, µ0(Aj) <∞∀j, we may WLOG assume the Aj are disjoint. Then for
E ∈M,

E = ∪(E ∩Aj),

which is a disjoint union of elements of M. So by countable additivity

µ(E) = µ(∪E ∩Aj) =
∑

µ(E ∩Aj) =
∑

ν(E ∩Aj) = ν(∪E ∩Aj) = ν(E),

since E ∩Aj ⊂ Aj shows that µ(E ∩Aj) ≤ µ(Aj) <∞, so µ(E ∩Aj) = ν(E ∩Aj).

D.4 Metric outer measures

To define the Hausdorff measure, we will introduce metric outer measures. A metric outer measure requires
an addition type of structure on the big set X: we need a notion of distance between points. Thus, metric
outer measures are only defined when the set X also carries along a distance, d, also known as a metric. So,
for a metric space (X, d) and for A,B ⊂ X define

dist(A,B) := inf{d(x, y) : x ∈ A, y ∈ B}.

Define also the diameter of a set A ⊂ X

diam(A) := sup{d(x, y) : x, y ∈ A},diam(∅) := 0.

Definition 179. Let µ∗ be an outer measure defined on a metric space, (X, d). Then µ∗ is called metric
outer measure iff for each A,B ⊂ X we have

dist(A,B) > 0⇒ µ∗(A ∪B) = µ∗(A) + µ∗(B).

Recall: A ⊂ X is µ∗-measurable iff for each E ⊂ X

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩AC).

Denote by M(µ∗) the µ∗-measurable subsets. Recall that the Borel sets B(X) is the smallest σ-algebra
generated by the topology of X (induced by the metric). In other words, it is the smallest σ-algebra which
contains all open sets. We note that ∅ is both open and closed. A non-empty subset, U , of a metric space
(X, d) is defined to be open precisely when

∀x ∈ U∃δ > 0 such that Bδ(x) ⊂ U,

where
Bδ(x) = {y ∈ X|d(x, y) < δ}.

A subset of X is said to be closed precisely when its complement is open. We now prove a Theorem due to
Carathéodory which states that the Borel sets in X are contained in M(µ∗).

Theorem 180 (Carathéodory). Let µ∗ be a metric outer measure on (X, d). Then we have B(X) ⊂M(µ∗).

Exercise 181. Show that µ∗ is a measure on B(X). Denote by µ the restriction of µ∗ to B(X). Let A be
defined as in the completion theorem, that is:

A = {E ∪ F : E ∈ B(X), F ⊂ N ∈ B(X), µ∗(N) = 0}.

Define as in the completion µ̄(E ∪ F ) = µ(E). Is it true that M(µ∗) = A? Prove your answer.
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D.4.1 Exercises: properties of the Lebesgue σ-algebra

1. In the previous exercises, we proved that νn is a pre-measure on the algebra A. Note by the definition
of A, it is the smallest algebra which contains εn. By the pre-measure extension theorem, since νn
is σ-finite on A, there exists a unique extension of νn to a measure M̄ on the smallest σ-algebra
containing εn. It is unique, because Rn = ∪

m≥1
[−M,M ]n = ∪

m≥1
IM and νm(IM ) = (2M)n < ∞ for

each M . Canonically completing this measure to M by applying the completion theorem yields the
Lebesgue measure and the Lebesgue σ-algebra, the smallest σ-algebra generated by εn such that the
extension of νn to a measure with respect to this σ-algebra is complete. This is the construction of
the Lebesgue measure. In this exercise, the task is to review the construction of the Lebesgue measure
step-by-step, and make sure it makes sense to you.

2. Prove that Borel sets are Lebesgue measurable.

3. Prove B (M

4. It is difficult to construct sets 6⊂ M, but actually there are many natural examples... Exercise:
Construct a subset of Rn which is not measurable. Recall that f : Rn → Rm is “measurable” usually is
understood to mean that ∀B ∈ Bm, f−1(B) ∈Mn. More precisely, f is (Rn,Bn), (Rm,Bm) measurable.
In general, f : X → Y is (X,A), (Y,B) measurable if ∀B ∈ B, f−1(B) ∈ A, where A and B are σ-
algebras.

5. Prove that all n− 1 dimensional sets have Ln measure 0.

D.4.2 Hints

1. To prove that Borel sets are Lebesgue measurable, it suffices to show that open sets are Lebesgue
measurable. So, let O ⊂ Rn be open. Then we will show that O ∈M.

First consider O =
∏

]ai, αi[∈ εn ⊂ M. For an arbitrary open set O, for each x ∈ O there exists
ε ∈ Q, ε > 0 such that x ∈

∏
]qm − ε, qm + ε[⊂ O, qm ∈ Q, m = 1, ..., n.

Taking the union of all such intervals, namely those contained in O such that endpoints are rational is
a countable union. Countability of course follows since Qn ⊂ Rn is countable and Q is countable so a
union of intervals with endpoints in Qn is countable. Therefore, O ∈M.

In the following theorem, we prove that Borel sets are always measurable with respect to metric outer
measures.

Theorem 182 (Carathéodory). Let µ∗ be a metric outer measure on (X, d). Then we have B(X) ⊂M(µ∗).

Proof:
Note that since M(µ∗) is a σ-algebra (by Thm. 168) it is enough to prove that every closed set is µ∗-

measurable. (why does this suffice?) So let F ⊂ X be a closed subset. Since the reverse inequality always
holds, it will be enough to prove that for any set A we have

µ∗(A) ≥ µ∗(A ∩ F ) + µ∗(A \ F ).

Define the sets

Ak :=

{
x ∈ A : dist(x, F ) ≥ 1

k

}
.

Then dist(Ak, A ∩ F ) ≥ 1
k , so since µ∗ is a metric outer measure we have

µ∗(A ∩ F ) + µ∗(Ak) = µ∗((A ∩ F ) ∪Ak)︸ ︷︷ ︸
⊂A

≤ µ∗(A). (+)
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Let x ∈ A \ F = A ∩ F c. Since F c is open, there exists δ > 0 such that Bδ(x) ⊂ F c. Hence d(x, F ) ≥ δ.
So, in general, for all x ∈ A \ F , we have

dist(x, F ) > 0.

Consequently, we have

A \ F =
⋃
Ak.

The main and last step in the proof is to calculate the limit in (+) as k → ∞. If the limit is infinity
there is nothing to do, because it shows that

µ∗(A) =∞ ≥ anything we want, in particular ≥ µ∗(A ∩ F ) + µ∗(A ∩ F c).

So, let us assume that the limit in (+) is finite.

Note that A1 ⊂ A2 ⊂ A3 ⊂ . . ..
To get a bit of room between our sets, let us define

B1 := A1, Bn := An \An−1, n ≥ 2.

By definition, Ak ⊂ A, so we also have Bk ⊂ A for all A. By definition of Ak and Bk, for all x ∈ Bk we have

1

k
≤ dist(x, F ) <

1

k − 1
,

where the second inequality follows since Bk = Ak \Ak−1. Therefore if j ≥ k + 2, for all y ∈ Bj we have

1

j
≤ dist(y, F ) <

1

j − 1
≤ 1

k + 1
<

1

k
≤ dist(x, F ).

Let ε > 0 such that
1

j − 1
+ ε <

1

k
.

By definition, there exists z ∈ F such that

d(y, z) ≤ dist(y, F ) + ε,

so

d(y, z) <
1

j − 1
+ ε <

1

k
≤ dist(x, F ) ≤ d(x, z).

We therefore have by the triangle inequality,

d(x, y) ≥ d(x, z)− d(z, y) ≥ 1

k
−
(

1

j − 1
+ ε

)
> 0.

Since x ∈ Bk and y ∈ Bj are arbitrary, and ε > 0 is fixed, we therefore have proven that dist(Bj , Bk) > 0.

This means we can apply the metric outer measure property (for even and odd indices) and by induction
we conclude that

µ∗

(
n⋃
k=1

B2k−1

)
=

n∑
k=1

µ∗(B2k−1),

µ∗

(
n⋃
k=1

B2k

)
=

n∑
k=1

µ∗(B2k).
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These unions are each contained in A2n, so we have the inequalities

µ∗

(
n⋃
k=1

B2k−1

)
=

n∑
k=1

µ∗(B2k−1) ≤ µ∗(A2n),

µ∗

(
n⋃
k=1

B2k

)
=

n∑
k=1

µ∗(B2k) ≤ µ∗(A2n).

Since A1 ⊂ A2 ⊂ . . ., the values µ∗(A2n) are non-decreasing and by assumption bounded. Hence both
sums above, since they are comprised of non-negative terms, are convergent as n→∞.

Therefore we conclude for any j

µ∗(A \ F ) = µ∗

(⋃
i

Ai

)

= µ∗

Aj ∪ ⋃
k≥j+1

Bk


≤ µ∗(Aj) +

∞∑
k=j+1

µ∗(Bk)

≤ lim
n→∞

µ∗(An) +

∞∑
k=j+1

µ∗(Bj)︸ ︷︷ ︸
→0,j→∞

.

The last term tends to zero because it is comprised of the tails of two convergent series.

Since the latter sum goes to 0 by convergence we obtain

µ∗(A \ F ) ≤ lim
n→∞

µ∗(An).

Together with (+) this yields

µ∗(A) ≥ lim
k→∞

µ∗(Ak) + µ∗(A ∩ F ) ≥ µ∗(A \ F ) + µ∗(A ∩ F )

which is the desired inequality.

Corollary 183. Let (X, d) be a metric space, and let µ∗ be a metric outer measure on X. Then µ∗ restricted
to the Borel sigma algebra is a measure, that is (X,B(X), µ∗) is a measure space.

Proof: By the theorem,M(µ∗) ⊃ B(X). In a previous theorem, we proved that µ∗ restricted toM(µ∗)
is a measure. Note that ∅ ∈ B(X) and µ∗(∅) = 0. If {Aj} ⊂ B(X) are pairwise disjoint, then since they are
also contained in M(µ∗) we have

µ∗(∪Aj) =
∑

µ∗(Aj).

Hence µ∗ vanishes on the empty set and is countably additive on B(X). Since µ∗ is defined on B(X) which

is a σ-algebra, we have that µ∗ restricted to B(X) is a measure.
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D.4.3 General results which shall be used to obtain the Hausdorff measure

We shall obtain the Hausdorff measure using results which can be applied much more generally to obtain
metric outer measures.

Definition 184 (Countable covers). Let C denote a collection of sets in X. Assume ∅ ∈ C. Then for each
A ⊂ X we denote by CC(A) the collection of sets in C such that there is an at most countable sequence of
sets {En}n∈N ∈ CC(A) such that

A ⊂
∞⋃
n=1

En.

These are the countable covers of A by sets belonging to C.

Definition 185. With C a collection of sets in X, let ν : C → [0,∞] with ν(∅) = 0. We define the following
set function depending on C and ν

µ∗ν,C(A) := inf
D∈CC(A)

∑
D∈D

ν(D). (D.4.1)

If the infimum is empty, then we define µ∗ν,C(A) =∞.

Theorem 186. The set function given by (D.4.1), which for simplicity we denote here by µ∗, is an outer
measure µ∗ on X with

µ∗(A) ≤ ν(A), A ∈ C

For any other outer measure µ̃∗ on X with the above condition we have

µ̃∗(A) ≤ µ∗(A), A ⊂ X.

So in this sense, µ∗ is the unique maximal outer measure on X which satisfies µ∗(A) ≤ ν(A) for all A ∈ C.

Proof: Let A ∈ C. Then, A covers itself, so we have by definition

µ∗(A) ≤ ν(A).

Next, we need to show that this µ∗ is an outer measure. We have basically already done this in the
Proposition on Outer Measures! Since ν ≥ 0, it follows that µ∗ ≥ 0. Moreover, since ∅ is a countable cover
of itself, we have

0 ≤ µ∗(∅) ≤ ν(∅) = 0.

Hence µ(∅) = 0.
Monotonicity: Assume that A ⊂ B. Then, any countable cover of B is also a countable cover of A.

However, there could be covers of A which do not cover B. Hence, the set of countable covers of A contains
the set of countable covers of B, so the infimum over covers of A is smaller than the infimum over covers of
B, and therefore

µ∗(A) ≤ µ∗(B).

Countable sub-additivity: Let {Aj} be pairwise disjoint. We wish to show that

µ∗(∪Aj) ≤
∑

µ∗(Aj).

Note that if for any j we have µ∗(Aj) = ∞, we are immediately done. So, assume this is not the case for
any j. Let ε > 0. Then for each j there exists a countable cover {Dk

j } such that

Aj ⊂ ∪kDk
j , µ∗(Aj) +

ε

2j
≥
∑
k

ν(Dk
j ).
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Hence, we also have
∪jAj ⊂ ∪j,kDk

j ,

and so
µ∗(∪Aj) = inf ... ≤

∑
j,k

ν(Dk
j ) ≤

∑
j

µ∗(Aj) +
ε

2j
= ε+

∑
j

µ∗(Aj).

Since this holds for any ε > 0, we obtain the desired inequality.
Another outer measure: Assume that µ̃∗ is another outer measure defined on X which has µ̃∗(A) ≤

ν(A) for all A ∈ C. If µ∗(A) =∞ there is nothing to prove. So assume that this is not the case. Let ε > 0.
Then there exists a countable cover {Dj} which contains A such that

µ∗(A) + ε ≥
∑
k

ν(Dk) =
∑
k

µ̃∗(Dk) ≥ µ̃∗(∪Dk) ≥ µ̃∗(A).

Above we have used that ν = µ̃∗ on the Dk, followed by countable sub-additivity of the outer measure µ̃∗,
followed by monotonicity of the outer measure µ̃∗. Since this inequality holds for any ε > 0, we get that

µ∗(A) ≥ µ̃∗(A).

Now, we shall specify to the case in which (X, d) is a metric space. For this, we recall that for a non-empty
set A ⊂ X we define its diameter,

diam(A) := sup{d(x, y) : x ∈ A, y ∈ A}.

With this in mind, we can define the countable covers of diameter less than ε.

Definition 187. Let C be as above. For ε > 0, define

Cε := {A ∈ C : diam(A) < ε}.

Now define the outer measure depending on this cover as a special case of (D.4.1), in particular we set

µ∗ε (A) := µν,Cε(A).

If ε′ < ε, then all covers which have diameter less than ε′ also have diameter less than ε, so Cε′ ⊂ Cε.
Consequently, when we take the infimum to obtain µ∗ε and µ∗ε′ , there are more elements considered in the
infimum for Cε (i.e. more covers), so the infimum is smaller, and

µ∗ε (A) ≤ µ∗ε′(A).

The following theorem shows how, starting from any arbitrary set function ν which has ν(∅) = 0, we can
construct a “canonical metric outer measure.” We shall later see that for a particular choice of ν, we obtain
the Hausdorff measure.

Theorem 188 (A canonical metric outer measure). The limit µ∗0(A) := limε→0 µ
∗
ε (A), A ⊂ X defines a

metric outer measure.

D.4.4 Exercises

1. Prove that for any interval I ⊂ Rn, there exists a series {Bj}j≥1 such that

(a) Each Bj is a ball in I.

(b) It is Bj ∩Bk = ∅ for all j 6= k.

(c) We have Ln(I \
⋃
Bj) = 0 (and therefore Ln(I) = Ln(

⋃
Bj)).

2. Now for a bit of combinatorial fun... Let X be a non-empty set. Let {Aj}nj=1 be distinct, non-empty,
proper subsets of X. How many elements does A, the smallest algebra which contains {Aj}nj=1, have?
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D.4.5 Hints

First note that Ln(I \ I̊) = 0. So without loss of generality we can assume that I is open. For x ∈ I, there
is δ ∈ Q, δ > 0 such that Bδ(x) ⊂ I. Also there exists q ∈ Qn such that |x− q| < δ · 10−6. This implies for
every y with |y − q| < (1− 10−6)δ,

|y − x| ≤ |y − q|+ |x− q| < δ =⇒ y ∈ Bδ(x) ⊂ I.

So we have

B1 := B(1−10−6)δ(q) ⊂ I.

For N ≥ 1 and x ∈ I, it is either x ∈
⋃N
k=1Bk or not. We are assuming {Bk}N ⊂ I are disjoint balls with

rational radii and rational centers (centers are elements of Qn). If x ∈
⋃N
k=1Bk we consider x ∈ I \

⋃N
k=1Bk.

Note that this set is open. So, if there exists x ∈ I \
⋃N
k=1Bk, then the same argument shows that there is

a new ball,

x ∈ BN+1 ⊂ I \
N⋃
k=1

Bk

with the center and radius of BN+1 rational (same argument as above). Then we note further that the set
of balls

{Bδ(q) : δ ∈ Q, and q ∈ Qn}

is countable. Consequently, we require at most countably many of these balls to ensure that

I ⊂
∞⋃
k=1

Bk and Ln(Bk \Bk) = 0 for all k ⇒ Ln(
⋃

(Bk \Bk)) = 0.

So we get

Ln(I) = Ln(I ∩
⋃
Bk) + Ln(I \

⋃
Bk) = Ln(

⋃
Bk) + Ln(

⋃
Bk \Bk) = Ln(

⋃
Bk).

D.5 Canonical metric outer measures and Hausdorff measure

Theorem 189 (A canonical metric outer measure). The limit µ∗0(A) := limε→0 µ
∗
ε (A), A ⊂ X defines a

metric outer measure.

Proof: Since µ∗ε is non-decreasing as ε ↓ 0, the limit exists (since we allow ∞ as a limit value). We
have already proven that each µ∗ε is an outer measure.

Exercise 190. Prove that the outer measure property is preserved under the limit as ε → 0, to show that
µ∗0 is indeed an outer measure.

Metric outer measure: Let A,B ⊂ X be such that dist(A,B) > 0. Since µ∗ is an outer measure, by
countable subadditivity,

µ∗0(A ∪B) ≤ µ∗0(A) + µ∗0(B).

We would like to prove the reverse inequality. The idea is that since A and B are at a positive distance away
from each other, we can take ε small enough so that our µ∗ε cover of the union splits into two disjoint covers.
(Draw a picture!)

Let us make this precise. Since the distance between A and B is positive, there exists n0 ∈ N such that

dist(A,B) >
1

n
, for n > n0.
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Let δ > 0 be some arbitrary positive number (this is our fudge factor which we shall later banish to zero).
Then, cover the union A ∪B with sets Enk such that

µ∗1
n

(A ∪B) + δ ≥
∞∑
k=1

ν(Enk )

and such that for each k we have diam(Enk ) ≤ 1
n . Let us delete any Enk which has empty intersection with

A ∪ B, that is we delete any unneeded, extraneous, superfluous covers. Still denote this set by Enk for
notational simplicity. We then still have

µ∗1
n

(A ∪B) + δ ≥
∑
k

ν(Enk ).

Since the diameter of Enk is less than or equal to 1
n which is smaller than the distance between A and B, we

have that the Enk intersect either A or B and not both in the sense that

Enk ∩A 6= ∅ ⇒ Enk ∩B = ∅, Enk ∩B 6= ∅ ⇒ Enk ∩A = ∅.

To see this, draw a picture. If some Enk intersected both A and B, then it would have to contain at least one
point in A and at least one point in B. The distance between those points is strictly greater than 1

n . Hence
the diameter of such a set would need to exceed 1

n , which is a contradiction.
So, with this consideration, let

En(A) := {Enk : Enk ∩A 6= ∅}, En(B) := {Enk : Enk ∩B 6= ∅}.

Then, En(A) and En(B) have no sets in common and together they yield the sequence (Enk )∞k=1. Since

A ∪B ⊂ ∪Enk =⇒ A ⊂ ∪En(A), B ⊂ ∪En(B).

We therefore have
µ∗1
n

(A) ≤
∑

Enk∈En(A)

ν(Enk ), µ∗1
n

(B) ≤
∑

Enk∈En(B)

ν(Enk ),

so the sum
µ∗1
n

(A) + µ∗1
n

(B) ≤
∑

Enk∈En(A)

ν(Enk ) +
∑

Enk∈En(B)

ν(Enk ).

Now, the sum on the right side is just ∑
k

ν(Enk ) ≤ µ∗1
n

(A ∪B) + δ.

So, we have proven that
µ∗1
n

(A) + µ∗1
n

(B) ≤ µ∗1
n

(A ∪B) + δ.

This holds for all n ≥ n0. So, letting n→∞, we obtain

µ∗0(A) + µ∗0(B) ≤ µ∗0(A ∪B) + δ.

Finally, we let δ ↓ 0, which completes the proof that µ∗0 is a metric outer measure.

Remark 8. Making a special choice of the function ν, we shall obtain the Hausdorff measure, below. However,
our preceding results are super general. If you are so inclined, it could be pretty interesting to play around
with different functions, ν, satisfying the hypotheses, and thereby obtain different metric outer measures
according to the theorem above.... Once you’ve got a metric outer measure, then you can use our results to
obtain its sigma algebra of measurable sets. Moreover, our results prove that this sigma algebra contains the
Borel sigma algebra. Our results also prove that this metric outer measure together with its sigma algebra
of measurable sets yields a complete measure. So, now you have quite a collection of tools to build all kinds
of different measures!
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D.5.1 The Hausdorff measure

We shall use the general results from the preceding lecture to obtain the Hausdorff measure.

Definition 191. Let (X, d) be a metric space, δ > 0 and t ∈ (0,∞). Then for S ⊂ X, define the set function

Htδ(S) := inf

{ ∞∑
i=1

(diamUi)
t|S ⊂

∞⋃
i=1

Ui,diam(Ui) < δ

}

where the infimum is taken over all countable covers of S by sets Ui ⊂ X with diam(Ui) < δ.

Remark 9. In the definition if one requires the Ui’s to be closed in this definition, the result is the same
because

diam(Ui) = diam(Ui).

If one requires the Ui’s to be open, call the corresponding thing H̃tδ. Note that the infimum is now taken

over fewer covers, since the Ui need to be open. So á priori one has H̃tδ ≥ Htδ. For S such that

Htδ(S) =∞,

then one also has
H̃tδ(S) =∞,

so there is nothing to do. Let us assume this is not the case. Fix η > 0. Let {Uj} be a cover which has

Htδ(S) + η ≥
∑
j

diam(Uj)
t.

Then let
Bj = {x ∈ X : d(x, Uj) < εj2

−j−1},

Choose εj > 0 so that the diameter of Bj , which is at most diam(Uj) + ε2−j is still less than δ. Since the
diameter of Uj is strictly less than δ this is always possible. Without loss of generality assume that εj ≤ 1
for all j. Then the Bj are an open cover of S, with diameter less than δ, so we have

H̃tδ(S) ≤
∑
j

(diam(Bj))
t ≤

∑
j

(diam(Uj) + εj2
−j)t.

As the εj → 0, the right side converges to
∑
j diam(Uj)

t. So, let this happen, to obtain

H̃tδ(S) ≤
∑
j

(diam(Uj))
t ≤ Htδ(S) + η.

Since η > 0 was arbitrary, letting now η → 0 we obtain that H̃tδ ≤ Htδ. So it’s still the same. Thus, if
it’s more convenient to consider (1) closed covers in definition of Hausdorff measure or (2) open covers in
definition of Hausdorff measure, DO IT! There is no loss of generality.

Corollary 192 (Hausdorff measure). The set function Htδ is an outer measure. Moreover,

Ht := lim
δ→0
Htδ

is a metric outer measure. All Borel sets are Ht measurable, and these sets form a σ-algebra.

Proof: First, set
ν(U) := diam(U)t.

Then note that
Htδ(S) = µ∗ν,Cδ(S)
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is just a special case of the “canonical outer measure” theorem. By that theorem, we therefore obtain that

Ht(S) := lim
δ→0
Htδ(S)

is a metric outer measure. By an earlier theorem (168, all the Borel sets are Ht-measurable. These Borel sets
are contained in the σ-algebra of “Ht-measurable sets from Theorem 189. Moreover, by this same theorem,

Ht on this σ-algebra is a complete measure.
We shall call Ht the t-dimensional Hausdorff measure. The reason for this is that if t ∈ N and A is

t-dimensional, then the amount of A contained in a region of diam = r” should be proportional to rt. This
is because a ball in t-dimensional space has volume proportional to rt. What exactly is the volume of a ball
in Rn anyways?

D.5.2 The volume of the unit ball in Rn

Proposition 193. The volume of the unit ball in Rn is

wn = vol(B1(0)) =
2π

n
2

n · Γ(n2 )

Proof: Our goal is to compute

∫
S1(0)

1∫
0

rn−1 dr d σ.

For starters, we would like to compute

σn :=

∫
S1(0)

d σ,

that is the surface area of the unit ball. Let us start by computing a famous integral. Define

In :=

∫
Rn

e−π|x|
2

dx.

Note that In = (I1)n by the Fubini-Tonelli theorem, since everything converges beautifully. So, in particular,

In = (I2)2/n.

I2 is particularly lovely to compute:

I2 =

2π∫
0

∞∫
0

e−πr
2

r dr d θ = 2π

∞∫
0

e−s
2 sds

π
=

∞∫
0

e−s
2

2sds

= −e−s
2
∣∣∣∞
0

= 1.

We have used the substitution s =
√
πr. So we see that Ik = 1 for all k ∈ N. Then, we can apply this to

compute σn.

1 =

∫
Rn

e−π|x|
2

dx =

∫
S1(0)

∞∫
0

e−πr
2

rn−1 dr d σ = σn

∞∫
0

e−πr
2

rn−1 dr .
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Well, the latter integral we may be able to compute, because it is one-dimensional. Let s = r2π. Then
ds = 2rπdr, so

rn−1dr =
( s
π

)(n−1)/2 ds

2π
√
s/π

=
sn/2−1

2πn/2
.

So,

1 =
σn

2πn/2

∞∫
0

e−ssn/2−1ds.

This looks familiar... Recall:

Γ(z) =

∞∫
0

sz−1e−s ds , z ∈ C, <(z) > 1.

So,

σn =
2πn/2

Γ(n/2)
.

We compute using integration by parts:

Γ(s+ 1) =

∞∫
0

tse−t dt =
[
−tse−t

]
−
∞∫

0

−e−tsts−1dt = sΓ(s).

Exercise 194. Prove that the Γ function admits a meromorphic continuation to C which is holomorphic
with the exception of simple poles at 0 ∪ −N.

Finally, we compute the volume of the ball:

∫
B1(0)

dx = vol(B1(0)) =

∫
S1(0)

1∫
0

rn−1 dr d σ = σn

1∫
0

rn−1 dr =

[
σn
rn

n

]1

0

=
σn
n

= wn

Therefore, we have wn = 2πn/2

n·Γ(n2 ) , which finishes our proof.

Corollary 195. ∀x ∈ Rn and r > 0, the area of Sr(x) is rn−1σn and vol(Br(x)) = wnr
n.

Proof:

∫
Sr(x)

d σ =

∫
Sr(0)

d σ =

∫
S1(0)

rn−1 d σ = rn−1σn

Analogously for Br(x).

Exercise 196. Compute Γ(n/2) for n ∈ N.
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D.6 Hausdorff dimension

If the notion of Hausdorff dimension is to be well-defined, then it should be invariant under isometries.
We prove that the Hausdorff measure is indeed invariant under isometries, and therefore the Hausdorff
dimension, which we shall define using the Hausdorff measure, will similarly enjoy this invariance. Let Hp
denote p-dimensional Hausdorff measure. We first prove a more general fact. Before proceeding to that
proof, there is an exercise which will allow us to be a little sloppy (or for a more positive connotation, allow
us to be a little more mellow and groovy).

Exercise 197. Change the definition of Cε covers to require diameters less than or equal to ε. Show that
the corresponding µ∗0 remains unchanged. Thus, in the definition of Hausdorff outer measure (and Hausdorff
measure), it does not require if our Hpδ = µ∗δ,ν for ν(A) = diam(A)p is for covers with diameter < δ or ≤ δ.
Either way one obtains the same outer measure Hpδ . Therefore, either way one also obtains the same Hp.

Proposition 198. Let (X, d) be a metric space, and f , g be maps from some set Y into X. If f, g : Y → X
satisfy d(f(y), f(z)) ≤ Cd(g(y), g(z)) ∀y, z ∈ Y , then Hp(f(A)) ≤ CpHp(g(A)).

Proof: Let ε > 0, A ⊂ Y . Then g(A) ⊂ X. If Hp(g(A)) =∞, there is nothing to prove. So, we assume
this is not the case. Then, for all δ > 0 small, we can find {Bj}j≥1 ⊂ X such that

g(A) ⊂
∞
∪
j=1

Bj , diam(Bj) <
δ

C
,

and ∑
j≥1

diam(Bj)
p ≤ Hp(g(A)) +

ε

Cp
.

Of course, the particular collection Bj does depend on the particular small value of δ, but we shall suppress
this dependence for notational convenience.

Let us define
B̃j := f(g−1(Bj)).

We claim that these are going to cover f(A). Let y ∈ A so that f(y) ∈ f(A). Then, since y ∈ A, we also
have g(y) ∈ g(A) ⊂ ∪Bj . So, in particular, g(y) ∈ Bj for some j. Hence

y ∈ g−1(Bj) = {z ∈ Y : g(z) ∈ Bj}.

Therefore f(y) ∈ f(g−1(Bj)) = B̃j .
We therefore have

f(A) ⊂ ∪∞j=1B̃j .

Now, if f(y) and f(z) are both in B̃j = f(g−1(Bj)), this means that y and z are both in g−1(Bj), so there
exist x and x′ in Bj with g(y) = x ∈ Bj and g(z) = x′ ∈ Bj . Then

d(f(y), f(z)) ≤ Cd(g(y), g(z)) ≤ C diam(Bj) < C
δ

C
= δ.

Consequently diam(B̃j) < δ. So,

Hpδ(f(A)) ≤
∑
j≥1

diam(B̃j)
p.

Moreover, by the same calculation as above, we also see that

diam(B̃j) ≤ C diam(Bj) =⇒ diam(B̃j)
p ≤ Cp diam(Bj)

p.

Consequently,

Hpδ(f(A)) ≤
∑
j≥1

diam(B̃j)
p ≤ Cp

∑
j≥1

(diam(Bj))
p ≤ CpHp(g(A)) + ε.
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This holds for any ε > 0, so we obtain the desired result:

Hp(f(A)) ≤ CpHp(g(A)).

Corollary 199. Hp is invariant under isometries.

Proof: Let I : (X, d) → X be an isometry. Let id : X → X be the identity map. Then since I is an
isometry, we have

d(I(x), I(z)) = d(x, z) = d(id(x), id(z)), ∀x, z ∈ X.
Hence the hypotheses of the proposition hold true taking X = Y , f = I, g = id, and C = 1. So, we obtain

Hp(I(A)) ≤ Hp(id(A)) = Hp(A).

On the other hand, we also have

d(id(x), id(z)) = d(x, z) = d(I(x), I(z)) ≤ d(I(x), I(z)).

So, we apply the same proposition taking X = Y , f = id, g = I, and C = 1. We therefore obtain

Hp(A) = Hp(id(A)) ≤ Hp(I(A)).

Thus, the inequality goes in both directions, and we have in fact an equality,

Hp(A) = Hp(I(A)).

Proposition 200 (Hausdorf dimension). If Hp(A) < ∞, then Hq(A) = 0 ∀q > p. If Hq(A) > 0, then
Hp(A) =∞ ∀p < q.

Proof: For the first statement, assume Hp(A) <∞. Then, for any sufficiently small δ > 0, we can find
a cover of A by {Bj}j≥1 with diam(Bj) < δ, and

Hpδ(A) ≤
∑
j≥1

diam(Bj)
p ≤ Hp(A) + 1.

If q > p, then

Hqδ(A) ≤
∑
j≥1

diam(Bj)
q =

∑
j≥1

diam(Bj)
p+q−p ≤

∑
j≥1

diam(Bj)
pδq−p

= δq−p
∑
j≥1

diam(Bj)
p ≤ δq−p(Hp(A) + 1),

which tends to zero as δ → 0. Hence we can show that Hqδ(A) tends to zero as δ → 0, thus it follows that
Hq(A) = 0.

The second statement is the contrapositive. To see this let us first fix q > p. We shall write ? to denote
the statement Hp(A) < ∞, and ♥ to denote the statement Hq(A) = 0. We have proven: if ? then ♥. The
contrapositive says: if not ♥ then not ?. It is well known from elementary logic that a statement is true
if and only if its contrapositive is true. In this case, not ♥ says that Hq(A) 6= 0. Since Hq(A) ≥ 0, we
have Hq(A) > 0. This should imply not ?. Not ? is the statement that Hp(A) = ∞. Since the q > p was

arbitrary, we have shown that if Hq(A) > 0, then Hp(A) =∞ for any p < q.
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Corollary 201 (Definition of Hausdorff dimension). Let A ⊂ X, where (X, d) is a metric space. Then the
following infimum and supremum are equal

δ = inf{p ≥ 0 | Hp(A) = 0} = sup{p ≥ 0 | Hp(A) =∞}

This is how we define the Hausdorff dimension of A, δ, denoted by dim(A). If for some p we have

Hp(A) ∈ (0,∞)

then p = dim(A).

Proof: Let {pn} be a sequence which converges to the infimum on the left. Then, Hpn(A) = 0 for all
n. Let {qn} be a sequence which converges to the supremum on the right. Then, Hqn(A) =∞ for all n. By
the second statement of the preceding proposition, since Hqn(A) > 0, Hp(A) =∞ for all p < q. This shows
that pn ≥ qm for all n and m. Therefore

lim inf pn ≥ lim sup qm.

Since in these cases the limits exist, we have

lim inf pn = lim pn, lim sup qm = lim qm.

This shows that
inf{p ≥ 0 | Hp(A) = 0} ≥ sup{p ≥ 0 | Hp(A) =∞}.

For the sake of contradiction, let us assume that this inequality is strict, so that

inf{p ≥ 0 | Hp(A) = 0} > sup{p ≥ 0 | Hp(A) =∞}.

Then, there is some number, x which lies precisely between these two values,

inf{p ≥ 0 | Hp(A) = 0} > x > sup{p ≥ 0 | Hp(A) =∞}.

Since x is less than the infimum, we cannot have Hx(A) = 0, (because then x would be included in the
infimum, so the infimum would be ≤ x which by assumption it is not). So we must have Hx(A) > 0. By the
proposition, it follows that Hp(A) =∞ for all p < x. Hence, the supremum on the right side is taken over a
set of p which contains all p < x. Therefore, by definition of the supremum, the supremum is greater than
or equal to x. This is a contradiction. Hence, we cannot have

inf{p ≥ 0 | Hp(A) = 0} > sup{p ≥ 0 | Hp(A) =∞},

as it leads to a contradiction. Thus, since the infimum is greater than or equal to the supremum, both sides
must be equal.

Finally, assume that for some p we have Hp(A) ∈ (0,∞). Then, by the proposition, Hq(A) = 0 for all
q > p. This shows that all q > p are considered in the infimum, hence the infimum must be less than or
equal to p. On the other hand, by the same proposition, Hq(A) =∞ for all q < p. Hence, the supremum is
taken over a set which includes all q < p, hence the supremum must be greater than or equal to p. So, we
get inf ≤ p ≤ sup, but since the infimum and supremum are equal, we have an equality all the way across.

This shows that the supremum here is less than or equal to p. Since the supremum and infimum

equivalently define dim(A), we have dim(A) ≥ p and dim(A) ≤ p. Hence we have dim(A) = p.
If our notion of dimension is a good one, then it ought to be monotone. We see below that this is the

case.

Lemma 202 (Monotonicity of Hausdorff dimension). If A ⊂ B, then dim(A) ≤ dim(B).
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Proof:
If A ⊂ B, and Hp(B) = 0, then Hp(A) = 0. This is because Hp is an outer measure, which we proved,

and outer measures are by definition monotone.
Therefore

dim(B) = inf{p ≥ 0|Hp(B) = 0} ≥ inf{p ≥ 0|Hp(A) = 0} = dim(A).

If our definition of dimension is a good one, then we know what the dimension of Rn should be... To
prove this, we shall prove a general fact about Hausdorff dimension.

Lemma 203. The dimension of a countable union of sets, Ej,

E = ∪Ej

is equal to

dim(E) = sup{dim(Ej}.

Proof: We note that

Ej ⊂ E∀j =⇒ dim(Ej) ≤ dim(E) ∀j,

so

sup{dim(Ej)} ≤ dim(E).

If the supremum on the left is infinite, there is nothing to prove, because both sides are therefore infinite and
equal. Let us assume that it is not infinite. So, let us call this supremum δ. By the definition of dim(Ej) ≤ δ,
we have

Hp(Ej) = 0 ∀p > δ.

Consequently, for all p > δ, we have by countable subadditivity of Hausdorff outer measure

0 ≤ Hp(E) ≤
∑
j

Hp(Ej) = 0.

Thus

Hp(E) = 0.

Since

dim(E) = inf{p ≥ 0|Hp(E) = 0},

and Hp(E) = 0 for all p > δ, we have

dim(E) ≤ δ.

Since dim(E) ≥ sup{dim(Ej)} = δ, we obtain the equality.

D.6.1 Exercises

1. Compute the Hausdorff measure of the curve {(x, sin(1/x)) : 0 < x < 1} ⊂ R2.

2. Compute the Hausdorff measure of the curve {(x, sin(1/x)) : 1/2 < x < 1} ⊂ R2.

3. Compute the Hausdorff measure of the unit sphere sitting in R3.
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4. We shall see that a set whose Hausdorff dimension is positive is uncountable. Is the converse true, that
is if the Hausdorff dimension of s set is zero, then is that set necessarily countable? Prove or give a
counter example.

5. Is it always true that Hdim(A)(A) ∈ (0,∞)? Prove or a give a counter example. What if you assume
that dim(A) ∈ (0,∞), then is it always true that Hdim(A)(A) ∈ (0,∞)?

6. How should one define the Hausdorff dimension of the empty set? Philosophically and mathematically
justify your answer.

7. What is the Hausdorff dimension of a product of sets? How should this work? Figure it out and
rigorize your answer.

D.7 Properties of Hausdorff dimension

Any set with positive Hausdorff dimension is uncountable!

Corollary 204. Let E ⊂ X. If dim(E) > 0, then E is uncountable.

Proof: If E is countable, then E =
⋃
j

ej , where ej ∈ X is a point. Therefore, we have proven that

0 ≤ dim(E) = sup dim({ej}).

Now let p > 0. Note that a single point is contained in a ball of radius δ for any δ > 0. Thus by definition

Hpδ(ej) ≤ 2pδp.

Letting δ → 0, we obtain
Hp(ej) = 0.

Therefore the Hausdorff dimension of a point is equal to inf{p : p > 0} = 0. By the result we proved, the
dimension of E is the supremum over the dimension of ej , and this is the supremum over zero, hence it is

zero.

Corollary 205 (Hausdorff dimension of Rn). The Hausdorff dimension of Rn is n.

Proof: We can write the euclidian space Rn as Rn =
⋃
m≥1

Bm, where Bm are balls of radius m centered

at the origin. Here is where we are going to use some teamwork. In the exercises, you have proven that

Hn(Bm) = cnLn(Bm) = cnm
nwn,

where cn is a constant that depends only on n, and wn is the volume of the unit ball in Rn, and Ln is
n-dimensional Lebesgue measure. (i.e. our usual human notion of n-dimensional volume). By a corollary
proven today, the Hausdorff dimension of a ball in Rn is equal to n, since the Hausdorff measure of a ball
of radius m is a positive, finite number. Moreover, a ball is an open set, so it is therefore contained in the
Borel sigma algebra which is contained in the Hausdorff sigma algebra. So, since Rn is the union of these
balls, and these balls are all Hausdorff measurable sets, the dimension of Rn is equal to the supremum of
the dimensions of the balls. That is the supremum over the constant number n. Hence the supremum is n

which gives the dimension of Rn.

Corollary 206. For any A ⊂ Rn, we have dim(A) ≤ n.
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Proof: This follows immediately taking B = Rn in the lemma showing monotonicity of Hausdorff

dimension.

Lemma 207. Let E ⊂ Rn such that dim(E) < n. Then
◦
E = ∅.

Proof: If
◦
E 6= ∅, then there ∃r > 0 and x ∈ E such that Br(x) ⊂ E. ⇒ dim(E) ≥ dim(Br(x)) = n

So we get n ≥ dimE ≥ n⇒ dimE = n.

Remark 10. The Hausdorff Dimension of a subset E ⊂ Rn is the same if we consider E as a subset of Rm for
any m ≥ n via the canonical embedding, Rn 7→ Rn × {0}. In this sense, if we have a set E which naturally
lives in k-dimensions, if we view the set E as living in 10 zillion dimensions, the Hausdorff dimension of E
remains the same. This is simply because the Hausdorff dimension, which is determined by the Hausdorff
(outer) measure is defined in terms of diameter, and the diameter of sets does not change if we embed the
sets into higher dimensional Euclidean space. That is another reason the Hausdorff dimension is “a good
notion of dimension,” because it is invariant of the ambient space.

D.8 A comparison of the Hausdorff and Lebesgue measures

Here we determine the relationship between the Hausdorff and Lebesgue measures. First, define

H0(Z) = #Z = the number of elements of the set, Z.

Theorem 208 (Hausdorff and Lebesgue measures). For all n ∈ N we have

Hn =
2n

wn
Ln,

where wn is the n-dimensional volume of a unit ball in Rn.

Proof: Let Br be a ball of radius r > 0. Fix ε > 0. Then, by the definition of the Lebesgue measure
(and outer measure), there exist countably many hypercubes, denoted by Rj such that

Br ⊂ ∪jRj ,

and
Ln(Br) + ε ≥

∑
j

Ln(Rj).

Next, fix δ > 0.

Claim 209. There exist countably many open balls {Bkj } which are disjoint, and satisfy

Ln(Rj \ ∪kBkj ) = 0.

Moreover, given δ > 0, we may choose these balls to have diameters at most equal to δ.

The proof of the claim is an exercise! From the claim it follows that Ln(Rj) = Ln(∪Bkj ). Therefore we
have the inequality

Ln(Br) + ε ≥
∑
j

Ln(Rj) =
∑
j,k

Ln(Bkj ) =
wn
2n

∑
j,k

diam(Bkj )n.
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By the absolute continuity of Lebesgue and Hausdorff measures with respect to each other,

Hn(Rj \ ∪kBkj ) = 0 =⇒ Hnδ (Rj \ ∪kBkj = 0) ∀δ > 0.

This shows that
Hnδ (Rj) = Hnδ (∪kBkj ),

and
Hnδ (∪Rj) = Hnδ (∪j,kBkj ).

Then, we also have by monotonicity, since Br ⊂ ∪jRj ,

Hnδ (Br) ≤ Hnδ (∪Rj) = Hnδ (∪j,kBkj ).

Since ∪Bkj covers itself, by definition of Hausdorff measure

Hnδ (∪j,kBkj ) ≤
∑
j,k

diam(Bkj )n.

Thus we get

Hnδ (Br) ≤
∑
j,k

diam(Bkj )n =⇒ wn
2n
Hnδ (Br) ≤

wn
2n

∑
j,k

diam(Bkj )n ≤ Ln(Br) + ε.

Letting δ → 0, we get
wn
2n
Hn(Br) ≤ Ln(Br) + ε,

and then letting ε→ 0, we get
wn
2n
Hn(Br) ≤ Ln(Br).

To complete the proof, we just need to get a lower bound for the Hausdorff measure in terms of the Lebesgue
measure.

There is a nifty shortcut one can use here:

Proposition 210 (Isodiametric Inequality). For any A ⊂ Rn, one has

Ln(A) ≤ wn diam(A)n

2n
.

Exercise 211. Locate a proof of this fact! Note that when A = Br the ball of radius r and hence diameter
2r, the isodiametric inequality states that

Ln(Br) = wn
diam(Br)

n

2n
.

Thus in that case, equality holds. This is a geometric fact which says that the ball of a specified diameter
contains the largest volume amongst all sets of the same diameter. A proof can be found in Lawrence Evans
& Ronald Gariepy’s Measure theory and fine properties of functions, or even earlier on p. 32 in Littlewood’s
miscellany.

So, now let ε > 0. Then, there exists a cover of Br by {Bj} of diameter at most δ such that

Hn(Br) + ε ≥
∑
j

diam(Bj)
n.

Then, by the isodiametric inequality,

diam(Bj)
n ≥ Ln(Bj)

2n

wn
.
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So, we have

Hn(Br) + ε ≥ 2n

wn

∑
Ln(Bj) ≥

2n

wn
Ln(Br),

where we have used in the last inequality the countable sub-additivity of the Lebesgue outer measure, since
the Bj cover Br. Since this can be done for any ε > 0, we obtain

Hn(Br) ≥
2n

wn
Ln(Br).

Combining with the reverse inequality, we get

Hn(Br) = 2nwnLn(Br).

Since this holds for all balls which generate the Borel sigma algebra, it holds for all Borel sets. Then, the
completion is the same in both cases, so we obtain both the equality of the Hausdorff and Lebesgue sigma

algebras, as well as the equality of the Hausdorff and Lebesgue measures.
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Appendix E

Solutions to selected exercises from
the text

E.1 Exercises in §2.5

3. (a) X ′′ = cX, Y ′ = −cyY .

(b) x2X ′′ + xX ′ = cX, Y ′′ = −(1 + c)Y .

(c) not possible

(d) X ′′ = c(X ′ +X), Y ′ = −cY .

8. un(x, t) = e−(2n+1)2π2kt/(4`2) sin((2n+ 1)πx/(2`)).

14. (c) c = 1 or c = 0.

E.2 Exercises in §3.12

1. Follow the proof of the Cauchy & Schwarz inequality for the first statement. For the second statement,
it is probably easiest to square both sides and proceed.

4. Check the property concerning scalars, that is what happens if you compute 〈cf, g〉?

5. ||fn||2 = π
n+1 .

6. π
4 (cothπ − πcsch2π).

7. π6

960

8. Since {1, eix, e−ix} are orthogonal in L2(−π, π) we project onto them the function ex that is also in
L2(−π, π), and obtain the best approximation is

c0 + c1e
ix + c−1e

−ix, ck =

∫ π
−π e

xeikxdx

2π
, k = 0, 1,−1,

with the 2π denominator because

||eikx||2 =

π∫
−π

|eikx|2dx = 2π.
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11. By definition

〈f, g〉 =

1∫
0

(1 + ix)2 + ix2dx =

1∫
0

(1 + ix)(2− ix2)dx =

1∫
0

(2 + 2ix+ x3 − ix2)dx

= 2 + i+
1

4
− i

3
= 2 +

1

4
+

2

3
i.

Similarly

〈g, f〉 =

1∫
0

(2 + ix2)(1− ix)dx =

1∫
0

(2− 2ix+ ix2 + x3)dx = 2− i+
i

3
+

1

4
= 2 +

1

4
− 2

3
i.

Pretty neat, these are complex conjugates of each other just as they should be.

13. π4

90 .

14. a2(π−a)2

6 .

15. See exercise # 8 and proceed similarly.

16. Use the definition and properties of the scalar product.

17. Such an f is in L2 as is its derivative because they are continuous. Using the 2π periodicity you can
show that f is orthogonal to f ′.

20. There are many such examples. Here is a very simple way to approach this. Define for n ≥ 1

fn(x) :=

{
1
n 0 ≤ x ≤ n2

0 x > n2.

Then fn(x) converges to 0 uniformly on R as n→∞ since 0 ≤ fn(x) ≤ 1
n , but we compute

∞∫
0

|fn(x)|2dx =
1

n2

n2∫
0

1dx = 1 ∀n.

E.3 Exercises in §4.9

1. We will use some trigonometric identities to compute

a0 = 0, a1 =
1

π

π∫
0

cos2(x)dx =
1

π

π∫
0

cos(2x)− 1

2
dx = −1

2
,

having used the double angle formula for the cosine

cos(2x) = cos2(x)− sin2(x)
cos2 + sin2=1

= 2 cos2 x− 1.

Since

sin(x) cos(x) =
1

2
sin(2x) =⇒ b1 =

1

π

π∫
0

1

2
sin(2x)dx = 0.
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For the other coefficients we use further trigonometric identities that yield for n > 1

an =
1

π

π∫
0

cos(nx) cos(x)dx =
1

π

(
sin(n− 1)x

2(n− 1)
+

sin(n+ 1)x

2(n+ 1)

)∣∣∣∣π
0

= 0.

bn =
1

π

π∫
0

sin(nx) cos(x)dx =
1

π

(
−cos(n− 1)x

2(n− 1)
− cos(n+ 1)x

2(n+ 1)

)∣∣∣∣π
0

= − 1

2π

(
(−1)n−1

n− 1
− 1

n− 1
+

(−1)n+1

n+ 1
− 1

n+ 1

)

=
1

π

{(
1

n−1 + 1
n+1

)
n is even

0 n is odd.
=

1

π

{
2n
n2−1 n is even

0 n is odd.

The Fourier series is therefore

−1

2
cos(x) +

1

π

∑
n≥2, even

2n

n2 − 1
sin(nx).

2. The hyperbolic cosine is an even function, so we will compute the Fourier series with sines and cosines,
since the sines drop out.

π∫
0

cosh(x) cos(nx)dx = Re

π∫
0

cosh(x)einxdx = Re

π∫
0

e(1+in)x + e(in−1)xdx

= Re

(
e(1+in)π − 1

1 + in
+
e(in−1)π − 1

in− 1

)
= Re

(
(in− 1)(eπ(−1)n − 1) + (1 + in)((−1)ne−π − 1)

−(n2 + 1)

)
=
−(eπ(−1)n − 1) + (−1)ne−π − 1

−(n2 + 1)
=

(−1)n(e−π − eπ)

−(n2 + 1)
= (−1)n

eπ − e−π

n2 + 1

= (−1)n2
sinh(π)

n2 + 1

and so dividing by π we get

an = (−1)n
2 sinh(π)

π(n2 + 1)
.

We also compute that the

1

2π

π∫
−π

cosh(x)dx =
1

π

π∫
0

cosh(x)dx =
1

π
sinh(π).

The Fourier series is therefore

sinh(π)

π
+
∑
n≥1

(−1)n
2 sinh(π)

π(n2 + 1)
cos(nx).

3. There are a few cases to distinguish. If 2a ≥ π then the cn Fourier coefficients are for n 6= 0

cn =
1

2π

π∫
−π

f(x)e−inxdx =
1

2π

a∫
−a

e−inxdx =
e−ina − eina

−in2π
.
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If a < π
2 , then when we integrate, the integral goes up to either 4a if 4a < π or up to π if 4a > π, so

we compute

cn =
1

2π

π∫
−π

f(x)e−inxdx =
1

2π

a∫
−a

e−inxdx+
1

2π

min{4a,π}∫
2a

−e−inxdx

=
1

2π

(
e−an − ean − e−min{4a,π}in + e−2an

−in

)
, n 6= 0,

In all cases
c0 = 0.

4. The Fourier series of sin2 x is an element of the table, so to get cos2 x we can use the fact that
sin2 x+ cos2 x = 1, so

cos2 x = 1−
(

1

2
− 1

2
cos(2x)

)
=

1

2
+

1

2
cos(2x).

7.
8m

π2

∑
n≥1

(−1)n+1

(2n− 1)2
sin((2n− 1)πx/`) cos((2n− 1)πct/`).

8.
2m`2

π2a(`− a)

∑
n≥1

1

n2
sin(nπa/`) sin(nπx/`) cos(nπct/`).

12.
π

4
− 2

π

∑
n≥1

cos((4n− 2)x)

(2n− 1)2
.

13.
4

π

∑
n≥1

(−1)n+1

2n− 1
cos((2n− 1)πx/4).

14.

(e− 1)
∑
n∈Z

e2πinx

1− 2πin
.

15.

f(t) =
2

3
− 3

π2

∞∑
n=1

1− cos(2nπ/3)

n2
cos(2nπt/3).

y(t) =
2

9
− 3

π2

∑
n≥1

1− cos(2nπ/3)

n2(3− 4
9n

2π2)
cos(2nπt/3).

16.

50− 400

π2

∑
n≥1

1

(2n− 1)2
exp

(
−(2n− 1)2π2(1.1)t

104

)
cos((2n− 1)πx/100).

18.
4`

cπ2

∑
n≥1

(−1)n+1

(2n− 1)2
sin((2n− 1)πδ/`) sin((2n− 1)πx/`) sin((2n− 1)πct/`).

19.
10− 7e−.576x cos(2πt− 0.576x)− 5e−11x cos(730πt− 11x).

At depth 21 cm for daily; at 4.6 meters for annual.

20. a. has 12, b has infinitely many, c has zero.
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E.4 Exercises in §5.6

1. (a) u(x, t) =
∑
n≥1 bn exp(−(n− 1/2)2π2kt/(`2)) sin((n− 1/2)πx/`)

(b) bn = 200
π(2n−1) .

2. u(x, t) = (e−2t − e−kt) sin(x)/(k − 2) if k 6= 2, u(x, t) = te−2t sin(x) if k = 2.

3. f(x) = 4
3 + 2

π2

∑
n∈Z\{0}

(−1)n(1+inπ)
n2 einπx and

y = −4

3
+

2

π2

∑
n∈Z\{0}

(−1)n−1(1 + inπ)

n2(2n2π2 + inπ + 1)
einπx.

4. u(x, t) = 4R
π

∑
n odd

e−ct−e−n
2π2kt/`2

n((n2π2k/`2−c) sin(nπx/`) if c 6= n2π2k/`2 for any odd n. If c = N2π2k/`2 for

some odd N , then the coefficient of sin(Nπx/`) is N−1te−N
2π2kt/`2 .

5. u(x, t) =
∑
n≥1(an cosλnt+ bn sinλnt) sin(nπx/`), with λ2

n = n2π2c2

`2 + a2.

6. u(x, t) = Rt.

7. u(x, y) = 1
6 (y3 − y) + 2

π3

∑
n≥1

(−1)n−1

n3 sinh(2nπ) (sinh(nπx) + 7 sinh(nπ(2− x)) sin(nπy).

8. u(x, y) = − 8
π3 sin(πx) sin(

√
20−π2y)

sin(
√

20−π2)
− 8

π3

∑
k≥1

sin((2k+1)πx)
(2k+1)3

sinh(
√

(2k+1)2π2−20y)

sinh(
√

(2k+1)2π2−20)
.

9. u(x, y) = 8`2

π3

∑
n≥1

1
(2n−1)3 sinh((2n−1)π) sin((2n− 1)πx/`) sinh((2n− 1)πy/`).

10. 8
π

∑
n≥1

n
4n2−1 sin(2nx) and the sum is π2

64 .

11. u(x, t) = C +
∑
n≥1

(
bn − 4C

π(2n−1)

)
exp(−(n− 1/2)2π2kt/`2) sin((n− 1/2)πx/`), with

bn :=
2

`

`∫
0

f(x) sin((2n− 1)πx/(2`))dx.

15. u(x, t) = R(1− e−ct)/c.

16. u(x, t) = b`
2 −

4b`
π2

∑
n≥1

1
(2n−1)2 cos((2n− 1)πx/`) cos((2n− 1)πct/`).

17. u(x, t) = gx(x−`)
2c2 + 4`2g

π3c2

∑
n≥1

1
(2n−1)3 sin((2n− 1)πx/`) cos((2n− 1)πct/`).

18. u(x, t) =
∑
n≥1 e

−kt(an cosλnt + bn sinλnt) sin(nπx/`) with λ2
n = n2π2c2

`2 − k2. If k > πc/`, some of
the λn will be imaginary.

20. u(x, y) = C +
∑
n≥1

`an
nπ sinhnπ cos(nπx/`) cosh(nπy/`) where the an are the coefficients of the Fourier

cosine series for f with a0 = 0.

21. The steady state temperature is

u(r, θ) =
∑
n∈Z

cn
rn + r2n

0 r−n

1 + r2n
0

einθ, cn =
1

2π

π∫
−π

f(θ)e−inθdθ,

and the solution for f(θ) = 1 + 2 sin θ is

u(r, θ) = 1 + 2
r2 + r2

0

r(1 + r2
0)

sin θ.
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22. Let g(r) =
∑
n≥1 cn sin(nπ log r/(log r0)) and h(r) =

∑
n≥1 dn sin(nπ log r/(log r0)), then

u(r, θ) =
∑
n≥1

(ane
nπθ/ log r0 + bne

−nπθ/ log r0) sin(nπ log r/ log r0),

with an + bn = cn, and dn = ane
nπβ/ log r0 + bne

−nπβ/ log r0 .

E.5 Exercises in §6.7

1. The eigenvalues λk = ν2
k where νk are the positive solutions to the equation

tan νa =
3ν

2ν2 − 1
,

with eigenfunctions νk cos(νkx) + sin(νkx).

2. (2/`)1/2 cos((n− 1/2)πx/`), n ∈ N.

3. λ1 = 4− β2
1 where β1 is the positive root of the equation

tanhβ =
β

2
, u1(x) = e−2x sinh(β1x),

and for n ≥ 2, λn = 4 + β2
n, where βn are the positive roots to the equation

tanβ =
β

2
, un(x) = e−2x sin(βnx).

4. The eigenvalues are λn = ν2
n where the νn are the positive solutions of tan ν = −ν, and the eigenfunc-

tions are sin(νnx).

5. For each t let
∑
an(t)φn(x) be the expansion of f(x, t) in terms of the eigenfunctions φn(x). Then

u(x, t) =
∑
n≥1

φn(x)e−λnt
t∫

0

eλnsan(s)ds.

6. cc′ = r(a)/r(b).

8. (2/`)1/2 sin((n− 1/2)πx/`), n ∈ N.

9. If β < 0 the eigenvalues are the numbers λn = ν2
n where the νn are the positive solutions of tan(ν`) =

−β/ν, and the eigenfunctions are cos(νnx). If β = 0, the eigenvalues are λn = (nπ/`)2 for n ≥ 0,
with n ∈ Z, and the eigenfunctions are cos(νnx). If β > 0 the eigenvalues are the squares of the
positive solutions νn to tan(ν`) = −β/ν together with the square of the unique positive solution µ0 of
tanh(µ`) = β/µ. The eigenfunctions are

φn(x) = cos(νnx), φ0(x) = cosh(µ0x).

10. If α > 0, the eigenvalues are λn = ν2
n where the νn are the positive solutions of tan(ν`) = α/ν, and

the eigenfunctions are cos(νn(`− x)). If α ≤ 0 one proceeds similarly as in the preceding solution.

12. λn =
(
nπ

log b

)2

, φn(x) = sin(nπ log x/ log b).

13. λn = 1
4 +

(
nπ

log b

)2

, φn(x) = sin(nπ log x/ log b).
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14. u(x, t) =
∑
n≥1

200 sin2(νn`)
(`b+sin2(νn`)) cos(νn`)

e−ν
2
nkt cos(νnx) where νn are the positive solutions of tan(ν`) = b/ν.

15. b.

u(x, t) =
`e−ht

2
− 4`

π2

∑
n≥1

e−(h+(2n−1)2π2kt/`2)t

(2n− 1)2
cos((2n− 1)πx/`).

c.

u(x, t) = 100
sinh(αx)

sinh(α`)
+ 200π

∑
n≥1

(−1)nne−n
2π2kt/`2

α2`2 + n2π2
sin(nπx/`), α =

√
h

k
.

E.6 Exercises in §7.6

1. u(x, t) = e−4π2t sin(2πx) + 2π sin(1)
∑
n≥1(−1)n−1 n

n2π2−1

(
t

n2π2 − 1
n4π4 (1− e−n2π2t)

)
sin(nπx).

2.

u(r, t) = B +
2ρ(A−B)

ρ+ δ

∑
k≥1

J1(λkρ/(ρ+ δ))

λkJ1(λk)2
J0

(
λkr

ρ+ δ

)
e−λ

2
kt/(ρ+δ)

2

with J0(λk) = 0.

3.

u(r, θ) =
∑
n≥0

(2(2(n+ 1/2) π
ln 2 (−1)n − 1)

(n+ 1/2)π((n+ 1/2)2(π/ ln 2)2 + 1)

sinh(n+ 1/2) πθln 2

sinh(n+ 1/2) π2

4 ln 2

sin(n+ 1/2)
π ln 4

ln 2
.

4. u(x, t) = −x
2

2 + 16
π3

∑
k≥0

cos((2k+1)πt)
(2k+1)3 sin((2k + 1)πx/2).

5. u(r, θ) = − 1
2r

2 cos(2θ)+r cos(θ)+ 1
2 in polar coordinates, or 1

2 (y2−x2)+x+ 1
2 in cartesian coordinates.

6. Steady state temperature is a(1− r2)/4.

u(r, t) =
a

4
(1− r2)− 2a

∑
k≥1

J0(λkr)

λ3
kJ1(λk)

e−λ
2
kt.

8.

u(r, t) = 2A
∑
k≥1

λkJ1(λk)

(λ2
k + b2c2)J0(λk)2

J0

(
λkr

b

)
e−λ

2
kt/b

2

,

with λkJ
′
0(λk) + bcJ0(λk) = 0.

9.

u(r, θ, z) =
∑
n≥0

∑
k≥1

(akn cos(nθ) + bkn sin(nθ))Jn

(
λknr

b

)
sinh(λknz/b),

where Jn(λkn) = 0 and akn and bkn are obtained by expanding g(r, θ) in terms of the basis Jn(λknr) sin(nθ).

10.
u(r, z) = a0z +

∑
k≥1

akJ0(λkr) sinh(λkz)

with J ′0(λk) = 0, and a0 = 2
∫ 1

0
rf(r)dr, and

ak =
2

J0(λk)2 sinh(λk)

1∫
0

rf(r)J0(λkr)dr, k > 0.
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E.7 Exercises in §8.7

1. c0 = 2π(1− e−1/2) and cn = π(e1/2 − e−1/2)e−|n| for n 6= 0.

2.
√
π

16 (3 + 6x− 1
2x

2).

3. 3(2x2 − 1).

4. 8
81 (x2 + 12).

5. x3 − 3
2x

2 + 3
5x−

1
20 .

6. H ′2k(0) = 0, H ′2k+1(0) = 2(−1)k (2k+1)!
k! .

9. The solution is a0[1 +
∑
k≥1 ckx

2k] + a1[x+
∑
k≥1 dkx

2k+1] where a0 and a1 are arbitrary and

ck = (−1)k

(∏1−k
j=0 (ν − 2j)

)(∏k
`=1(ν + 2`− 1)

)
(2k)!

and

dk = (−1)k

(∏k
j=1(ν − 2j + 1)

)(∏k
`=1(ν + 2`)

)
(2k + 1)!

.

13. y = a0y0 + a1y1 with

y0 = 1 +
∑
k≥1

∏k
j=1(4j − 4− λ)

(2k)!
x2k,

y1 = x+
∑
k≥1

∏k
j=1(4j − 2− λ)

(2k + 1)!
x2k+1.

E.8 Exercises in §9.10

1. − iπ
2aξe

−a|ξ| and π
2a3 (1 + a|ξ|)e−a|ξ|.

3. − 4iabξ
(ξ2+2bξ+a2+b2)(ξ2−2bξ+a2+b2) , −π2 e

iξe−2|ξ|(1 + 2i sgn ξ).

5. π
8 (e2 + 1).

7. i and i
2
√

2

8. π(1− e−1)

9. 3
4e
−2|t| − te−2tθ(t), with θ(t) = 0 if t < 0 and θ(t) = 1 if t > 0.

10. f(0) = 1,
∫
R f(x)dx = 1.

11. u(x) = g ∗ e−|x| = e−x
∫ x
−∞ eyg(y)dy + ex

∫∞
x
e−yg(y)dy.

12. ξ
ξ2+k2 and k

ξ2+k2 .

13. u(x, t) = 1√
4πkt

∫∞
0
f(y)(e−(x−y)2/(4kt) − e−(x+y)2/(4kt))dy.

14. u(x, y) = 2
π

∫∞
0

cos(xξ) cosh(yξ)
(1+ξ2) cosh ξ dξ.
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15. f̂(ξ) = 2π
√
ξ

1+ξ for 0 < ξ < 2, and π
2 and 2π(ln 3− 2/3).

16. u(t) = 1
2e
−t/
√
eθ(t) + 1

2e
√

3t(1− θ(t)).

17. u(x, t) = 4kt+1−2x2

(4kt+1)5/2
e−

x2

4kt+1 .

18. u(x, y) = 2
π

∫∞
0

ξ sin(xξ) sinh(yξ)
(1+ξ2) sinh ξ dξ.

19. Fourier transforming in the x variable gives the Fourier transform of the solution is

û(ξ, y) =
sinh(ξy)

sinh(ξa)
f̂(ξ).

Apply Plancharel’s theorem to obtain the inequality. The solution

u(x, y) =
1

2a

∫
R

sin(πy/a)

cosh((π(x− t)/a) + cos(πy/a)
f(t)dt.

21. e−iaξ−e−ibξ
iξ .

23. (a) in L1, (b) in L2, (c) neither, (d) both.

24. f ∗ f(x) = x+ 2 if −2 ≤ x ≤ 0, or 2− x if 0 ≤ x ≤ 2 and 0 otherwise. f ∗ f ∗ f(x) = 1
2 (x+ 3)2 if −3 ≤

x ≤ −1, 3−x2 if −1 ≤ x ≤ 1, and 1
2 (3−x)2 if 1 ≤ x ≤ 3, and 0 otherwise. fε ∗g(x) = 2x3 +(2ε2−2)x.

25. f ∗ g(x) =
√
π/3e−2x2/3.

39.

1

2b

∫
R

sin(πy/b)f(t)

cosh(π(x− t)/b)− cos(πy/b)
dt+

∫
R

sin(πy/b)g(t)

cosh(π(x− t)/b) + cos(πy/b)
dt

 .
40.

u(r, z) =
1

π

∫
R

eizξ sin(`ξ)

ξ

I0(rξ)

I0(aξ)
dξ

where I0 is the modified Bessel function of order zero, equivalently, I0(x) = J0(ix).

42. f(t) =
∑
n∈Z f(nπ/Ω)ei(b−a)(Ωt−nπ)/(2Ω) sin(Ωt−nπ)

Ωt−nπ .

43. ξ
ξ2+k2 and k

ξ2+k2 .

46. u(x, y) =
∫∞

0
K(x, y, z)f(z)dz +

∫∞
0
K(y, x, z)g(z)dz with

K(s, t, z) =
1

2π

[
t

(s− z)2 + t2
− t

(s+ z)2 + t2

]
.

47.

u(x, y) =
2

π

∞∫
0

sin(cξ) cos(xξ) cosh(y
√
ξ2 + h)

ξ cosh(
√
ξ2 + h)

dξ.
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E.9 Exercises in §10.6

1. u(x, t) = erfc(x/
√

4kt) for 0 < t < 1, u(x, t) = erfc(x/
√

4kt)− erfc(x/
√

4k(t− 1)) for t ≥ 1.

3. u(x, t) = x√
4πk

∫ t
0
f(t− s)e−ass−3/2e−x

2/(4ks)ds.

5. u(t) = ae−t√
a2−1

sin(t
√
a2 − 1) if a > 1, u(t) = te−t if a = 1, and

u(t) =
ae−t√
a2 − 1

sinh(t
√

1− a2), a < 1.

6. u = ±
√

30t2e−3t.

7. a
z2−a2 , z

z2−a2 .

8. z2+2
z(z2+4) .

9.
√
π

2a e
z2/(4a2) erfc(z/2a).

10. eazE1(az), a−1 − zeazE1(az).

11. z−2 − e−z(2z+1)
z2(z+1) .

12.
√
π/zea/(4z) erfc(

√
a/(4z)).

13. Γ(n+α+1)(z−1)n

n!zn+α+1 .

14. (a) 1 + e−2t, and (b) 1− e−2t − 2te−2t, and (c) 1− cos(t).

15. (a− b)−1(eat − ebt) if b 6= a and teat if b = a.

16. (a) sin(t), and (b) Γ(a)Γ(b)
Γ(a+b) t

a+b−1, and (c) 2
3 sin t− 1

3 sin(2t).

18. (a) z−2 − π
z sinh(πz) and (b) 1

z tanh(πz/2) and (c) 1
z2 tanh(πz/2).

19. (a) e−2t − 2te−2t − 2e−4t

(b) 3 + et cos(2t) + 4et sin(2t)

(c) π
2 −

4
π

∑
n≥1

cos((2n−1)t)
(2n−1)2

(d) 1 + 4
π

∑
n≥1

(−1)n

2n−1 e
−(2n−1)2π2t/4

(e) a

2
√
πt3

e−a
2/(4t), and erfc(a/

√
4t).

(f) E1(t).

21. (a) u(t) = ω sin(2t)−2 sin(ωt)
2(ω2−4) if ω 6= 2, and if ω = 2 it is 1

8 (sin(2t)− 2t cos(2t)).

(b) u(t) =
∫ t

0
f(t− s)se−2sds+ c0e

−2t + (c1 + 2c0)te−2t.

(c) u(t) = e−t sin t+ 1
2Θ(t− π)(1 + eπ−t cos t+ eπ−t sin t)− 1

2Θ(t− 2π)(1− e2π−t cos t− e2π−t sin t).

(d) u(t) =
∫ t

0
f(t− s)(cosh s− 1)ds+ 1− sinh t.

(e) u(t) = −t+ 1
2 sinh t+ 1

2 sin t.

22. u(t) = ct2 − t, and generally u(t) = c1t
2 + ctt

−1 − t.

23. u(t) = c1e
t + c2(t+ 1).
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27. u(t) = 2a−2(cosh(at)− 1).

28. u(t) = f(t) + 1
2

∫ t
0
f(t− s)(sinh s− sin s)ds.

30. First question is r(t) = cN0, second question r(t) = 2cN0 − (c− 1)N0e
−t.
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[19] Å k. Pleijel, A study of certain Green’s functions with applications in the theory of vibrating membranes, Ark. Mat. 2
(1954), 553–569. MR61257

[20] B. Riemann, über die anzahl der primzahlen unter einer gegebenen grösse, Monatsberichte der Berliner Akademie (1859).

[21] J. Rowlett, Blast into math! a fun and rigorous introduction to pure mathematics, Bookboon, 2013.

[22] J. von Neumann, Mathematical foundations of quantum mechanics, Princeton University Press, 1955.

[23] G. Watson, Treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, 1966.

[24] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer An-
wendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71 (1912), no. 4, 441–479. MR1511670

329


	Introduction: every equation requires a sound check!
	Every concert, and every partial differential equation, requires a sound check.
	The definition of ordinary and partial differential equations.

	How to read this text
	Help me illustrate this text!

	Separation of variables makes the problem ordinary; superposition turns the ordinary extraordinary!
	The sound of guitars can be understood by solving the wave equation
	The first technique for your toolbox: separation of variables
	Superposition: building a super solution!

	Heat flow in a circular rod
	A schematic summary of using separation of variables to determine what type of functions X will comprise the solution
	Indications that variable separation and superposition can help solve a PDE.

	Partial differential equations in mathematical physics
	Elliptic partial differential equations in mathematical physics
	Parabolic partial differential equations in mathematical physics
	Hyperbolic partial differential equations in mathematical physics
	Don't let the solution get away; the boundary conditions are here to stay!

	Exercises

	Don't get lost in a Hilbert space; find your way with an orthogonal base!
	Cauchy-Schwarz Inequality, Triangle Inequality, and Pythagorean Theorem
	Continuity of the scalar product

	Let's build an infinite dimensional Hilbert space!
	A Hilbert space of functions
	Bessel's inequality and orthonormal sets
	The 3 equivalent conditions to determine if an orthonormal set in a Hilbert space is in fact an orthonormal basis
	Fourier series on Hilbert spaces are the best approximations!
	The Best Approximation!

	Orthogonal bases for the Hilbert space L2(-, )
	Trigonometric Fourier series
	Computing trigonometric Fourier series: an example

	Trigonometric Fourier series to compute sums and  falling out of the sky
	The Basel problem
	Parseval's equality to compute another series

	Computing best approximations
	Hilbert spaces in mathematical physics
	Exercises

	Trigonometric Fourier series and their applications: rock and roll, hot rods, and  falling out of the sky!
	Rock and roll for real: completing the solution to the vibrating string problem
	It's getting hot in here: completing the solution for heat flow on a circular rod
	Visualization of the solution to the heat equation on a rod

	What happens to trigonometric Fourier series outside (-, )?
	Pointwise convergence of Fourier Series: don't let your work go to waste, with Fourier series just copy-paste!

	Applying the pointwise convergence of Fourier series to compute sums and catch more  falling out of the sky!
	Practice makes perfect: applying trigonometric series to compute another sum and catch some more !

	Differentiating and integrating trigonometric Fourier series
	Computing a sum using the Integration Theorem for Fourier Series

	Fourier sine and cosine series: even and odd extensions
	Fourier trigonometric series on an arbitrary interval
	Fourier series in mathematical physics
	Zeta functions in mathematical physics and number theory
	The Gibbs phenomenon

	Exercises

	PDEs in bounded regions of space: stay calm and carry on, tackling challenges one-by-one!
	The homogeneous wave equation in a bounded interval
	To deal with time independent inhomogeneities, don't worry mate, find a steady state!
	Heat equation on an interval with an inhomogeneous time-independent boundary condition

	Fourier series with time dependent coefficient functions
	The homogeneous wave equation inside a rectangle
	Mathematical physics and martial arts
	Exercises

	Sturm-Liouville problems: need to solve a PDE? An SLP might be the key!
	Regular Sturm-Liouville Problems
	Useful cute facts about SLPs
	Do you need to solve a PDE? An SLP might be the key!
	SLP, slide, and glide; the solution has no place to hide!
	Practice makes perfect: slp, slide, and glide
	Sturm-Liouville problems in mathematical physics
	Exercises

	Bessel functions are loads of fun; their zeros describe a vibrating drum!
	Drums and Bessel funs
	The mathematics of a vibrating drum

	A series solution to Bessel's equation
	Properties of Bessel funs
	The generating function for the Bessel functions
	Integral representation of the Bessel functions

	Applications to solving PDEs in circular type regions
	Dirichlet boundary condition on a circular sector
	Bessel functions with Neumann boundary condition

	Bessel funs in mathematical physics and music
	Exercises

	There's not just one orthogonal base: the best base is found with help from space!
	General theory of orthogonal polynomials
	Best approximations

	The Legendre polynomials and applications
	Les polynomes d'hermite
	Applications to best approximations on R

	The Laguerre polynomials
	Some functions have Taylor expansions but nearly all functions can be expanded with orthogonal polynomials!
	Best approximations

	Orthogonal polynomials in quantum chemistry: the mathematics of the hydrogen atom
	Exercises

	The Fourier transform: when a solution needs to be found, transform the problem into sound!
	A convolution could be the solution!
	The formidable Fourier transform
	Example of computing a Fourier transform

	The formidable Fourier transform's fine features
	The big bad(*ss) convolution approximation theorem: the big bad CAT
	Applications of the Fourier transform: the initial value problem for the heat equation
	Homogeneous heat equation solved with help from the Fourier transform
	Inhomogeneous heat equation
	Computing tricky integrals: sometimes  falls out of the sky!

	Fourier sine and cosine transforms and applications to PDEs on half-spaces
	Fourier sine and cosine transforms and their inverse formulas
	Solving the heat equation on a semi-infinite rod with insulated end

	Dirichlet problem in a quadrant
	The Sampling Theorem and the discrete and fast Fourier transforms
	The sampling theorem
	Discrete and fast Fourier transforms

	Fourier transforms in mathematical physics
	A signal cannot be both band-limited and time-limited
	The Heisenberg uncertainty principle
	Quantization of pseudodifferential operators

	Exercises

	The Laplace transform can be applied as long as we stay on the heavyside!
	Properties of the Laplace transform
	Laplace transform tables

	Application to solving linear constant coefficient ordinary differential equations
	Application of the Laplace transform to solving PDEs
	Inverting the Laplace transform

	Computing an inverse Laplace transform to solve the heat equation
	The Laplace transform in mathematical biology: how many elephants?
	If the Laplace and Fourier transform are so closely related, why do we need both?

	Exercises

	Linear algebra
	Linear independence and bases
	The spectral theorem for hermitian matrices

	Computer code
	Matlab code to graph a Fourier series
	Python code

	Distributions and weak solutions to PDEs
	The Lebesgue and Hausdorff measures
	Algebras, sigma algebras, and measures
	Carathéodory's outer measures
	Completeness
	Exercises: Measure theory basics

	Completion of a measure, creating a measure from an outer measure, and pre-measures
	Exercises: Constructing the Lebesgue measure
	Hints

	Pre-measure extension theorem and metric outer measures
	Metric outer measures
	Exercises: properties of the Lebesgue -algebra
	Hints
	General results which shall be used to obtain the Hausdorff measure
	Exercises
	Hints

	Canonical metric outer measures and Hausdorff measure
	The Hausdorff measure
	The volume of the unit ball in Rn

	Hausdorff dimension
	Exercises

	Properties of Hausdorff dimension
	A comparison of the Hausdorff and Lebesgue measures

	Solutions to selected exercises from the text
	Exercises in §2.5
	Exercises in §3.12
	Exercises in §4.9
	Exercises in §5.6
	Exercises in §6.7
	Exercises in §7.6
	Exercises in §8.7
	Exercises in §9.10
	Exercises in §10.6


